
Package ‘cv’
June 16, 2025

Type Package

Title Cross-Validating Regression Models

Version 2.0.4

Date 2025-06-16

Description Cross-validation methods of regression models that exploit features of various
modeling functions to improve speed. Some of the methods implemented in the package are
novel, as described in the package vignettes; for general introductions to cross-validation,
see, for example, Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani
(2021, ISBN 978-1-0716-1417-4, Secs. 5.1, 5.3), ``An Introduction to Statistical Learning with
Applications in R, Second Edition'', and Trevor Hastie, Robert Tibshirani,
and Jerome Friedman (2009, ISBN 978-0-387-84857-0, Sec. 7.10), ``The Elements of Statistical
Learning, Second Edition''.

Depends R (>= 3.5.0), doParallel

Imports car, foreach, glmmTMB, graphics, grDevices, gtools, insight,
lattice, lme4, MASS, methods, nlme, parallel, stats, utils

Suggests boot, carData, dplyr, effects, ISLR2, knitr, latticeExtra,
leaps, Metrics, microbenchmark, nnet, rmarkdown, spelling,
testthat

LazyData TRUE

VignetteBuilder knitr, rmarkdown

License GPL (>= 2)

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

URL https://gmonette.github.io/cv/,

https://CRAN.R-project.org/package=cv

BugReports https://github.com/gmonette/cv/issues

NeedsCompilation no

Author John Fox [aut] (ORCID: <https://orcid.org/0000-0002-1196-8012>),
Georges Monette [aut, cre]

1

https://gmonette.github.io/cv/
https://CRAN.R-project.org/package=cv
https://github.com/gmonette/cv/issues
https://orcid.org/0000-0002-1196-8012

2 cv

Maintainer Georges Monette <georges+cv@yorku.ca>

Repository CRAN

Date/Publication 2025-06-16 18:40:02 UTC

Contents
cv . 2
cv.function . 10
cv.merMod . 16
cv.modList . 18
cvCompute . 22
mse . 27
Pigs . 29

Index 30

cv Cross-Validate Regression Models

Description

cv() is a parallelized generic k-fold (including n-fold, i.e., leave-one-out) cross-validation function,
with a default method, specific methods for linear and generalized-linear models that can be much
more computationally efficient, and a method for robust linear models. There are also cv() methods
for mixed-effects models, for model-selection procedures, and for several models fit to the same
data, which are documented separately.

Usage

cv(model, data, criterion, k, reps = 1L, seed, ...)

Default S3 method:
cv(
model,
data = insight::get_data(model),
criterion = mse,
k = 10L,
reps = 1L,
seed = NULL,
criterion.name = deparse(substitute(criterion)),
details = k <= 10L,
confint = n >= 400L,
level = 0.95,
ncores = 1L,
type = "response",
start = FALSE,

cv 3

model.function,
...

)

S3 method for class 'lm'
cv(
model,
data = insight::get_data(model),
criterion = mse,
k = 10L,
reps = 1L,
seed = NULL,
details = k <= 10L,
confint = n >= 400L,
level = 0.95,
method = c("auto", "hatvalues", "Woodbury", "naive"),
ncores = 1L,
...

)

S3 method for class 'glm'
cv(
model,
data = insight::get_data(model),
criterion = mse,
k = 10L,
reps = 1L,
seed = NULL,
details = k <= 10L,
confint = n >= 400L,
level = 0.95,
method = c("exact", "hatvalues", "Woodbury"),
ncores = 1L,
start = FALSE,
...

)

S3 method for class 'rlm'
cv(model, data, criterion, k, reps = 1L, seed, ...)

S3 method for class 'cv'
print(x, digits = getOption("digits"), ...)

S3 method for class 'cv'
summary(object, digits = getOption("digits"), ...)

S3 method for class 'cvList'
print(x, ...)

4 cv

S3 method for class 'cvList'
summary(object, ...)

S3 method for class 'cv'
plot(x, y, what = c("CV criterion", "coefficients"), ...)

S3 method for class 'cvList'
plot(
x,
y,
what = c("adjusted CV criterion", "CV criterion"),
confint = TRUE,
...

)

cvInfo(object, what, ...)

S3 method for class 'cv'
cvInfo(
object,
what = c("CV criterion", "adjusted CV criterion", "full CV criterion", "confint", "SE",

"k", "seed", "method", "criterion name"),
...

)

S3 method for class 'cvModList'
cvInfo(
object,
what = c("CV criterion", "adjusted CV criterion", "full CV criterion", "confint", "SE",

"k", "seed", "method", "criterion name"),
...

)

S3 method for class 'cvList'
cvInfo(
object,
what = c("CV criterion", "adjusted CV criterion", "full CV criterion", "confint", "SE",

"k", "seed", "method", "criterion name"),
...

)

S3 method for class 'cv'
as.data.frame(
x,
row.names = NULL,
optional = TRUE,
rows = c("cv", "folds"),

cv 5

columns = c("criteria", "coefficients"),
...

)

S3 method for class 'cvList'
as.data.frame(x, row.names = NULL, optional = TRUE, ...)

S3 method for class 'cvDataFrame'
print(x, digits = getOption("digits") - 2L, ...)

S3 method for class 'cvDataFrame'
summary(
object,
formula,
subset = NULL,
fun = mean,
include = c("cv", "folds", "all"),
...

)

Arguments

model a regression model object (see Details).

data data frame to which the model was fit (not usually necessary).

criterion cross-validation criterion ("cost" or lack-of-fit) function of form f(y, yhat)
where y is the observed values of the response and yhat the predicted values;
the default is mse (the mean-squared error).

k perform k-fold cross-validation (default is 10); k may be a number or "loo" or
"n" for n-fold (leave-one-out) cross-validation.

reps number of times to replicate k-fold CV (default is 1).

seed for R’s random number generator; optional, if not supplied a random seed will
be selected and saved; not needed for n-fold cross-validation.

... to match generic; passed to predict() for the default cv() method; passed to
the Tapply() function in the car package for summary.cvDataFrame(); passed
to default plot() method for plot.cvList() or plot.cv().

criterion.name a character string giving the name of the CV criterion function in the returned
"cv" object (not usually needed).

details if TRUE (the default if the number of folds k <= 10), save detailed information
about the value of the CV criterion for the cases in each fold and the regression
coefficients with that fold deleted.

confint if TRUE (the default if the number of cases is 400 or greater), compute a confi-
dence interval for the bias-corrected CV criterion, if the criterion is the average
of casewise components; for plot.cvList(), whether to plot confidence inter-
vals around the biased-adjusted CV criterion, defaulting to TRUE and applicable
only if confidence intervals are included in the "cv" object.

level confidence level (default 0.95).

6 cv

ncores number of cores to use for parallel computations (default is 1, i.e., computations
aren’t done in parallel).

type for the default method, value to be passed to the type argument of predict();
the default is type="response", which is appropriate, e.g., for a "glm" model
and may be recognized or ignored by predict() methods for other model
classes.

start if TRUE (the default is FALSE), the start argument to update() is set to the vec-
tor of regression coefficients for the model fit to the full data, possibly making
the CV updates faster, e.g., for a GLM.

model.function a regression function, typically for a new cv() method that that calls cv.default()
via NextMethod(), residing in a package that’s not a declared dependency of
the cv package, e.g., nnet::multinom. It’s usually not necessary to specify
model.function to make cv.default() work.

method computational method to apply to a linear (i.e., "lm") model or to a general-
ized linear (i.e., "glm") model. See Details for an explanation of the available
options.

x a "cv", "cvList", or "cvDataFrame" object to be plotted or summarized.

digits significant digits for printing, default taken from the "digits" option.

object an object to summarize or a "cv", "cvModlist", or "cvList" object from
which to extract information via cvInfo().

y to match the plot() generic function, ignored.

what for plot() methods, what to plot: for the "cv" method, either "CV criterion"
(the default), or "coefficients"; for the "cvList" method, either "adjusted
CV criterion" (the default if present in the "cv" object) or "CV object".
For cvInfo(), the information to extract from a "cv", "cvModList", or "cvList"
object, one of: "CV criterion", "adjusted CV criterion", "full CV criterion"
(the CV criterion applied to the model fit to the full data set), "SE" (the standard
error of the adjusted CV criterion), "confint" (confidence interval for the ad-
justed CV criterion), "k", (the number of folds), "seed" (the seed employed
for R’s random-number generator), "method" (the computational method em-
ployed, e.g., for a "lm" model object), or "criterion name" (the CV criterion
employed); not all of these elements may be present, in which case cvInfo()
would return NULL.
Partial matching is supported, so, e.g., cvInfo(cv-object, "adjusted") is
equivalent to cvInfo(cv-object, "adjusted CV criterion")

row.names optional row names for the result, defaults to NULL.

optional to match the as.data.frame() generic function; if FALSE (the default is TRUE),
then the names of the columns of the returned data frame, including the names
of coefficients, are coerced to syntactically correct names.

rows the rows of the resulting data frame to retain: setting rows="cv" retains rows
pertaining to the overall CV result (marked as "fold 0"); setting rows="folds"
retains rows pertaining to individual folds 1 through k; the default is rows =
c("cv", "folds"), which retains all rows.

cv 7

columns the columns of the resulting data frame to retain: setting columns="critera"
retains columns pertaining to CV criteria; setting columns="coefficients"
retains columns pertaining to model coefficients (broadly construed); the default
is columns = c("criteria", "coefficients"), which retains both; and the
columns "model", "rep", and "fold", if present, are always retained.

formula of the form some.criterion ~ classifying.variable(s) (see examples).

subset a subsetting expression; the default (NULL) is not to subset the "cvDataFrame"
object.

fun summary function to apply, defaulting to mean.

include which rows of the "cvDataFrame" to include in the summary. One of "cv" (the
default), rows representing the overall CV results; "folds", rows for individual
folds; "all", all rows (generally not sensible).

Details

The default cv() method uses update() to refit the model to each fold, and should work if there
are appropriate update() and predict() methods, and if the default method for GetResponse()
works or if a GetResponse() method is supplied. The model must, however, work correctly with
update(), and in particular not have variables in the model formula that aren’t in the data to which
the model was fit: see the last example.

The "lm" and "glm" methods can use much faster computational algorithms, as selected by the
method argument. The linear-model method accommodates weighted linear models.

For both classes of models, for the leave-one-out (n-fold) case, fitted values for the folds can be
computed from the hat-values via method="hatvalues" without refitting the model; for GLMs,
this method is approximate, for LMs it is exact.

Again for both classes of models, when more than one case is omitted in each fold, fitted val-
ues may be obtained without refitting the model by exploiting the Woodbury matrix identity via
method="Woodbury". As for hatvalues, this method is exact for LMs and approximate for GLMs.

The default for linear models is method="auto", which is equivalent to method="hatvalues" for
n-fold cross-validation and method="Woodbury" otherwise; method="naive" refits the model via
update() and is generally much slower. The default for generalized linear models is method="exact",
which employs update(). This default is conservative, and it is usually safe to use method="hatvalues"
for n-fold CV or method="Woodbury" for k-fold CV.

There is also a method for robust linear models fit by rlm() in the MASS package (to avoid inherit-
ing the "lm" method for which the default "auto" computational method would be inappropriate).

For additional details, see the "Cross-validating regression models" vignette (vignette("cv",
package="cv")).

cv() is designed to be extensible to other classes of regression models; see the "Extending the cv
package" vignette (vignette("cv-extend", package="cv")).

Value

The cv() methods return an object of class "cv", with the CV criterion ("CV crit"), the bias-
adjusted CV criterion ("adj CV crit"), the criterion for the model applied to the full data ("full
crit"), the confidence interval and level for the bias-adjusted CV criterion ("confint"), the num-
ber of folds ("k"), and the seed for R’s random-number generator ("seed"). If details=TRUE,

8 cv

then the returned object will also include a "details" component, which is a list of two el-
ements: "criterion", containing the CV criterion computed for the cases in each fold; and
"coefficients", regression coefficients computed for the model with each fold deleted. Some
methods may return a subset of these components and may add additional information. If reps > 1,
then an object of class "cvList" is returned, which is literally a list of "cv" objects.

Methods (by class)

• cv(default): "default" method.

• cv(lm): "lm" method.

• cv(glm): "glm" method.

• cv(rlm): "rlm" method (to avoid inheriting the "lm" method).

Methods (by generic)

• print(cv): print() method for "cv" objects.

• summary(cv): summary() method for "cv" objects.

• plot(cv): plot() method for "cv" objects.

• as.data.frame(cv): as.data.frame() method for "cv" objects.

Functions

• print(cvList): print() method for "cvList" objects.

• summary(cvList): summary() method for "cvList" objects.

• plot(cvList): plot() method for "cvList" objects.

• cvInfo(): extract information from a "cv" object.

• as.data.frame(cvList): as.data.frame() method for "cvList" objects.

• print(cvDataFrame): print() method for "cvDataFrame" objects.

• summary(cvDataFrame): summary() method for "cvDataFrame" objects.

See Also

cv.merMod, cv.function, cv.modList.

Examples

if (requireNamespace("ISLR2", quietly=TRUE)){
withAutoprint({
data("Auto", package="ISLR2")
m.auto <- lm(mpg ~ horsepower, data=Auto)
cv(m.auto, k="loo")
summary(cv(m.auto, k="loo"))
summary(cv.auto <- cv(m.auto, seed=1234))
compareFolds(cv.auto)
plot(cv.auto)
plot(cv.auto, what="coefficients")
summary(cv.auto.reps <- cv(m.auto, seed=1234, reps=3))

cv 9

cvInfo(cv.auto.reps, what="adjusted CV criterion")
plot(cv.auto.reps)
plot(cv(m.auto, seed=1234, reps=10, confint=TRUE))
D.auto.reps <- as.data.frame(cv.auto.reps)
head(D.auto.reps)
summary(D.auto.reps, mse ~ rep + fold, include="folds")
summary(D.auto.reps, mse ~ rep + fold, include = "folds",

subset = fold <= 5) # first 5 folds
summary(D.auto.reps, mse ~ rep, include="folds")
summary(D.auto.reps, mse ~ rep, fun=sd, include="folds")
})
} else {
cat("\n install 'ISLR2' package to run these examples\n")
}

if (requireNamespace("carData", quietly=TRUE)){
withAutoprint({
data("Mroz", package="carData")
m.mroz <- glm(lfp ~ ., data=Mroz, family=binomial)
summary(cv.mroz <- cv(m.mroz, criterion=BayesRule, seed=123))
cvInfo(cv.mroz)
cvInfo(cv.mroz, "adjusted")
cvInfo(cv.mroz, "confint")

data("Duncan", package="carData")
m.lm <- lm(prestige ~ income + education, data=Duncan)
m.rlm <- MASS::rlm(prestige ~ income + education,

data=Duncan)
summary(cv(m.lm, k="loo", method="Woodbury"))
summary(cv(m.rlm, k="loo"))
})
} else {
cat("\n install 'carData' package to run these examples\n")
}

the following (due to Joshua Philipp Entrop)
produces an error:
Not run:
data("Auto", package="ISLR2")
Auto$mpg_20 <- as.numeric(Auto$mpg < 20)
mlist <- lapply(

1:3,
\(p) glm(mpg_20 ~ poly(horsepower, p), data = Auto)

)
cv(

models(mlist),
data = Auto,
seed = 2120)

End(Not run)

10 cv.function

cv.function Cross-Validate a Model-Selection Procedure

Description

The cv() "function" method is a general function to cross-validate a model-selection procedure,
such as the following: selectStepAIC() is a procedure that applies the stepAIC() model-selection
function in the MASS package; selectTrans() is a procedure for selecting predictor and response
transformations in regression, which uses the powerTransform() function in the car package;
selectTransAndStepAIC() combines predictor and response transformations with predictor se-
lection; and selectModelList() uses cross-validation to select a model from a list of models
created by models() and employs (meta) cross-validation to assess the predictive accuracy of this
procedure.

Usage

S3 method for class '`function`'
cv(
model,
data,
criterion = mse,
k = 10L,
reps = 1L,
seed = NULL,
working.model = NULL,
y.expression = NULL,
confint = n >= 400L,
level = 0.95,
details = k <= 10L,
save.model = FALSE,
ncores = 1L,
...

)

selectStepAIC(
data,
indices,
model,
criterion = mse,
AIC = TRUE,
details = TRUE,
save.model = FALSE,
...

)

selectTrans(
data,

cv.function 11

indices,
details = TRUE,
save.model = FALSE,
model,
criterion = mse,
predictors,
response,
family = c("bcPower", "bcnPower", "yjPower", "basicPower"),
family.y = c("bcPower", "bcnPower", "yjPower", "basicPower"),
rounded = TRUE,
...

)

selectTransStepAIC(
data,
indices,
details = TRUE,
save.model = FALSE,
model,
criterion = mse,
predictors,
response,
family = c("bcPower", "bcnPower", "yjPower", "basicPower"),
family.y = c("bcPower", "bcnPower", "yjPower", "basicPower"),
rounded = TRUE,
AIC = TRUE,
...

)

selectModelList(
data,
indices,
model,
criterion = mse,
k = 10L,
k.meta = k,
details = k <= 10L,
save.model = FALSE,
seed = FALSE,
quietly = TRUE,
...

)

compareFolds(object, digits = 3, ...)

S3 method for class 'cvSelect'
coef(object, average, NAs = 0, ...)

12 cv.function

S3 method for class 'cvSelect'
cvInfo(
object,
what = c("CV criterion", "adjusted CV criterion", "full CV criterion", "confint", "SE",

"k", "seed", "method", "criterion name", "selected model"),
...

)

Arguments

model a regression model object fit to data, or for the cv() "function" method, a
model-selection procedure function (see Details).

data full data frame for model selection.

criterion a CV criterion ("cost" or lack-of-fit) function.

k perform k-fold cross-validation (default is 10); k may be a number or "loo" or
"n" for n-fold (leave-one-out) cross-validation.

reps number of times to replicate k-fold CV (default is 1)

seed for R’s random number generator; not used for n-fold cross-validation. If not
explicitly set, a seed is randomly generated and saved to make the results repro-
ducible. In some cases, for internal use only, seed is set to FALSE to suppress
automatically setting the seed.

working.model a regression model object fit to data, typically to begin a model-selection pro-
cess; for use with selectModelList(), a list of competing models created by
models().

y.expression normally the response variable is found from the model or working.model argu-
ment; but if, for a particular selection procedure, the model or working.model
argument is absent, or if the response can’t be inferred from the model, the re-
sponse can be specified by an expression, such as expression(log(income)),
to be evaluated within the data set provided by the data argument.

confint if TRUE (the default if the number of cases is 400 or greater), compute a confi-
dence interval for the bias-corrected CV criterion, if the criterion is the average
of casewise components.

level confidence level (default 0.95).

details if TRUE, save detailed information about the value of the CV criterion for the
cases in each fold and the regression coefficients (and possibly other informa-
tion) with that fold deleted; default is TRUE if k is 10 or smaller, FALSE otherwise.

save.model save the model that’s selected using the full data set (default, FALSE).

ncores number of cores to use for parallel computations (default is 1, i.e., computations
aren’t done in parallel)

... for cvSelect() and the cv() "function" method, arguments to be passed to
procedure(); for selectStepAIC() and selectTransStepAIC(), arguments
to be passed to stepAIC().

indices indices of cases in data defining the current fold.

cv.function 13

AIC if TRUE (the default) use the AIC as the model-selection criterion; if FALSE,
use the BIC. The k argument to stepAIC() is set accordingly (note that this is
distinct from the number of folds k).

predictors character vector of names of the predictors in the model to transform; if missing,
no predictors will be transformed.

response name of the response variable; if missing, the response won’t be transformed.

family transformation family for the predictors, one of "bcPower", "bcnPower", "yjPower",
"basicPower", with "bcPower" as the default. These are the names of transfor-
mation functions in the car package; see bcPower().

family.y transformation family for the response, with "bcPower" as the default.

rounded if TRUE (the default) use nicely rounded versions of the estimated transformation
parameters (see bcPower()).

k.meta the number of folds for meta CV; defaults to the value of k; may be specified as
"loo" or "n" as well as an integer.

quietly if TRUE (the default), simple messages (for example about the value to which
the random-number generator seed is set), but not warnings or errors, are sup-
pressed.

object an object of class "cvSelect".

digits significant digits for printing coefficients (default 3).

average if supplied, a function, such as mean or median, to use us in averaging estimates
across folds; if missing, the estimates for each fold are returned.

NAs values to substitute for NAs in calculating averaged estimates; the default, 0, is
appropriate, e.g., for regression coefficients; the value 1 might be appropriate
for power-transformation estimates.

what the information to extract from a "cvSelect" object, one of: "CV criterion",
"adjusted CV criterion", "full CV criterion" (the CV criterion applied to
the model fit to the full data set), "SE" (the standard error of the adjusted CV
criterion), "confint" (confidence interval for the adjusted CV criterion), "k",
(the number of folds), "seed" (the seed employed for R’s random-number gen-
erator), "method" (the computational method employed, e.g., for a "lm" model
object), "criterion name" (the CV criterion employed), or "selected model"
(the model object for the model that was selected); not all of these elements may
be present, in which case cvInfo() would return NULL.

Details

The model-selection function supplied as the procedure (for cvSelect()) or model (for cv())
argument should accept the following arguments:

data set to the data argument to cvSelect() or cv().

indices the indices of the rows of data defining the current fold; if missing, the model-selection
procedure is applied to the full data.

other arguments to be passed via ... from cvSelect() or cv().

14 cv.function

procedure() or model() should return a list with the following named elements: fit.i, the vector
of predicted values for the cases in the current fold computed from the model omitting these cases;
crit.all.i, the CV criterion computed for all of the cases using the model omitting the current
fold; and (optionally) coefficients, parameter estimates from the model computed omitting the
current fold.

When the indices argument is missing, procedure() returns the cross-validation criterion for all
of the cases based on the model fit to all of the cases.

For examples of model-selection functions for the procedure argument, see the code for selectStepAIC(),
selectTrans(), and selectTransAndStepAIC().

For additional information, see the "Cross-validating model selection" vignette (vignette("cv-select",
package="cv")) and the "Extending the cv package" vignette (vignette("cv-extend", package="cv")).

Value

An object of class "cvSelect", inheriting from class "cv", with the CV criterion ("CV crit"),
the bias-adjusted CV criterion ("adj CV crit"), the criterion for the model applied to the full data
("full crit"), the confidence interval and level for the bias-adjusted CV criterion ("confint"),
the number of folds ("k"), the seed for R’s random-number generator ("seed"), and (optionally)
a list of coefficients (or, in the case of selectTrans(), estimated transformation parameters, and
in the case of selectTransAndStepAIC(), both regression coefficients and transformation param-
eters) for the selected models for each fold ("coefficients"). If reps > 1, then an object of class
c("cvSelectList", "cvList") is returned, which is literally a list of c("cvSelect", "cv") ob-
jects.

Functions

• cv(`function`): cv() method for applying a model model-selection (or specification) pro-
cedure.

• selectStepAIC(): select a regression model using the stepAIC() function in the MASS
package.

• selectTrans(): select transformations of the predictors and response using powerTransform()
in the car package.

• selectTransStepAIC(): select transformations of the predictors and response, and then se-
lect predictors.

• selectModelList(): select a model using (meta) CV.

• compareFolds(): print the coefficients from the selected models for the several folds.

• coef(cvSelect): extract the coefficients from the selected models for the several folds and
possibly average them.

See Also

stepAIC, bcPower, powerTransform, cv.

cv.function 15

Examples

if (requireNamespace("ISLR2", quietly=TRUE)){
withAutoprint({
data("Auto", package="ISLR2")
m.auto <- lm(mpg ~ . - name - origin, data=Auto)
cv(selectStepAIC, Auto, seed=123, working.model=m.auto)
cv(selectStepAIC, Auto, seed=123, working.model=m.auto,

AIC=FALSE, k=5, reps=3) # via BIC
})
} else {
cat("\n install the 'ISLR2' package to run these examples\n")
}
if (requireNamespace("carData", quietly=TRUE)){
withAutoprint({
data("Prestige", package="carData")
m.pres <- lm(prestige ~ income + education + women,

data=Prestige)
cvt <- cv(selectTrans, data=Prestige, working.model=m.pres, seed=123,

predictors=c("income", "education", "women"),
response="prestige", family="yjPower")

cvt
compareFolds(cvt)
coef(cvt, average=median, NAs=1) # NAs not really needed here
cv(m.pres, seed=123)
})
} else {
cat("install the 'carData' package to run these examples\n")
}
if (requireNamespace("ISLR2", quietly=TRUE)){
withAutoprint({
Auto$year <- as.factor(Auto$year)
Auto$origin <- factor(Auto$origin,

labels=c("America", "Europe", "Japan"))
rownames(Auto) <- make.names(Auto$name, unique=TRUE)
Auto$name <- NULL
m.auto <- lm(mpg ~ . , data=Auto)
cvs <- cv(selectTransStepAIC, data=Auto, seed=76692, working.model=m.auto,

criterion=medAbsErr,
predictors=c("cylinders", "displacement", "horsepower",

"weight", "acceleration"),
response="mpg", AIC=FALSE)

cvs
compareFolds(cvs)
})
}
data("Duncan", package="carData")
m1 <- lm(prestige ~ income + education, data=Duncan)
m2 <- lm(prestige ~ income + education + type, data=Duncan)
m3 <- lm(prestige ~ (income + education)*type, data=Duncan)
summary(cv.sel <- cv(selectModelList, data=Duncan, seed=5963,

working.model=models(m1, m2, m3),
save.model=TRUE)) # meta CV

16 cv.merMod

cvInfo(cv.sel, "selected model")

cv.merMod Cross-Validate Mixed-Effects Model

Description

cv() methods for mixed-effect models of class "merMod", fit by the lmer() and glmer() functions
in the lme4 package; for models of class "lme" fit by the lme() function in the nlme package; and
for models of class "glmmTMB" fit by the glmmTMB() function in the glmmTMB package.

Usage

S3 method for class 'merMod'
cv(
model,
data = insight::get_data(model),
criterion = mse,
k = NULL,
reps = 1L,
seed,
details = NULL,
ncores = 1L,
clusterVariables,
...

)

S3 method for class 'lme'
cv(
model,
data = insight::get_data(model),
criterion = mse,
k = NULL,
reps = 1L,
seed,
details = NULL,
ncores = 1L,
clusterVariables,
...

)

S3 method for class 'glmmTMB'
cv(
model,
data = insight::get_data(model),
criterion = mse,

cv.merMod 17

k = NULL,
reps = 1L,
seed,
details = NULL,
ncores = 1L,
clusterVariables,
...

)

Arguments

model a mixed-effects model object for which a cv() method is available.

data data frame to which the model was fit (not usually necessary).

criterion cross-validation ("cost" or lack-of-fit) criterion function of form f(y, yhat)
where y is the observed values of the response and yhat the predicted values;
the default is mse (the mean-squared error).

k perform k-fold cross-validation; k may be a number or "loo" or "n" for n-fold
(leave-one-out) cross-validation; the default is 10 if cross-validating individual
cases and "loo" if cross-validating clusters.

reps number of times to replicate k-fold CV (default is 1), or greater), compute a
confidence interval for the bias-corrected CV criterion, if the criterion is the
average of casewise components.

seed for R’s random number generator; optional, if not supplied a random seed will
be selected and saved; not needed for n-fold cross-validation.

details if TRUE (the default if the number of folds k <= 10), save detailed information
about the value of the CV criterion for the cases in each fold and the regression
coefficients with that fold deleted.

ncores number of cores to use for parallel computations (default is 1, i.e., computations
aren’t done in parallel).

clusterVariables

a character vector of names of the variables defining clusters for a mixed model
with nested or crossed random effects; if missing, cross-validation is performed
for individual cases rather than for clusters.

... for cv() methods, to match generic, and for cvMixed(), arguments to be passed
to update().

Details

For mixed-effects models, cross-validation can be done by "clusters" or by individual observations.
If the former, predictions are based only on fixed effects; if the latter, predictions include the random
effects (i.e., are the best linear unbiased predictors or "BLUPS").

The model supplied must work properly with update(), and in particular the formula for the model
should not include variables that are not in the data set to which the model was fit. See the last
(faulty) example in the help for cv().

18 cv.modList

Value

The methods cv.merMod(), cv.lme(), and cv.glmmTMB(), return objects of class "cv", or, if reps
> 1, of class "cvList" (see cv()).

Functions

• cv(merMod): cv() method for lmer() and glmer() models from the lme4 package.

• cv(lme): cv() method for lme() models from the nlme package.

• cv(glmmTMB): cv() method for glmmTMB() models from the glmmTMB package.

See Also

cv, lmer, glmer, lme, glmmTMB

Examples

library("lme4")
from ?lmer:
(fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy))
summary(cv(fm1, clusterVariables="Subject")) # LOO CV of clusters
summary(cv(fm1, seed=447)) # 10-fold CV of cases
summary(cv(fm1, clusterVariables="Subject", k=5,

seed=834, reps=3)) # 5-fold CV of clusters, repeated 3 times

library("nlme")
from ?lme
(fm2 <- lme(distance ~ age + Sex, data = Orthodont,

random = ~ 1))
summary(cv(fm2)) # LOO CV of cases
summary(cv(fm2, clusterVariables="Subject",

k=5, seed=321)) # 5-fold CV of clusters

library("glmmTMB")
from ?glmmTMB
(m1 <- glmmTMB(count ~ mined + (1|site),

zi=~mined,
family=poisson, data=Salamanders))

summary(cv(m1, seed=97816, k=5,
clusterVariables="site")) # 5-fold CV of clusters

summary(cv(m1, seed=34506, k=5)) # 5-fold CV of cases

cv.modList Cross-Validate Several Models Fit to the Same Data

cv.modList 19

Description

A cv() method for an object of class "modlist", created by the models() function. This cv()
method simplifies the process of cross-validating several models on the same set of CV folds
and may also be used for meta CV, where CV is used to select one from among several models.
models() performs some "sanity" checks, warning if the models are of different classes, and re-
porting an error if they are fit to apparently different data sets or different response variables.

Usage

S3 method for class 'modList'
cv(
model,
data,
criterion = mse,
k,
reps = 1L,
seed,
quietly = TRUE,
meta = FALSE,
...

)

models(...)

S3 method for class 'cvModList'
print(x, ...)

S3 method for class 'cvModList'
summary(object, ...)

S3 method for class 'cvModList'
plot(
x,
y,
spread = c("range", "sd"),
confint = TRUE,
xlab = "",
ylab,
main,
axis.args = list(labels = names(x), las = 3L),
col = palette()[2L],
lwd = 2L,
grid = TRUE,
...

)

S3 method for class 'cvModList'
as.data.frame(x, row.names = NULL, optional = TRUE, ...)

20 cv.modList

Arguments

model a list of regression model objects, created by models().

data (required) the data set to which the models were fit.

criterion the CV criterion ("cost" or lack-of-fit) function, defaults to mse.

k the number of CV folds; may be omitted, in which case the value will depend
on the default for the cv() method invoked for the individual models.

reps number of replications of CV for each model (default is 1).

seed (optional) seed for R’s pseudo-random-number generator, to be used to create
the same set of CV folds for all of the models; if omitted, a seed will be randomly
generated and saved. Not used for leave-one-out CV.

quietly if TRUE (the default), simple messages (for example about the value to which
the random-number generator seed is set), but not warnings or errors, are sup-
pressed.

meta if TRUE (the default is FALSE), cross-validation is performed recursively to se-
lect a "best" model deleting each fold in turn by calculating the CV estimate
of the criterion for the remaining folds; this is equivalent to employing the
selectModelList() model-selection procedure.

... for cv.modList(), additional arguments to be passed to the cv() method ap-
plied to each model.
For models(), two or more competing models fit to the the same data; the sev-
eral models may be named. It is also possible to specify a single argument,
which should then be list of models (which has the effect of turning a list of
models into a "modList" object).
For the print() method, arguments to be passed to the print() method for the
individual model cross-validations.
For the plot() method, arguments to be passed to the base plot() function.

x an object of class "cvModList" to be printed or plotted.

object an object to summarize.

y the name of the element in each "cv" object to be plotted; defaults to "adj CV
crit", if it exists, or to "CV crit".

spread if "range", the default, show the range of CV criteria for each model along with
their average; if "sd", show the average plus or minus 1 standard deviation.

confint if TRUE (the default) and if confidence intervals are in any of the "cv" objects,
then plot the confidence intervals around the CV criteria.

xlab label for the x-axis (defaults to blank).

ylab label for the y-axis (if missing, a label is constructed).

main main title for the graph (if missing, a label is constructed).

axis.args a list of arguments for the axis() function, used to draw the horizontal axis.
In addition to the axis arguments given explicitly, side=1 (the horizontal axis)
and at=seq(along=x) (i.e., 1 to the number of models) are used and can’t be
modified.

cv.modList 21

col color for the line and points, defaults to the second element of the color palette;
see palette().

lwd line width for the line (defaults to 2).

grid if TRUE (the default), include grid lines on the graph.

row.names optional row names for the result, defaults to NULL.

optional to match the as.data.frame() generic function; if FALSE (the default is TRUE),
then the names of the columns of the returned data frame, including the names
of coefficients, are coerced to syntactically correct names.

Value

models() returns a "modList" object, the cv() method for which returns a "cvModList" object,
or, when meta=TRUE, an object of class c("cvSelect", "cv").

Functions

• cv(modList): cv() method for "modList" objects.

• models(): create a list of models.

• print(cvModList): print() method for "cvModList" objects.

• summary(cvModList): summary() method for "cvModList" objects.

• plot(cvModList): plot() method for "cvModList" objects.

• as.data.frame(cvModList): as.data.frame() method for "cvModList" objects.

See Also

cv, cv.merMod, selectModelList.

Examples

if (requireNamespace("carData", quietly=TRUE)){
withAutoprint({
data("Duncan", package="carData")
m1 <- lm(prestige ~ income + education, data=Duncan)
m2 <- lm(prestige ~ income + education + type, data=Duncan)
m3 <- lm(prestige ~ (income + education)*type, data=Duncan)
(cv.models <- cv(models(m1=m1, m2=m2, m3=m3),

data=Duncan, seed=7949, reps=5))
D.cv.models <- as.data.frame(cv.models)
head(D.cv.models)
summary(D.cv.models, criterion ~ model + rep, include="folds")
plot(cv.models)
(cv.models.ci <- cv(models(m1=m1, m2=m2, m3=m3),

data=Duncan, seed=5963, confint=TRUE, level=0.50))
nb: n too small for accurate CIs

plot(cv.models.ci)
(cv.models.meta <- cv(models(m1=m1, m2=m2, m3=m3),

data=Duncan, seed=5963,
meta=TRUE, save.model=TRUE))

22 cvCompute

cvInfo(cv.models.meta, "selected model")
})
} else {
cat("install the 'carData' package to run these examples\n")
}

cvCompute Utility Functions for the cv Package

Description

These functions are primarily useful for writing methods for the cv() generic function. They are
used internally in the package and can also be used for extensions (see the vignette "Extending the
cv package, vignette("cv-extend", package="cv")).

Usage

cvCompute(
model,
data = insight::get_data(model),
criterion = mse,
criterion.name,
k = 10L,
reps = 1L,
seed,
details = k <= 10L,
confint,
level = 0.95,
method = NULL,
ncores = 1L,
type = "response",
start = FALSE,
f,
fPara = f,
locals = list(),
model.function = NULL,
model.function.name = NULL,
...

)

cvMixed(
model,
package,
data = insight::get_data(model),
criterion = mse,
criterion.name,
k,

cvCompute 23

reps = 1L,
confint,
level = 0.95,
seed,
details,
ncores = 1L,
clusterVariables,
predict.clusters.args = list(object = model, newdata = data),
predict.cases.args = list(object = model, newdata = data),
fixed.effects,
...

)

cvSelect(
procedure,
data,
criterion = mse,
criterion.name,
model,
y.expression,
k = 10L,
confint = n >= 400,
level = 0.95,
reps = 1L,
save.coef,
details = k <= 10L,
save.model = FALSE,
seed,
ncores = 1L,
...

)

folds(n, k)

fold(folds, i_, ...)

S3 method for class 'folds'
fold(folds, i_, ...)

S3 method for class 'folds'
print(x, ...)

GetResponse(model, ...)

Default S3 method:
GetResponse(model, ...)

S3 method for class 'merMod'

24 cvCompute

GetResponse(model, ...)

S3 method for class 'lme'
GetResponse(model, ...)

S3 method for class 'glmmTMB'
GetResponse(model, ...)

S3 method for class 'modList'
GetResponse(model, ...)

checkFormula(model, data.names)

Arguments

model a regression model object.

data data frame to which the model was fit (not usually necessary, except for cvSelect()).

criterion cross-validation criterion ("cost" or lack-of-fit) function of form f(y, yhat)
where y is the observed values of the response and yhat the predicted values;
the default is mse (the mean-squared error).

criterion.name a character string giving the name of the CV criterion function in the returned
"cv" object).

k perform k-fold cross-validation (default is 10); k may be a number or "loo"
or "n" for n-fold (leave-one-out) cross-validation; for folds(), k must be a
number.

reps number of times to replicate k-fold CV (default is 1).

seed for R’s random number generator; optional, if not supplied a random seed will
be selected and saved; not needed for n-fold cross-validation.

details if TRUE (the default if the number of folds k <= 10), save detailed information
about the value of the CV criterion for the cases in each fold and the regression
coefficients with that fold deleted.

confint if TRUE (the default if the number of cases is 400 or greater), compute a confi-
dence interval for the bias-corrected CV criterion, if the criterion is the average
of casewise components.

level confidence level (default 0.95).

method computational method to apply; use by some cv() methods.

ncores number of cores to use for parallel computations (default is 1, i.e., computations
aren’t done in parallel).

type used by some cv() methods, such as the default method, where type is passed
to the type argument of predict(); the default is type="response", which
is appropriate, e.g., for a "glm" model and may be recognized or ignored by
predict() methods for other model classes.

start used by some cv() methods; if TRUE (the default is FALSE), the start argument,
set to the vector of regression coefficients for the model fit to the full data, is
passed to update(), possibly making the CV updates faster, e.g. for a GLM.

cvCompute 25

f function to be called by cvCompute() for each fold.

fPara function to be called by cvCompute() for each fold using parallel computation.

locals a named list of objects that are required in the local environment of cvCompute()
for f() or fPara().

model.function a regression function, typically for a new cv() method, residing in a package
that’s not a declared dependency of the cv package, e.g., nnet::multinom.

model.function.name

the quoted name of the regression function, e.g., "multinom".

... to match generic; passed to predict() for the default method, and to fPara()
(for parallel computations) in cvCompute().

package the name of the package in which mixed-modeling function (or functions) em-
ployed resides; used to get the namespace of the package.

clusterVariables

a character vector of names of the variables defining clusters for a mixed model
with nested or crossed random effects; if missing, cross-validation is performed
for individual cases rather than for clusters

predict.clusters.args

a list of arguments to be used to predict the whole data set from a mixed model
when performing CV on clusters; the first two elements should be model and
newdata; see the "Extending the cv package" vignette (vignette("cv-extend",
package="cv")).

predict.cases.args

a list of arguments to be used to predict the whole data set from a mixed model
when performing CV on cases; the first two elements should be model and
newdata; see the "Extending the cv package" vignette (vignette("cv-extend",
package="cv")).

fixed.effects a function to be used to compute fixed-effect coefficients for cluster-based CV
when details = TRUE.

procedure a model-selection procedure function (see Details).

y.expression normally the response variable is found from the model argument; but if, for a
particular selection procedure, the model argument is absent, or if the response
can’t be inferred from the model, the response can be specified by an expres-
sion, such as expression(log(income)), to be evaluated within the data set
provided by the data argument.

save.coef save the coefficients from the selected models? Deprecated in favor of the
details argument; if specified, details is set is set to the value of save.coef.

save.model save the model that’s selected using the full data set.

n number of cases, for constructed folds.

folds an object of class "folds".

i_ a fold number for an object of class "folds".

x a "cv", "cvList", or "folds" object to be printed

data.names names of variables in the data set to which the model was fit; if missing, an
attempt will be made to extract the data from the model.

26 cvCompute

Value

The utility functions return various kinds of objects:

• cvCompute() returns an object of class "cv", with the CV criterion ("CV crit"), the bias-
adjusted CV criterion ("adj CV crit"), the criterion for the model applied to the full data
("full crit"), the confidence interval and level for the bias-adjusted CV criterion ("confint"),
the number of folds ("k"), and the seed for R’s random-number generator ("seed"). If
details=TRUE, then the returned object will also include a "details" component, which
is a list of two elements: "criterion", containing the CV criterion computed for the cases
in each fold; and "coefficients", regression coefficients computed for the model with each
fold deleted. Some cv() methods calling cvCompute() may return a subset of these compo-
nents and may add additional information. If reps > 1, then an object of class "cvList" is
returned, which is literally a list of "cv" objects.

• cvMixed() also returns an object of class "cv" or "cvList".

• cvSelect returns an object of class "cvSelect" inheriting from "cv", or an object of class
"cvSelectList" inheriting from "cvList".

• folds() returns an object of class folds, for which there are fold() and print() methods.

• GetResponse() returns the (numeric) response variable from the model.
The supplied default method returns the model$y component of the model object, or, if
model is an S4 object, the result returned by the get_response() function in the insight
package. If this result is NULL, the result of model.response(model.frame(model)) is re-
turned, checking in any case whether the result is a numeric vector.
There are also "lme", "merMod" and "glmmTMB" methods that convert factor responses to
numeric 0/1 responses, as would be appropriate for a generalized linear mixed model with a
binary response.

• checkFormula() returns TRUE if all variables in the model formula are also in the data to
which the model is fit; FALSE is this is not the case (and q warning is printed); or NA if the
function couldn’t extract a model formula.

Functions

• cvCompute(): used internally by cv() methods (not for direct use); exported to support new
cv() methods.

• cvMixed(): used internally by cv() methods for mixed-effect models (not for direct use);
exported to support new cv() methods.

• cvSelect(): used internally by cv() methods for cross-validating a model-selection proce-
dure; may also be called directly for this purpose, but use via cv() is preferred. cvSelect()
is exported primarily to support new model-selection procedures.

• folds(): used internally by cv() methods (not for direct use).

• fold(): to extract a fold from a "folds" object.

• fold(folds): fold() method for "folds" objects.

• print(folds): print() method for "folds" objects.

• GetResponse(): function to return the response variable from a regression model.

• GetResponse(default): default method.

mse 27

• GetResponse(merMod): "merMod" method.

• GetResponse(lme): "lme" method.

• GetResponse(glmmTMB): "glmmTMB" method.

• GetResponse(modList): "modList" method.

• checkFormula(): check a model formula to determine whether it include variables not in the
data to which the model was fit; prints a warning if this is not the case.

See Also

cv, cv.merMod, cv.function.

Examples

fit <- lm(mpg ~ gear, mtcars)
GetResponse(fit)

set.seed(123)
(ffs <- folds(n=22, k=5))
fold(ffs, 2)

mse Cost Functions for Fitted Regression Models

Description

Compute cost functions (cross-validation criteria) for fitted regression models.

Usage

mse(y, yhat)

rmse(y, yhat)

medAbsErr(y, yhat)

BayesRule(y, yhat)

BayesRule2(y, yhat)

Arguments

y response

yhat fitted value

28 mse

Details

Cost functions (cross-validation criteria) are meant to measure lack-of-fit. Several cost functions
are provided:

1. mse() returns the mean-squared error of prediction for a numeric response variable y and
predictions yhat; and rmse() returns the root-mean-squared error and is just the square-root
of mse().

2. medAbsErr() returns the median absolute error of prediction for a numeric response y and
predictions yhat.

3. BayesRule() and BayesRule2() report the proportion of incorrect predictions for a dichoto-
mous response variable y, assumed coded (or coercible to) 0 and 1. The yhat values are
predicted probabilities and are rounded to 0 or 1. The distinction between BayesRule() and
BayesRule2() is that the former checks that the y values are all either 0 or 1 and that the yhat
values are all between 0 and 1, while the latter doesn’t and is therefore faster.

Value

In general, cost functions should return a single numeric value measuring lack-of-fit. mse() returns
the mean-squared error; rmse() returns the root-mean-squared error; medAbsErr() returns the me-
dian absolute error; and BayesRule() and BayesRule2() return the proportion of misclassified
cases.

Functions

• mse(): Mean-square error.
• rmse(): Root-mean-square error.
• medAbsErr(): Median absolute error.
• BayesRule(): Bayes Rule for a binary response.
• BayesRule2(): Bayes rule for a binary response (without bounds checking).

See Also

cv, cv.merMod, cv.function.

Examples

if (requireNamespace("carData", quietly=TRUE)){
withAutoprint({
data("Duncan", package="carData")
m.lm <- lm(prestige ~ income + education, data=Duncan)
mse(Duncan$prestige, fitted(m.lm))

data("Mroz", package="carData")
m.glm <- glm(lfp ~ ., data=Mroz, family=binomial)
BayesRule(Mroz$lfp == "yes", fitted(m.glm))
})
} else {
cat("\n install 'carData' package to run these examples\n")
}

Pigs 29

Pigs Body Weights of 48 Pigs in 9 Successive Weeks

Description

This data set appears in Table 3.1 of Diggle, Liang, and Zeger (1994).

Usage

data("Pigs", package = "cv")

Format

A data frame with 432 rows and 3 columns.

id Pig id number, 1–48.

week Week number, 1–9.

weight Weight in kg.

Source

P. J. Diggle, K.-Y. Liang, and S. L. Zeger, Analysis of Longitudinal Data (Oxford, 1994).

Examples

library("lme4")
m.p <- lmer(weight ~ week + (1 | id) + (1 | week),

data=Pigs, REML=FALSE,
control=lmerControl(optimizer="bobyqa"))

summary(m.p)
cv(m.p, clusterVariables=c("id", "week"), k=10, seed=8469)

Index

∗ datasets
Pigs, 29

as.data.frame, 6, 21
as.data.frame.cv (cv), 2
as.data.frame.cvList (cv), 2
as.data.frame.cvModList (cv.modList), 18
axis, 20

BayesRule (mse), 27
BayesRule2 (mse), 27
bcPower, 13, 14

checkFormula (cvCompute), 22
coef.cvSelect (cv.function), 10
compareFolds (cv.function), 10
costFunctions (mse), 27
cv, 2, 14, 16–19, 21, 22, 24, 27, 28
cv.function, 8, 10, 27, 28
cv.glmmTMB (cv.merMod), 16
cv.lme (cv.merMod), 16
cv.merMod, 8, 16, 21, 27, 28
cv.modList, 8, 18
cvCompute, 22
cvInfo (cv), 2
cvInfo.cvSelect (cv.function), 10
cvMixed (cvCompute), 22
cvSelect (cvCompute), 22

fold (cvCompute), 22
folds (cvCompute), 22

get_response, 26
GetResponse, 7
GetResponse (cvCompute), 22
glmer, 16, 18
glmmTMB, 16, 18

lme, 16, 18
lmer, 16, 18

medAbsErr (mse), 27
mixed-effects models, 2
model-selection procedures, 2
models, 10, 12
models (cv.modList), 18
mse, 5, 17, 20, 24, 27

palette, 21
Pigs, 29
plot, 5, 6, 20
plot.cv (cv), 2
plot.cvList (cv), 2
plot.cvModList (cv.modList), 18
powerTransform, 10, 14
predict, 7
print.cv (cv), 2
print.cvDataFrame (cv), 2
print.cvList (cv), 2
print.cvModList (cv.modList), 18
print.folds (cvCompute), 22

rlm, 7
rmse (mse), 27

selectModelList, 20, 21
selectModelList (cv.function), 10
selectStepAIC (cv.function), 10
selectTrans (cv.function), 10
selectTransStepAIC (cv.function), 10
several models fit to the same data, 2
stepAIC, 10, 13, 14
summary.cv (cv), 2
summary.cvDataFrame (cv), 2
summary.cvList (cv), 2
summary.cvModList (cv.modList), 18

Tapply, 5

update, 6, 7, 17

30

	cv
	cv.function
	cv.merMod
	cv.modList
	cvCompute
	mse
	Pigs
	Index

