Package 'cusum'

October 12, 2022

Title Cumulative Sum (CUSUM) Charts for Monitoring of Hospital Performance Version 0.4.1 Date 2019-10-02 Language en-GB Description Provides functions for constructing and evaluating CUSUM charts and RA-CUSUM charts with focus on false signal probability. **Depends** R (>= 3.5.0) License GPL-2 LazyData true SystemRequirements C++11 **Encoding** UTF-8 Imports stats, graphics, checkmate, data.table, Rcpp Suggests testthat, knitr, ggplot2, rmarkdown Enhances vdiffr, covr LinkingTo Rcpp VignetteBuilder knitr RoxygenNote 6.1.1 NeedsCompilation yes Author Lena Hubig [aut, cre] (<https://orcid.org/0000-0002-9454-1232>) Maintainer Lena Hubig <cs@lenahubig.de> **Repository** CRAN Date/Publication 2019-10-02 09:30:03 UTC

R topics documented:

calc_cusum	2
cusum	3
cusum_alpha_sim	4

calc_cusum

18

cusum_example_data	5
cusum_limit_exact	6
cusum_limit_sim	7
gscusum	8
gscusum_example_data	8
make_all_outcomes	9
plot.cusum	10
racusum	10
racusum_alpha_sim	11
racusum_example_data	13
racusum_limit_dpcl	13
racusum_limit_sim	14
ragscusum	15
ragscusum_example_data	
weights_t	17

Index

calc_cusum

Calculate CUSUM

Description

This function calculates the CUSUM chart for the given sequence of successes and failures

Usage

calc_cusum(x, c0, cA)

Arguments

х	vector of outcomes
c0	accepted failure probability
cA	smallest detectable failure probability

Value

Returns matrix of possible sequences

Description

Calculate non-risk-adjusted CUSUM charts for performance data

Provides functions for constructing and evaluating CUSUM charts and RA-CUSUM charts with focus on false signal probability in health care processes.

Usage

```
cusum(failure_probability, patient_outcomes, limit, weights = NULL,
    odds_multiplier = 2, reset = TRUE)
```

Arguments

failure_probability		
	Double. Baseline failure probability	
patient_outcome	es	
	Integer. Vector of binary patient outcomes $(0,1)$	
limit	Double. Control limit for signalling performance change	
weights	Double. Optional vector of weights, if empty, standard CUSUM weights are calculated with weights_t	
odds_multiplier		
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)	
reset	Logical. Reset the CUSUM after a signal to 0; defaults to TRUE	

Author(s)

Lena Hubig

```
# control limit can be obtained with cusum_limit_sim(),
# here it is set to an arbitrary value (2.96)
# CUSUM of in-control process
# simulate patient outcomes
set.seed(2046)
patient_outcomes <- as.logical(rbinom(n = 100, size = 1, prob = 0.05))
cs_ic <- cusum(</pre>
```

```
failure_probability = 0.05,
patient_outcomes,
```

```
limit = 2.96
)
# CUSUM of out-of-control process
# simulate patient outcome
set.seed(2046)
patient_outcomes <- as.logical(rbinom(n = 100, size = 1, prob = 0.2))
cs_oc <- cusum(
    failure_probability = 0.05,
    patient_outcomes,
    limit = 2.96
)</pre>
```

cusum_alpha_sim	Simulate false signal probability alpha given control limit for CUSUM
	charts

Description

Simulate false signal probability alpha given control limit for CUSUM charts

Usage

4

```
cusum_alpha_sim(failure_probability, n_patients, odds_multiplier,
    n_simulation, limit, seed = NULL)
```

Arguments

failure_probability		
	Double. Baseline failure probability	
n_patients	Integer. Number of patients in monitoring period /sample size	
odds_multiplier		
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)	
n_simulation	Integer. Number of simulation runs	
limit	Double. Control limit for signalling performance change	
seed	Integer. Seed for RNG	

Value

Returns False signal probability of specified CUSUM chart.

cusum_example_data

Examples

```
#
#
control limit can be obtained with cusum_limit_sim(),
# here it is set to an arbitrary value (2.96)
# simulate false positive probability of CUSUM
cusum_alpha_sim(
   failure_probability = 0.05,
   n_patients = 100,
   odds_multiplier = 2,
   n_simulation = 10000,
   limit = 2.96,
   seed = 2046
)
```

cusum_example_data Non-Risk-adjusted Performance Data

Description

Generated performance data of indicator 17/1 54030: Preoperative stay over 24 hours for patients with proximal femur fracture.

Usage

cusum_example_data

Format

A data frame with 2000 rows and 3 variables:

t Sequence of observations

y Patient outcome

year Year of treatment

Details

Patient outcomes were simulated based on average national failure rate. Two years are provided, so Phase I and Phase II can be defined.

Source

Data for simulation was provided by Bavarian Agency of Quality Assurance (BAQ), Munich Germany.

Description of performance indicator (in German): https://iqtig.org/downloads/auswertung/ 2016/17n1hftfrak/QSKH_17n1-HUEFTFRAK_2016_QIDB_V02_2017-04-26.pdf cusum_limit_exact

Description

This function only works for very small sample sizes (<= 15), as it permutes through all possible outcome sequences and estimates the percentage of runs that reach a specific CUSUM values.

Usage

cusum_limit_exact(n_patients, failure_probability, odds_multiplier, alpha)

Arguments

n_patients	Integer. Number of patients in monitoring period /sample size
failure_probabi	lity
	Double. Baseline failure probability
odds_multiplier	
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)
alpha	Double. False signal probability of CUSUM

Value

Returns the control limit for signalling performance change for small sample sizes (double)

```
# calculate exact control limits for alpha = 0.05
cusum_limit_exact(
   failure_probability = 0.1,
   n_patients = 10,
   odds_multiplier = 2,
   alpha = 0.05
)
```

cusum_limit_sim

Description

Simulate control limit given false signal probability alpha for CUSUM charts

Usage

```
cusum_limit_sim(failure_probability, n_patients, odds_multiplier,
    n_simulation, alpha, seed = NULL)
```

Arguments

failure_probability		
	Double. Baseline failure probability	
n_patients	Integer. Number of patients in monitoring period /sample size	
odds_multiplie	r	
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)	
n_simulation	Integer. Number of simulation runs	
alpha	Double. False signal probability of CUSUM	
seed	Integer. Seed for RNG	

Value

Returns the control limit for signalling performance change (double)

```
# simulate control limits for alpha = 0.05
cusum_limit_sim(
   failure_probability = 0.05,
   n_patients = 100,
   odds_multiplier = 2,
   n_simulation = 1000,
   alpha = 0.05,
   seed = 2046
)
```

gscusum

Description

Calculate GSCUSUM chart for non-risk-adjusted processes.

Usage

```
gscusum(input_outcomes, failure_probability, odds_multiplier, limit,
    quantiles, max_num_shuffles = 10000L, seed = 0L)
```

Arguments

input_outcomes	Matrix. First column are binary patient outcomes $(0,1)$. Second column are continuous sequence of block identifier.	
failure_probab:	ility	
	Double. Baseline failure probability	
odds_multiplier		
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)	
limit	Double. Control limit for signalling performance change	
quantiles	Double. Vector of requested quantiles of GSCUSUM distribution	
max_num_shuffles		
	Integer. Number of shuffles (i.e. different sequences of observations)	
seed	Integer. Seed for RNG (if = 0 random seed is set (default))	

Value

gscusum matrix, signal probability, average CUSUM value and specified quantiles for every observation.

gscusum_example_data Group-sequential Non-Risk-adjusted Performance Data with Block Identifier

Description

Generated performance data of indicator 17/1 54030: Preoperative stay over 24 hours for patients with proximal femur fracture.

Usage

gscusum_example_data

make_all_outcomes

Format

A data frame with 2000 rows and 4 variables:

t Sequence of observations

y Patient outcome

year Year of treatment

block_identifier Continuous block identifier

Details

Patient outcomes were simulated based on average national failure rate. Two years are provided, so Phase I and Phase II can be defined.

Source

Data for simulation was provided by Bavarian Agency of Quality Assurance (BAQ), Munich Germany.

Description of performance indicator (in German): https://iqtig.org/downloads/auswertung/ 2016/17n1hftfrak/QSKH_17n1-HUEFTFRAK_2016_QIDB_V02_2017-04-26.pdf

make_all_outcomes Make all outcomes

Description

creates all possible sequences of outcomes for a sample size

Usage

make_all_outcomes(npat_outcome)

Arguments

npat_outcome Number of patients (sample sizes)

Value

Returns matrix of possible sequences

plot.cusum

Description

Produces a CUSUM chart.

Usage

```
## S3 method for class 'cusum' plot(x, signal = TRUE, ...)
```

Arguments

х	An object of class cusum
signal	Logical. If TRUE, signals are plotted (default)

r	ac	111	2112	m

Risk-adjusted CUSUM Charts

Description

Calculate risk-adjusted CUSUM charts for performance data

Usage

```
racusum(patient_risks, patient_outcomes, limit, weights = NULL,
    odds_multiplier = 2, reset = TRUE, limit_method = c("constant",
    "dynamic"))
```

Arguments

patient_risks	Double. Vector of patient risk scores (individual risk of adverse event)		
patient_outcome	patient_outcomes		
	Integer. Vector of binary patient outcomes $(0,1)$		
limit	Double. Control limit for signalling performance change		
weights	Double. Optional vector of weights, if empty, standard CUSUM weights are calculated with weights_t		
odds_multiplier			
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)		
reset	Logical. Reset the CUSUM after a signal to 0; defaults to TRUE		
limit_method	"constant" or "dynamic"		

racusum_alpha_sim

Examples

```
# Patients risks are usually known from Phase I.
# If not, these risk scores can be simulated.
# define possible patient risk scores
risks <- c(0.001, 0.01, 0.1, 0.002, 0.02, 0.2)
# sample risk population of size n = 100
set.seed(2046)
patient_risks <- sample(x = risks, size = 100, replace = TRUE)</pre>
# control limit can be obtained with racusum_limit_sim(),
# here it is set to an arbitrary value (2.96),
# or dynamic control limits with racusum_limit_dpcl()
##### RA-CUSUM of in-control process
# simulate patient outcome for performace as expected
set.seed(2046)
patient_outcomes <- as.logical(rbinom(</pre>
 n = 100,
  size = 1,
  prob = patient_risks
))
racusum(patient_risks,
  patient_outcomes,
  limit = 2.96
)
#### RA-CUSUM of out-of-control process
# simulate patient outcome for deviating performance
set.seed(2046)
patient_outcomes <- as.logical(rbinom(n = 100, size = 1, prob = patient_risks * 2))</pre>
#'
racusum(patient_risks,
  patient_outcomes,
  limit = 2.96
)
```

racusum_alpha_sim	Simulate false signal probability alpha given control limit for RA-
	CUSUM charts

Description

Simulate false signal probability alpha given control limit for RA-CUSUM charts

Usage

```
racusum_alpha_sim(patient_risks, odds_multiplier, n_simulation, limit,
    seed = NULL)
```

Arguments

patient_risks	Double. Vector of patient risk scores (individual risk of adverse event)	
odds_multiplier		
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)	
n_simulation	Integer. Number of simulation runs	
limit	Double. Control limit for signalling performance change	
seed	Integer. Seed for RNG	

Value

Returns False signal probability of specified RA-CUSUM chart.

```
# Patients risks are usually known from Phase I.
# If not, these risk scores can be simulated.
# define possible patient risk scores
risks <- c(0.001, 0.01, 0.1, 0.002, 0.02, 0.2)
# sample risk population of size n = 100
set.seed(2046)
patient_risks <- sample(x = risks, size = 100, replace = TRUE)</pre>
# control limit can be obtained with racusum_limit_sim(),
# here it is set to an arbitrary value (2.96)
# simulate false positive probability of RA-CUSUM
racusum_alpha_sim(patient_risks,
 odds_multiplier = 2,
 n_simulation = 1000,
 limit = 2.96,
 seed = 2046
)
```

Description

Generated performance data of indicator: Ratio of observed to expected cases of severe stroke or death under open carotid stenosis surgery.

Usage

```
racusum_example_data
```

Format

A data frame with 2000 rows and 4 variables:

t Sequence of observations

y Patient outcome

score Patient risk score

year Year of treatment

Details

Individual patient risk scores were drawn from actual hospital data and patient outcomes were simulated. Two years are provided, so Phase I and Phase II can be defined.

Source

Data for simulation was provided by Bavarian Agency of Quality Assurance (BAQ), Munich Germany.

Description of performance indicator (in German): https://iqtig.org/downloads/auswertung/ 2016/10n2karot/QSKH_10n2-KAROT_2016_QIDB_V02_2017-04-26.pdf

racusum_limit_dpcl Dynamic Probability Control Limits (DPCL)

Description

Set DPCL for risk-adjusted Bernoulli CUSUM Charts

Usage

```
racusum_limit_dpcl(patient_risks, N = 1e+05, odds_multiplier = 2,
    alpha, seed = NULL)
```

Arguments

patient_risks	Double. Vector of patient risk scores (individual risk of adverse event)	
Ν	Integer. Number of simulation runs	
odds_multiplier		
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)	
alpha	Double. False signal probability of RA-CUSUM	
seed	Integer. Seed for RNG	

Value

Returns vector of dynamic control limit for signalling performance change (double)

References

Zhang, Xiang & Woodall, William. (2016). Dynamic Probability Control Limits for Lower and Two-Sided Risk-Adjusted Bernoulli CUSUM Charts. Quality and Reliability Engineering International. 10.1002/qre.2044.

Examples

```
patient_risks <- runif(100, min = 0.1, max = 0.8)
dpcl <- racusum_limit_dpcl(
    patient_risks = patient_risks,
    N = 1000,
    odds_multiplier = 2,
    alpha = 0.05,
    seed = 32423
)
plot(dpcl, type = "1")</pre>
```

racusum_limit_sim	Simulate control limit given false signal probability alpha for RA-
	CUSUM charts

Description

False-signal-probability-simulation of Control Limits h for risk-adjusted CUSUM charts

Usage

```
racusum_limit_sim(patient_risks, odds_multiplier, n_simulation, alpha,
    seed = NULL)
```

ragscusum

Arguments

patient_risks	Double. Vector of patient risk scores (individual risk of adverse event)	
odds_multiplier		
	Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)	
n_simulation	Integer. Number of simulation runs	
alpha	Double. False signal probability of RA-CUSUM	
seed	Integer. Seed for RNG	

Value

Returns the control limit for signalling performance change (double)

Examples

```
# Patients risks are usually known from Phase I.
# If not, these risk scores can be simulated.
# define possible patient risk scores
risks <- c(0.001, 0.01, 0.1, 0.002, 0.02, 0.2)
# sample risk population of size n = 100
set.seed(2046)
patient_risks <- sample(x = risks, size = 100, replace = TRUE)
# simulate control limits for alpha = 0.05
racusum_limit_sim(patient_risks,
   odds_multiplier = 2,
   n_simulation = 1000,
   alpha = 0.05,
   seed = 2046
)
```

ragscusum RA-Grouped-CUSUM chart

Description

Calculate GSCUSUM chart for risk-adjusted processes.

Usage

```
ragscusum(input_ra_outcomes, limit, quantiles, max_num_shuffles = 10000L,
seed = 0L)
```

Arguments

input_ra_outcomes		
	Matrix. First column are binary patient outcomes $(0,1)$. Second column are patient individual weight for adverse event (failure) and third column patient individual weight for no adverse event (success). Fourth column are continuous sequence of block identifier.	
limit	Double. Control limit for signalling performance change	
quantiles	Double. Vector of requested quantiles of RA-GSCUSUM distribution	
<pre>max_num_shuffles</pre>		
	Integer. Number of shuffles (i.e. different sequences of observations)	
seed	Integer. Seed for RNG (if = 0 random seed is set (default))	

Value

ragscusum NumericMatix, signal probability, average CUSUM value and specified quantiles for every observation.

ragscusum_example_data

Group-sequential Risk-adjusted Performance Data with Block Identifier

Description

Generated performance data of indicator: Ratio of observed to expected cases of severe stroke or death under open carotid stenosis surgery.

Usage

ragscusum_example_data

Format

A data frame with 2000 rows and 4 variables:

t Sequence of observations

y Patient outcome

score Patient risk score

year Year of treatment

block_identifier Continuous block identifier

Details

Individual patient risk scores were drawn from actual hospital data and patient outcomes were simulated. Two years are provided, so Phase I and Phase II can be defined.

weights_t

Source

Data for simulation was provided by Bavarian Agency of Quality Assurance (BAQ), Munich Germany.

Description of performance indicator (in German): https://iqtig.org/downloads/auswertung/ 2016/10n2karot/QSKH_10n2-KAROT_2016_QIDB_V02_2017-04-26.pdf

weights_t

Weights for observations

Description

Calculate standard CUSUM weights

Usage

```
weights_t(patient_outcomes, probability_ae, odds_multiplier = 2)
```

Arguments

patient_outcomes

Integer. Vector of binary patient outcomes (0,1)

probability_ae Double. Baseline failure probability for adverse event in non-risk-adjusted case, vector of patient risk scores for risk-adjustment.

odds_multiplier

Double. Odds multiplier of adverse event under the alternative hypothesis (<1 looks for decreases)

Index

```
* datasets
    cusum_example_data, 5
    gscusum_example_data, 8
    racusum_example_data, 13
    ragscusum_example_data, 16
calc_cusum, 2
cusum, 3
cusum-package (cusum), 3
cusum_alpha_sim,4
cusum_example_data, 5
cusum_limit_exact, 6
cusum_limit_sim,7
gscusum, 8
gscusum_example_data, 8
make_all_outcomes, 9
plot.cusum, 10
racusum, 10
racusum_alpha_sim, 11
racusum_example_data, 13
racusum_limit_dpcl, 13
racusum_limit_sim, 14
ragscusum, 15
ragscusum_example_data, 16
```

weights_t, 17