Package ‘comphy’

February 1, 2026

Title Functions Used in the Book * * Computational Physics with R"
Version 1.0.5

Description Provides a collection of functions described and used in the book
Foadi (2026, ISBN:9780750326308) * * Computational Physics with R". These include
routines for numerical differentiation, integration, differential equations,
eigenvalue problems, Monte Carlo methods, and other algorithms relevant to
computational physics.

License GPL (>=2)
Encoding UTF-8
Depends R (>=3.6.0)
RoxygenNote 7.3.2

URL https://github.com/jfoadi/comphy

BugReports https://github.com/jfoadi/comphy/issues
NeedsCompilation no

Author James Foadi [aut, cre]

Maintainer James Foadi <james_foadi@yahoo.co.uk>
Repository CRAN

Date/Publication 2026-02-01 08:00:09 UTC

Contents

backdif
BVPIlinshoot2 e e
BVPshoot2 e
condet e e
decidepoly_n e
deriV_iIT e e
deriv_reg e e e
divdif . . . e e e

https://github.com/jfoadi/comphy
https://github.com/jfoadi/comphy/issues

2 backdif

forwdif e e e 14
gauss_elim 15
Gquad e 16
GSeidel e 17
HeunODE e 18
illcond_sample e e e 20
Hnpol . . . e e e 21
LUdeco e e e 22
nevaitpol L e 24
NUMINE_TEZ « . . o v v v e e i e e e e e e e e e e e e e 25
oddity e 26
PJacobi e e e 26
polydivdif 28
polysolveLS L 29
RK4ODE e 30
TOOES_DISEC . . . o v v e e o e e e e 32
TOOES_NEWION . .+ v v v v v o e e e e e e e e e e e e e e 34
TOOLS_SECANL . . . v . v o v i e 36
solveLS L e e e 38
solve_tridiag 39
transform_upper 40
which_poly 41
Index 43
backdif Backward differences
Description

Computes backward differences of all orders up to n, based on n+1 tabulated points on a regular
grid.

Usage
backdif (f)
Arguments
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to a regular grid.
Details

The backward difference of first order is

f(@i) = flzi = h)
Backward differences of higher orders follow from this one, where the function f is replaced by

the backward difference of previous order. All values are contained in a (n + 1) x (n + 1) lower
triangular matrix.

BVPlinshoot2 3

Value

A lower triangular matrix with n+1 rows and n+1 columns. The first column includes the tabulated
values of the function. The second column includes a zero and the n backward differences of first
order. The third column includes two zeros and the n — 1 forward differences of second order. And
SO on.

Examples

Tabulated values: f(x) = x*3+x*2-x-1
<- ¢(0,1,2,3)
f <= x*3+x*2-x-1

x

Triangular matrix with backward differences
B <- backdif(f)
print(B)

BVPlinshoot2 Linear shooting method for second-order linear BVPs

Description

Solves a second-order linear boundary value problem using the linear shooting method and super-
position of two initial value problems.

Usage
BVPlinshoot2(f, t@, tf, yo, yf, h, ...)
Arguments
f A function of the form f(¢,y,y’) representing the second-order ODE: y"” =
[ty y).
to Initial time.
tf Final time.
yo Boundary value at t, i.e. y(to) = yo.
yf Boundary value at tf, i.e. y(ty) = yy.
h Step size.
Optional parameters passed to the gradient function f.
Details

If the solution of the associated homogeneous IVP is very small (close to zero) at the second bound-
ary (tf), the solution becomes unstable and the function stops with a warning. Other methods must
be used in those cases.

4 BVPshoot2

Value

A list with elements t (time points) and y (solution matrix). The first column of matrix y is the
solution, y(t), the second is its first derivative, y’(t).

Examples

Solve: y'' - (3/x)y' + (4/x*2)y = x
with y(1) = 0, y(2) = 4x(log(2) + 1)
Exact solution: y(x) = x*2*(log(x) - 1) + x*3

Gradient

f <- function(x,y,dy,...) {
(3/x)*dy-(4/x"2)*xy+x

3

to <- 1

tf <- 2

yo <- 0

yf <= 4x(log(2)+1)
h <- 0.01

ltmp <- BVPlinshoot2(f,t0,tf,y0,yf,h)

Checks

n <- length(ltmp$t)-1
print(c(1tmp$t[1],ltmp$tin+1]))
print(c(ltmp$y[1,1]1,1tmp$y[n+1,11))

BVPshoot?2 Solves a second-order BVP using the shooting method

Description

Solves y(") = ft,y, y') on the interval [to, ¢] with boundary conditions y(to) = yo. y(tf) = yy,
using the shooting method and a root finder. The associated IVP is solved using 4th-order Runge-
Kutta with RK40DE. The second initial value is found using the bisection method with roots_bisec.

Usage
BVPshoot2(f, t@, tf, yo, yf, h, s_guess = 1, tol = 1e-09, ...)
Arguments
f A function of the form f(t,y,dy) returning a numeric scalar. This defines the
second-order ODE.
t0 Initial time.

tf Final time.

BVPshoot2 5

yo Boundary value at tg, i.e. y(to) = yo.

yf Boundary value at ¢, i.e. y(t¢) = yy.

h Step size for the RK4 integration.

s_guess A numeric starting guess for 3/ (to) (default is 1), or a 2-element numeric vector

giving a bracketing interval.
tol A numeric value that tells the bisection algorithms when to stop. Default is 1e-9.

Additional arguments passed to f.

Details

It is important to consider the uniqueness of the solution of a BVP. If the BVP admits infinitely
many solutions (a family of solutions), BVPshoot2 will find only one of them, depending on what
initial condition for the first derivative of the associated IVP, was found using the bisection method.

Value

A list with elements t (time grid) and y (solution matrix), where y[, 1] contains y(¢) and y[, 2] its
derivative.

Examples

y"+y = 9%xsin(2xt); y(@)=-1, y(3*pi/2)=0
Unique solution: y(t) = 3*sin(2*t) - cos(t)

Define y"=f(t,y,y")
f <- function(t,y,dy) {ff <- -9xsin(2*xt)-y; return(ff)}

Solution interval
to <- 0
tf <- 3xpi/2

Boundary values
yo <- -1
yf <- 0

Step size
h <- 0.01

Solution
1tmp <- BVPshoot2(f,t0,tf,y0,yf,h)

Check

Number of steps

n <- length(ltmp$t)-1
print(c(1tmp$t[1],1tmp$tin+11))
print(c(ltmp$y[1,1],1tmp$y[n+1,1]1))

6 decidepoly_n

condet Determinant of a square matrix

Description
Calculates the determinant of a square matrix of size n, using the reduction of the matrix in upper
triangular form.

Usage

condet(A)

Arguments

A An n X n square matrix of.

Value

A real number corresponding to the determinant of A.

Examples

Identity matrix of size 10
A <- diag(10)
print(condet(A))

Random matrix with integer elements
A <- matrix(sample(-5:5,size=25,replace=TRUE),ncol=5)
print(condet(A))

decidepoly_n Degree of best-interpolating polynomial

Description

The degree is chosen making use of divided differences. As more and more points are used for the
interpolation, the components of columns of divided differences corresponding to higher orders,
are smaller and smaller. They are exactly zero when the function to interpolate is a polynomial of
degree, say, k. More specifically, all divided differences of order k + 1 and above are exactly zero.
The criterion used suggests a value k if the average of the absolute value of all divided differences
of order k 4 1 is less than a given threshold thr (default 1e-6).

Usage

decidepoly_n(x, f, thr = 1e-06, ntrial = 30)

deriv_irr 7

Arguments
X A vector of real numbers. Grid points corresponding to the tabulated (known)
values of the function.
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to the grid x.
thr A real number. This is the threshold to decide when a column in the triangular
matrix of divided differences has a small-enough average value (small than thr).
Default is thr=1e-6.
ntrial A positive integer to decide how many random selections of the provided known
(tabulated) points have to be carried out. Default is ntrial=30.
Details

The divided differences depend on the specific points selected to calculate the interpolated curve. To
avoid potential bias that might occur when the tabulated points used are not distributed uniformly,
several random selections of tabulated points are performed (default ntrial=30) and the highest &
is returned.

Value

An integer corresponding to the best interpolating polynomial’s degree.

Examples

Tabulated grid points for function cos(x)
<- seq(0,3*pi/2,length=20)
f <- cos(x)

x

Suggested polynomial degree (default ntrial)
k <- decidepoly_n(x,f)
print(k)

Increase number of random selections (ntrial=50)
k <- decidepoly_n(x,f,ntrial=50)
print (k)

deriv_irr First derivative for an irregular grid

Description

Computes the first derivative at a given point, for a function known only through its values tabulated
on an irregular grid, where the distance between successive points of the variable is in general not
constant. The algorithm is based on the divided differences (see divdif).

8 deriv_reg

Usage

deriv_irr(xo, x, f)

Arguments
X0 A vector of real numbers. These are the values where the first derivative needs
to be calculated. These values need to be within the interval defined by the
tabulated grid, x.
X A vector of real numbers. Grid points corresponding to the tabulated (known)
values of the function.
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to the grid x.
Details

This numerical derivative should be used only when the function is known at specific points. When
the analytic form of the function is available and the grid of values of the independent variable can
be arbitrarily chosen, then it is better to compute the derivative using other more appropriate and
faster methods.

Value

A vector of real numbers. These are the numeric approximations to the first derivative of the func-
tion at all values in x@. The first derivative is exact when the function is a polynomial of degree n,
where n is less than the number of tabulated values.

Examples

Tabulated values: f(x) = 2*xx*2-1
x <- ¢(0,1,3,7)
f <= 2xx*2-1

The derivative needs to be computed at three values
X0 <- c¢(1.1,4,6.5)

First derivatives
f1 <- deriv_irr(xo,x,f)
print(f1)

deriv_reg First derivative on a regular grid

divdif 9

Description

Computes the first derivative of a function at selected points using the forward difference, backward
difference, or centred difference. A regularly spaced grid with corresponding values of the function
must be available, as well as a subset of the same grid points at which the derivative must be
calculated. For forward and backward differences, the last, respectively the derivative cannot be
calculated at the first or last grid point. For centred difference it cannot be calculated at both first
and last grid point.

Usage
deriv_reg(x0, x, f, scheme = "c")
Arguments
X0 A numeric vector. Values at which the derivative is computed. Must be an exact
subset of x. Approximated values of x will not be accepted.
X A numeric vector. Regular grid points where the function is tabulated.
f A numeric vector. Tabulated values of the function at grid x.
scheme A one-letter character indicating which difference to use. Possible values are
"c", "f", "b" for centred, forward and backward, respectively.
Value

A vector of real numbers. These are the numeric approximations to the first derivative of the func-
tion at all values in x@.

Examples

x <- seq(@, 1, length.out = 11)
f<-x*3+x*2-x-1

X0 <- ¢(0.2, 0.5, 0.8)
deriv_reg(x0, x, f)

divdif Divided differences

Description
Calculation of all the n*(n+1)/2 divided differences related to n tabulated points of a function. The
values returned fill half of a n X n matrix, the other half being filled with zeros.

Usage
divdif(x, f)

10 EPSturmLiouville2

Arguments
X A vector of real numbers. Grid points corresponding to the tabulated (known)
values of the function.
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to the grid x.
Value

A matrix of size n X n, where n is the length of x. Each column of this matrix contains the divided
differences at a specified level. Thus, column 1 contains the level 1 values, i.e. the n tabulated points,
column 2 contains the n-1 divided differences calculated with the adjacent couples of grid points,
column 3 contains all n-2 level 3 divided differences, and so on. In each column the remaining slots
(no slots in the first column, one slot in the second column, two slots in the third column, etc) are
filled with zeros.

Examples

Tabulated values: f(x)=x"3-4x"2+3x+2
<- c(-1,1,2,4)
f <- ¢(-6,2,0,14)

x

Matrix filled with divided differences and zeros
P <- divdif(x,f)
print(P)

Add two tabulated points to previous set
<- ¢(x,0,3)
f <= c(f,2,2)

x

New divided differences appear, but
the old ones are unchanged
P <- divdif(x,f)

print(P)
EPSturmLiouville2 Sturm—Liouville eigenproblem with homogeneous Dirichlet boundary
conditions
Description
Solves
d

— 2z P@) ¥ (2)) + q(2) y(2) = Aw(z) y(2)

on [a, b] with y(a) = 0 and y(b) = 0. The equation is discretised on the interior nodes of a uniform
grid and assembled into matrices K and W so that K u = 1lambda W u. The problem is reduced to a
symmetric standard eigenproblem and solved.

EPSturmLiouville2 11

Usage

EPSturmLiouville2(

P,

q,

W,

X,

nev = NULL,

normalize = TRUE,
return_matrices = FALSE,
check_inputs = TRUE,
tol_uniform = 1e-12

)
Arguments
p Function p(x) or numeric vector at midpoints.
q Function q(x) or numeric vector at nodes.
w Function w(x) or numeric vector at nodes.
X Numeric grid including endpoints (x[1]=a, x[n+1]=b); must be uniform.
nev Integer number of eigenpairs to return (smallest); default all interior modes.
normalize Logical; if TRUE, scale interior eigenvectors so that Zi hw; uf = 1. Default

TRUE.
return_matrices
Logical; if TRUE, also return K and W. Default FALSE.

check_inputs Logical; run basic checks (uniform grid, positivity of p, w). Default TRUE.

tol_uniform Tolerance for uniform-grid check. Default 1e-12.

Details
Coefficients may be given as functions or numeric vectors:

* p: function on midpoints or numeric vector of length length(x)-1 (midpoints).

* ¢, w: functions on nodes or numeric vectors of length length(x) (nodes).

Homogeneous Dirichlet conditions are enforced by construction: unknowns are interior only; the
returned full eigenfunctions have zero endpoints.

Value
A list with

* values: eigenvalues (ascending).

* vectors_interior: interior eigenvectors (matrix (n-1) x k).

» vectors_full: full eigenfunctions with zero endpoints (matrix (n+1) x k).
* X, h, nev_used.

e K, Wif return_matrices=TRUE.

12 EulerODE

Examples

p=1, =0, w=1 on [0, pi] -> eigenvalues ~ 12, 22, 3*2,

a<-0; b<-pi; n<- 200

x <- seq(a, b, length.out = n+1)

pfun <- function(s) 1 # scalars are accepted; will be replicated
gfun <- function(s) @

wfun <- function(s) 1

ep <- EPSturmLiouville2(pfun, gfun, wfun, x, nev = 4, normalize = TRUE)

round(ep$values, 3) #~c(l, 4, 9, 16)
EulerODE Euler method for systems of ODEs
Description

Solves a system of m first-order ODEs using the explicit Euler method.

Usage
EulerODE(f, to, tf, yo, h, ...)
Arguments
f A function of the form f(t,y) returning a numeric vector. It must be defined
before using EulerODE. This function is the right hand side of the ODE, i.e. the
gradient of the ODE system.
to Initial time.
tf Final time.
yo A numeric vector with initial values (length = m).
h Step size.
Other parameters potentially needed by the gradient function.
Details

The method is accurate and stable when the stepsize h is relatively small. The local error is O(h?),
while the global error is O(h). Other numerical methods are generally used to calculate solutions
with a higher accuracy.

Value

A list with elements t (time points) and y (solution matrix). The first row of the matrix contains the
initial values of y at time t@. Each column of the matrix contains the numerical solution for each
one of the m functions of the system of ODEs.

EulerODE

Examples

IVP: \eqn{dy/dt=6-2y,\ y(0)=0}.
Define gradient
f <- function(t,y) {dy <- 6-2xy; return(dy)}

Solution interval
to <- 0
tf <- 2

Initial condition
yo <- 0

Step
h <-0.1

Numerical solution
1tmp <- EulerODE(f,to,tf,y0,h)

Print grid
print(ltmp$t)

Print numerical solution
print(ltmps$y)

Example with two ODEs.
\egn{dy_1/dt=y_1+2y_2}
\egn{dy_2/dt=(3/2)y_1-y_2}
\egn{y_1(0)=1, y_2(0)=-2}

Define gradient

dy <- function(t,y) {
dyl <= y[1]+2xy[2]
dy2 <- 1.5%xy[1]-y[2]
return(c(dy1,dy2))

3

Solution interval
t0 <- 0
tf <- 2

Initial conditions
yo <- c(1,-2)

Step
h <- 0.1

Numerical solution
ltmp <- EulerODE(dy,t@,tf,y0,h)

Print grid
print(ltmp$t)

13

14 forwdif

Print numerical solution y1
print(1ltmp$yl[,11)

Print numerical solution y2
print(1ltmp$yl,21)

forwdif Forward differences

Description

Computes forward differences of all orders up to n, based on n+1 tabulated points on a regular grid.

Usage
forwdif (f)
Arguments
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to a regular grid.
Details

The forward difference of first order is

flxi+h) = f(x:)

Forward differences of higher orders follow from this one, where the function f is replaced by the
forward difference of previous order. All values are contained in a (n+ 1) X (n+ 1) upper triangular
matrix.

Value

An upper triangular matrix with n + 1 rows and n + 1 columns. The first column includes the
tabulated values of the function. The second column includes the n forward differences of first
order and a zero. The third column includes the n — 1 forward differences of second order and two
zeros. And so on.

Examples

Tabulated values: f(x) = x*3+x*2-x-1
x <- ¢c(0,1,2,3)
f <= x*3+x*2-x-1

Triangular matrix with forward differences
F <- forwdif(f)
print(F)

gauss_elim 15

gauss_elim Gaussian Elimination

Description

Solution of a system of n equations in n unknowns, using Gaussian elimination.

Usage

gauss_elim(M)

Arguments
M The n x (n + 1) augmented matrix of coefficients corresponding to the system
of n linear equations in n unknowns, Az = b.
Details

The linear system to solve is Az = b, where A is the n x n matrix of coefficients of the n unknowns
in the n x 1 vector x, and b is the n x 1 vector of known numbers. Gaussian elimination consists
of a series of so-called row operations that transform A in an upper-triangular matrix. The system
corresponding to the transformed matrix can be solved very quickly.

Value

A vector of length n containing the n numeric solutions for the n unknowns. If the system has
no solutions or an infinite number of solutions, the function returns NULL and dumps a warning
message.

Examples

System of three equations in three unknowns

#
#
3x_1 + x_2 + x_3
#
#

=6
x_1 - x2+ 2x.3 =4
-x_1 +x_2+ x_.3=2

ES

Augmented matrix M=(A|b)
M <- matrix(c(3,1,-1,1,-1,1,1,2,1,6,4,2),ncol=4)

Solution via Gauss elimination
x <- gauss_elim(M)
print(x)

16 Gquad

Gquad Numerical integration using n-point Gaussian quadrature.

Description
Computes the definite integral of f(z) between a and b, using the method of Gaussian quadrature.
The default number of points is

Usage
Gquad(f, a=-1, b =1, n=05)

Arguments
f A function to integrate.
a Lower bound of integration (default -1).
b Upper bound of integration (default 1).
n Number of quadrature points (default 5).
Value

A list with three elements. The first is a numeric vector containing the nodes of the quadrature.
The second is a numeric vector containing the corresponding weight. The third is a real number
corresponding to the approximate value of the integral.

Examples

Integral in [-1,1] of 2x-1.
Value is -2 and n=1 is enough for exact result

Define the function
f <= function(x) {ff <- 2xx-1; return(ff)}

1-point quadrature
ltmp <- Gquad(f,-1,1,n=1)

The only zero is x1=0
print(1tmp$xt)

The only weight is w1=2
print(1ltmp$wt)

Quadrature gives exact integral
print(ltmp$itg)

2-point quadrature
ltmp <- Gquad(f,-1,1,n=2)
print(ltmp) # Same result but more zeros and weights

GSeidel

17

Default, n=5, is accurate enough
ltmp <- Gquad(exp,-1,1)

print(ltmp$itg)

Different extremes of integration
1tmp <- Gguad(exp,1,4)

print(ltmp$itg)

GSeidel

The Gauss-Seidel algorithm

Description

Implementation of the Gauss-Seidel iterative method to solve a system Az = b of n linear equations

in n unknowns.

Usage

GSeidel(A, b, x@ = NULL, tol = 1e-06, nmax = 1e+@5, ddominant = TRUE)

Arguments

A
b

x0

tol

nmax

ddominant

Details

The n x n matrix of coefficients of the unknowns in the linear system.

A vector of n constants representing the right-hand side of the linear system.
This function does not work out solutions of homogeneous systems, where the
b is a vector of zeros (null vector). Therefore input with b equal to a null vector
is rejected.

A vector of n starting numeric values for the iterations. If no values are entered
for x0, a column of zero will be adopted by default.

A real number indicating the threshold under which the relative increment from
one solution approximation to the next is small enough to stop iteration. The
default value is tol=1e-6.

An integer. The maximum number of iterations allowed, if convergence accord-
ing to the criterion is not reached.

A logical variable. If FALSE, the method is applied also if the matrix of coeffi-
cients is not diagonally dominant (default is TRUE).

Gauss-Seidel is a variant of the Jacobi method, as it guarantees a finite solution for linear systems
characterised by a diagonally dominant matrix A of coefficients. This means that each element on
its diagonal must be, in absolute value, larger than the sum of the absolute value of all the elements
in the corresponding row. Gauss-Seidel differs from Jacobi as it promises to converge faster than

Jacobi.

18

Value

HeunODE

A numeric vector of length n with values approximating the system’s solution.

Examples

Simple system with solution 1,2,3
A <- matrix(c(3,1,2,-1,-4,2,1,1,7),ncol=3)

b <~ c(4,-4,27)

Solution
x <- GSeidel(A,b)
print(x)

Start from a different point

x0 <- c(-1,2,8)

X <- GSeidel(A,b,x0)

print(x)

HeunODE

Heun method for systems of ODEs

Description

Solves a system of m first-order ODEs using the Heun method (also known as the improved Euler

method).
Usage
HeunODE(f, t@, tf, yo, h, ...)
Arguments
f A function of the form f(t,y) returning a numeric vector. It must be defined
before using HeunODE. This function is the right hand side of the ODE, i.e. the
gradient of the ODE system.
t0 Initial time.
tf Final time.
yo A numeric vector with initial values (length = m).
h Step size.
Other parameters potentially needed by the gradient function.
Details

The method improves upon the Euler method by using an average of the slopes at the beginning and
end of each time step. It is more accurate, with local error O(h?) and global error O(h?).

HeunODE 19

Value

A list with elements t (time points) and y (solution matrix). The first row of the matrix contains the
initial values of y at time t@. Each column of the matrix contains the numerical solution for each
one of the m functions of the system of ODE:s.

Examples

IVP: \eqn{dy/dt=6-2y,\ y(0)=03}.
Define gradient
f <- function(t,y) {dy <- 6-2xy; return(dy)}

Solution interval
to <- 0
tf <- 2

Initial condition
yo <- 0

Step
h <-0.1

Numerical solution
1tmp <- HeunODE(f,t@,tf,y0,h)

Print grid
print(ltmp$t)

Print numerical solution
print(ltmp$y)

Example with two ODEs.
\egn{dy_1/dt=y_1+2y_2}
\egn{dy_2/dt=(3/2)y_1-y_2}
\egn{y_1(0)=1, y_2(0)=-2}

Define gradient

dy <- function(t,y) {
dyl <- y[1]+2xy[2]
dy2 <- 1.5%y[1]-y[2]
return(c(dy1,dy2))

3

Solution interval
t0 <- 0
tf <- 2

Initial conditions
yo <- c(1,-2)

Step
h <- 0.1

20 illcond_sample

Numerical solution
ltmp <- HeunODE(dy,to,tf,y0,h)

Print grid
print(ltmp$t)

Print numerical solution y1
print(1tmp$yl[,11)

Print numerical solution y2
print(ltmps$yl,21)

illcond_sample 1ll-conditioned sampling

Description

Random sampling, based on the uniform distribution, of the right-hand side, b, of a linear system
and of a perturbation, Ab, so that the solution of Az = b is very different from the solution of
Az = b+ Ab.

Usage

illcond_sample(A, bmax = 100, Dbmax = 1, ncyc = 1e+@5, iseed = NULL)

Arguments

A The n x n matrix of coefficients of the unknowns in the linear system.

bmax A numeric number providing the interval, (0,bmax), in which the n uniformly
random components of b are selected. Default value is 100.

Dbmax A numeric number providing the interval, (0,Dbmax), in which the n uniformly
random components of Ab are selected. Default value is 1.

ncyc An integer indicating the number of uniform random selection of the n compo-
nents of b and the n components of Ab. The higher this number, the higher the
chance of getting a high relative solution number, but the longer the execution
time of the function. Default is 100000.

iseed An integer. The seed starting random generation. If a value is provided, the

(pseudo-)random generation will reproduce exactly the same b and Ab. Default
is NULL, which means that the seed will be randomly chosen at every execution
of the function.

linpol 21

Details

The degree of ill-conditioning of a system is not only measured by the matrix’s condition number,
but also from the solution relative error. If Az is the difference between the solution, z, of the
system related to b and the solution, x’, of the system related to &’ = b — Ab, then the ratio of the
norm of Az and the norm of z, is the solution relative error. Norms are Frobenius norms. This
function returns a named list with b and Db the chosen b and Ab, based on random sampling of a
specified region.

Value

A named list with names b, a vector equal of the right-hand side of the linear system, and Db, a
vector equal to the perturbations, Ab, to be applied to b.

Examples

This is a simple but ill-conditioned matrix
A <- matrix(c(2,1,1.99,1),ncol=2)

Select b and Db randomly, starting with iseed=2341
1tmp <- illcond_sample(A, iseed=2341)
names (1tmp)

b and b’

b <- 1tmp$b
Db <- 1tmp$Db
b2 <- b-Db

Solution for b
x <- solve(A,b)
print(x)

Solution for b'
x2 <- solve(A,b2)
print(x2)

Difference
Dx <- x-x2

Solution relative error (Frobenius norm)
print(norm(Dx,"F")/norm(x,"F"))

Upper limit
Ainv <- solve(A)
print(norm(A,"F")*norm(Ainv,"F")*norm(Db,"F")/norm(b,"F"))

linpol 1D linear interpolation

22 LUdeco

Description

Classic linear interpolation between two tabulated (known) points of a one-variable function.

Usage
linpol(x, f, x0)

Arguments
X A vector of real numbers. Grid points corresponding to the tabulated (known)
values of the function.
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to the grid x.
X0 A vector of real numbers. These are the grid points chosen for the interpolation.
All points of this grid need to be within the tabulated grid.
Value

A vector of real numbers. These are the actual interpolated values (calculated using linear interpo-
lation), corresponding to all values of the grid x@.

Examples

Tabulated values: f(x) = 2*x*2-1
x <- ¢(0,1,3,7)
f <= 2xx*2-1

Grid for interpolation
X0 <- seq(@,7,length=501)

Interpolated points
f <- linpol(x,f,x0)
print(f)

LUdeco LU decomposition

Description
Transform an n X n matrix into a product of a lower-triangular and upper-triangular matrices, using
the Crout (method="crout" - default) or Doolittle (method= "doolittle") method.

Usage

LUdeco(A, method = "crout”)

LUdeco 23

Arguments
A Ann X n matrix.
method A character string. This calls two different procedures for the decomposition.
Only "crout" (default) and "doolittle" are recognised methods. A different char-
acter string forces the function to return NULL.
Details

The "crout" method returns the upper triangular matrix, U, with ones on its diagonal. The "doolittle"
method returns the lower triangular matrix, L, with ones on its diagonal.

Some matrices do not have an LU decomposition unless a row permutation is done to the matrix. In
this function, the order of such a permutation is included in the named vector ord, returned as part
of the output. When the vector is equal to 1,2,...,n (first n numbers, naturally ordained), this means
that there was no need of permuting the original matrix to carry out the LU decomposition.

Value
A named list with the lower triangular, L, upper triangular, U, matrices, and with a vector, ord,

containing the permutation needed to achieve the LU factorisation.

Examples

3X3 matrix

#
#
#03 1 1
#
#

H

Input matrix
<- matrix(c(3,1,-1,1,-1,1,1,2,1),ncol=3)

>

LU decomposition

ltmp <- LUdeco(A)

print(1tmp$L)

print(1tmps$u)

print(ltmp$ord) # No permutation needed

The product is the original matrix, A
print(ltmp$L%*%1tmp$U)

Singular matrix with LU decomposition
A <- matrix(c(1,0,0,0,1,1,1,0,0),ncol=3)
print(det(A))

ltmp <- LUdeco(A, "doolittle")
print(ltmp$L)

print(1tmp$u)

print(ltmp$ord) # No permutation needed

The product is the original matrix, A
print(1tmp$L%*%1tmp$U)

24 nevaitpol

Singular matrix without LU decomposition
A <- matrix(c(1,90,0,0,0,0,0,0,0),ncol=3)
1tmp <- LUdeco(A)

print(1tmp)

#

nevaitpol Neville-Aitken algorithm for polynomial interpolation

Description

Hierarchical series of linearly-interpolated P;; values calculated using Neville-Aitken’s algorithm.
In the P;; expression, j is the level of the algorithm and i the leftmost grid-point of the tabulated
function points.

Usage

nevaitpol(x, f, x@)

Arguments
X A vector of real numbers. Grid points corresponding to the tabulated (known)
values of the function.
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to the grid x.
X0 A vector of real numbers. These are the grid points chosen for the interpolation.
All points of this grid need to be within the tabulated grid.
Value

An upper triangular matrix of size n containing the linearly-interpolated values. P[i, j] is zero for
1+j>n+1

Examples

Tabulated values: f(Xx) = x"3-2*x"2+3*x-1
X <- c(0.1,0.4,0.6,0.8,0.9)
f <= X*3-2%x"2+3xx-1

Interpolation point
X0 <- 0.75

Upper-triangular matrix of N-A values
P <- nevaitpol(x,f,x0)

From level 4 onward the interpolated value
does not change because f(x) is a 3rd-degree polynomial
print(P)

numint_reg 25

numint_reg Numerical integration using the trapezoid or simpson’s rule

Description

Computes the definite integral of f(z) between a and b, using one of the three numerical integration
Newton-Cotes rules, trapezoid, Simpson’s 1/3 or Simpson’s 3/8.

Usage
numint_reg(x, f, scheme = "sim13")
Arguments
X A vector of real numbers. Grid points corresponding to the tabulated (known)
values of the function. These must be equally spaced (regular grid).
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to the grid x.
scheme A character indicating the integration rule to follow. Possible values are "trap"
(trapezoid rule), "sim13" (Simpson’s 1/3 rule), and "sim38" (Simpson’s 3/8
rule). Default scheme is "sim13".
Details

The default method is Simpson’s 1/3 rule. For this method to be applied correctly, the number of
regular intervals must be even. If this is not the case, the area corresponding to the last interval will
be calculated with the trapezoid rule with a warning being posted.

When using the Simpson’s 3/8 rule, the number of regular intervals must be a multiple of 3. If this
is not the case, the last or last two intervals will be computed with the trapezoid rule.

Value

A real number, corresponding to the numeric approximation of the definite integral of f(x).

Examples

Tabulated values: f(x) = x*2
x <- seq(@,2,length.out=21) # number of intervals is even
f <= x*2

Integral between @ and 2

The correct result is 2%3/3=8/3=2.6666. ..

nvalue <- numint_reg(x,f) # Defaul nethod simpson's 1/3
print(nvalue)

If the number of intervals is not even,
a warning is issued
y <- seq(0,2,length.out=22)

26 PJacobi

g <= y*2
nvalue <- numint_reg(y,g)
print(nvalue)
oddity Parity of a permutation
Description

Given a permutation of the integers from 1 to n, this function calculates its parity (+1 or -1), i.e. the
number of swapping that take the permutation back to the natural ordering 1,2, ..., n.

Usage
oddity(x)

Arguments

X A vector containing a permutation of the first n integers, 1,2, ..., n.

Value

A real number equal to +1 or -1, indicating the parity of the given permutation.

Examples

Identity permutation (10 elements)
X <= 1:10
print(oddity(x))

One swap

x[2] <- 5

x[5] <- 2
print(oddity(x))

PJacobi The Jacobi method

Description
Implementation of the Jacobi iterative method to solve a system Az = b of n linear equations in n
unknowns.

Usage

PJacobi(A, b, x@ = NULL, tol = 1e-06, nmax = 1e+@5, ddominant = TRUE)

PJacobi

Arguments

A
b

x0

tol

nmax

ddominant

Details

27

The n x n matrix of coefficients of the unknowns in the linear system.

A vector of n constants representing the right-hand side of the linear system.
This function does not work out solutions of homogeneous systems, where the
b is a vector of zeros (null vector). Therefore input with b equal to a null vector
is rejected.

A vector of n starting numeric values for the iterations. If no values are entered
for x0, a column of zero will be adopted by default.

A real number indicating the threshold under which the relative increment from
one solution approximation to the next is small enough to stop iteration. The
default value is tol=1e-6.

An integer. The maximum number of iterations allowed, if convergence accord-
ing to the criterion is not reached.

A logical variable. If FALSE, the method is applied also if the matrix of coeffi-
cients is not diagonally dominant (default is TRUE).

The Jacobi method guarantees a finite solution for linear systems characterised by a diagonally
dominant matrix A of coefficients. This means that each element on its diagonal must be, in absolute
value, larger than the sum of the absolute value of all the elements in the corresponding row.

Value

A numeric vector of length n with values approximating the system’s solution.

Examples

Simple system with solution 1,2,3
A <- matrix(c(3,1,2,-1,-4,2,1,1,7),ncol=3)

b <- c(4,-4,27)

Solution

X <- PJacobi(A,b)

print(x)

Start from a different point

X0 <- c(-1,2,8)

x <- PJacobi(A,b,x@)

print(x)

28 polydivdift

polydivdif Approximating polynomial for divided differences

Description

Calculation of a polynomial of order n via divided differences. All n tabulated points provided
(with n greater or equal than 2) are used by default for the calculation, but the option is available to
use only np points, where np must be greater or equal than 2. In case only part of the n available
tabulated points is used (np < n), the first two points are fixed to be equal to the smallest and largest
tabulated grid x points; the remaining np-2 points are selected randomly among the n-2 remaining
ones.

Usage
polydivdif(x@, x, f, np = length(x))

Arguments
X0 A vector of real numbers. These are the grid points chosen for the interpolation.
X A vector of real numbers. Grid points corresponding to the tabulated (known)
values of the function.
f A vector of real numbers. Tabulated (known) values of the function, correspond-
ing to the grid x.
np An integer. The number of known points used for the interpolation. np > 2
because the smallest and largest value of x have to be always among the known
points. Aside from the points at the extremes of the interpolation interval, the
other points are chosen randomly.
Value

A named list of length 3 and names x, f and f@.

x Tabulated grid points used for the interpolation.
f Tabulated function points used for the interpolation. They correspond to x.

fo Interpolated values. They correspond to the input vector x@.

Examples

Tabulated grid points for function sin(x)
x <- seq(@,3*pi/2,length=20)
f <= sin(x)

Grid of interpolated points
x0 <- seq(@,3*pi/2,length=200)

Interpolation using all 20 tabulated points
ltmp <- polydivdif(xo,x,f)

polysolveLS 29

plot(ltmp$x, ltmp$f,pch=16)
points(x@,ltmp$fo, type="1")

Interpolation using only five points (dangerous!)
1tmp <- polydivdif(x@,x,f,np=5)
points(1ltmp$x,ltmp$f,col=2,cex=1.5)
points(x@,ltmp$fo, type="1",col=2)

polysolvelS Polynomial Least Squares
Description
Find the parameters, aq, ..., a1, of the polynomial model of degree m (1D function), using the

least squares technique on a group of n data points.

Usage

polysolvelLS(pts, m, tol = NULL)

Arguments
pts A n x 2 matrix or data frame where each row contains the coordinates of a data
point used for regression.
m An integer. The degree of the polynomial to be used as model for the regression.
tol A real number. The solution of a linear system can be compromised when the
condition number of the matrix of coefficients is particularly high (ill-conditioned
matrices). tol is the reciprocal of the condition number. For values of tol
smaller than le-17, ill-conditioning is deemed to be sever enough not to guaran-
tee an accurate solution. For such values the function stops execution, returning
an error message. In fact, the solution can still be accurate, notwithstanding ill-
conditioning, and the user can force the calculation of a solution using a value
of tol smaller than le-17. Default is NULL, corresponding to a tol=1e-17.
Details

The polynomial model has the following analytic form:
y=a12™ 4+ asx™ 4 AT+ Gy
The n data points are contained in a matrix or data frame with 2 columns, containing the coordinates

of each data point, and n rows. The least squares procedure is carried out as solution of a matrix
equation, via the solvelS function.

30 RK40ODE

Value
A named list with two elements:

a A vector of length m containing the m numeric values of the estimated polynomial’s coeffi-
cients.If more than one solution is possible, (infinite-solutions case) the function returns a
NULL and prints out a related message.

SSE A real number. The numerical value of the sum of squared residuals.

Examples

21 points close to the quadratic x*2 - 5%x + 6
x <- seq(-2,5,length=21)

set.seed(7766)

eps <- rnorm(21,mean=0,sd=0.5)

y <- x"2-5xx+6+eps

Data frame
pts <- data.frame(x=x,y=y)

Regression

ltmp <- polysolvelLS(pts,m=2)
print(names(ltmp))
print(ltmp$a)
print(1tmp$SSE)

RK40DE Runge-Kutta 4th order method for systems of ODEs

Description

Solves a system of m first-order ODEs using the classical fourth-order Runge-Kutta method.

Usage
RK40DE(f, t@, tf, yo, h, ...)

Arguments

f A function of the form f(t,y) returning a numeric vector. It must be defined
before using RK40DE. This function is the right hand side of the ODE, i.e. the
gradient of the ODE system.

t0 Initial time.

tf Final time.

yo A numeric vector with initial values (length = m).

h Step size.

Other parameters potentially needed by the gradient function.

RK40ODE 31

Details

This method achieves high accuracy by evaluating the gradient function four times per step. It has
local error O(h®) and global error O(h*). It is one of the most widely used methods for solving
initial value problems numerically.

Value

A list with elements t (time points) and y (solution matrix). The first row of the matrix contains the
initial values of y at time t@. Each column of the matrix contains the numerical solution for each
one of the m functions of the system of ODEs.

Examples

IVP: \eqn{dy/dt=6-2y,\ y(0)=0}.
Define gradient
f <- function(t,y) {dy <- 6-2xy; return(dy)}

Solution interval
to <- 0
tf <- 2

Initial condition
yo <- 0

Step
h <-0.1

Numerical solution
1tmp <- RK40DE(f,t0,tf,y0,h)

Print grid
print(ltmp$t)

Print numerical solution
print(ltmp$y)

Example with two ODEs.
\egn{dy_1/dt=y_1+2y_2}
\egn{dy_2/dt=(3/2)y_1-y_2}
\egn{y_1(0)=1, y_2(0)=-2}

Define gradient

dy <- function(t,y) {
dyl <- y[11+2xy[2]
dy2 <- 1.5%y[1]-y[2]
return(c(dy1,dy2))

3

Solution interval
t0 <- 0
tf <- 2

32 roots_bisec

Initial conditions
yo <- c(1,-2)

Step
h <- 0.1

Numerical solution
ltmp <- RK4O0DE(dy,t0,tf,y0,h)

Print grid
print(ltmp$t)

Print numerical solution y1
print(ltmps$y[,11)

Print numerical solution y2
print(ltmp$y[,21)

roots_bisec Bisection method for roots

Description

Find the zero of a function of one variable, f(z), given a starting value close to the zero, or an
interval including the zero.

Usage
roots_bisec(
fn,
X0 = 0,
1B = NULL,
rB = NULL,
tol = 1e-09,
imax = 1e+06,
eps = 0.1,
message = TRUE,
logg = FALSE,
)
Arguments
fn A function of one variable. If the function includes variables, these will have
to be passed as additional variables, using the same names in the function’s
definition (see examples).
X0 A numeric variable. The starting value to find the initial interval, when a search

interval is not provided. The default value is ‘x0=0°.

roots_bisec

1B

rB

tol

imax

eps

message

logg

Details

33

A numeric variable indicating the lower (left) extreme of the search interval.
If not given, this number will be selected starting from ‘x0‘ and in small steps
‘eps‘ of values smaller than ‘x0°‘, until a value of ‘IB‘ is found for which the
function ‘f* has sign opposite of the sign it has at ‘rB*. Default is for ‘IB* not to
be entered (‘1B=NULL").

Same as ‘I1B°, but corresponding to the upper (right) extreme of the search inter-
val. Default is for ‘rB* not to be entered (‘rB=NULL").

A real number, in general a small number. The width of the smallest interval
containing the zero of the function just before the algorithm stops. This means
that the largest error |x — x| between the numerical value of the root found, z,
and its correct value, x4, is tol. Default value is 1e-9.

A positive integer. The maximum number of bisections of the interval, while
searching the zero of the function. The default value is 1e6, although con-
vergence is normally obtained with a number of bisections much smaller than
‘imax‘. ‘imax‘ is important to stop search in those cases in which the function
has no zeros in the search interval provided.

A real number. The step size needed for the selection of a search interval, when
this is not provided. In such a situation, symmetric intervals with increasing
width around ‘x0°‘ are considered where the left and right extremes are ‘x0-
i*eps‘ and ‘xO+i*eps*, respectively, where ‘i‘ is a positive integer, progressively
increasing from 1 to the maximum allowed value ‘imax‘. Search for the selected
interval stops when is the signs of the function ‘f* calculated at the extremes are
opposite. If the search interval is not found, a warning message is printed and
NULL is returned. Default value is 0.1.

A logical variable to state whether messages about the root and the largest er-
ror have to be printed. The default is for the messages to be printed (mes-
sage=TRUE).

A logical variable to state whether information on the series of bisected intervals
is printed (TRUE) or not (FALSE). Default is for such information not to be
printed (FALSE).

Parameters passed to function ‘fn‘, if needed.

Finding the zero of f(x) is equivalent to finding the roots of the equation:

f(z)=0

The algorithm used is based on the bisection method that needs an initial interval within which
the root is supposed to reside. When multiple roots are involved, the algorithm will only find one
among those inside the chosen interval. The algorithm can be started also with just one value, x0,
supposedly close to the wanted root. In this case, an interval is selected so that the function at the
extremes of the interval has opposite signs. If such an interval is not found, the function dumps a
warning message and returns NULL. The bisection method has a slow convergence rate and it does
not converge at all in specific situations.

Value

A numeric value, the zero of the function (or, equivalently, the root of the equation f(z) = 0).

34 roots_newton

Examples

The quadratic equation x*2-5%x+6=0 has two roots, 2 and 3
ff <- function(x) return(x*2-5%x+6)

Find root 2, starting from a single point close to 2
X0 <- 1

X <- roots_bisec(ff,x0=1)

print(x)

Find root 3, using an interval (no message printing)
X <- roots_bisec(ff,1B=2.8,rB=4,message=FALSE)
print(x)

Function with a parameter f(x) = exp(x) - k
ff <- function(x,k=2) return(exp(x)-k)

Solution of exp(x)=3 is log(3)
X <- roots_bisec(ff,k=3)
print(log(3))

roots_newton Newton method for roots

Description

Find the zero of a function of one variable, f(z), given a starting value close to the zero, using
Newton method.

Usage
roots_newton(
fo,
f1,
X0 = 0,
tol = 1e-09,
imax = 1e+06,
ftol = NULL,
message = TRUE,
logg = FALSE,
)
Arguments
fo A function of one variable. If the function includes variables, these will have

to be passed as additional variables, using the same names in the function’s
definition (see examples).

roots_newton

f1

x0
tol

imax

ftol

message

logg

Details

35

A function equal to the first derivative of ‘f0°. Parameters that are potentially
included in ‘fO°, must be also included in ‘f1°.

A numeric variable. The initial guess starting Newton’s algorithm.

A real small number. The smallest difference between the new zero’s approx-
imation and the previous one, above which the algorithm keeps working. As
soon as the difference is less than ‘tol‘, the algorithm stops and the current ap-
proximation is returned as the final approximation to the function’s root. Default
value is le-9.

A positive integer. The maximum number of iterations of the algorithm. The
default value is 1e6, although convergence is normally obtained with a number
of iterations much smaller than imax. imax is important to stop search in those
cases in which the algorithm gets stuck in endless loops (non-convergence).

A real small number. When ‘ftol is not NULL (default value), Newton’s al-
gorithm stops when |f(z)| < ftol. This parameter essentially introduces a
different stopping criterion.

A logical variable to state whether messages about the root and the error have to
be printed. The default is for the messages to be printed (‘message=TRUE®).

A logical variable to state whether information on the series of approximating
roots is printed (TRUE) or not (FALSE). Default is for such information not to
be printed (FALSE).

Parameters passed to the two functions ‘f0° and ‘f1°, if any.

Finding the zero of f(z) is equivalent to finding the roots of the equation:

flz) =0

The algorithm used is based on Newton method that needs an initial guess, x0, and the analytic
expression of the function’s first derivative. The method has a much faster convergence rate than
both the bisection and secant methods, but it does not converge when the initial guess or any other
subsequent approximations accidentally coincide with an optimal point of the function, i.e. a point
at which the first derivative is zero. The algorithm can also potentially be stuck in an endless loop
of repeating values for special combinations of functions and initial guess.

Value

A numeric value, the zero of the function (or, equivalently, the root of the equation f(z) = 0).

Examples

The quadratic equation x*2-5%x+6=0 has two roots, 2 and 3
f@ <- function(x) return(x*2-5%x+6)

First derivative
f1 <- function(x) return(2*x-5)

Find root 2, starting from a single point close to 2

36

X0 <- 1
X <- roots_newton(fo,f1,x0=1)
print(x)

Find root 3 (no message printing)
x <- roots_newton(fo@,f1,x0=4,message=FALSE)
print(x)

Function with a parameter f(x) = exp(kx) - 2
fo <- function(x,k=2) return(exp(k*x)-2)

First derivative (it includes the parameter)
f1 <= function(x,k=2) return(k*exp(k*x))

Solution of exp(2x)-2=0 is log(2)/2
X <- roots_newton(fo,f1,k=2)
print(log(2)/2)

roots_secant

roots_secant Secant method for roots

Description

Find the zero of a function of one variable, f(x), given a starting value close to the zero, using the

secant method.

Usage
roots_secant(
fn,
X0,
x1,
imax = 1e+06,
ftol = 1e-09,
message = TRUE,
logg = FALSE,
)
Arguments
fn A function of one variable. If the function includes variables, these will have

to be passed as additional variables, using the same names in the function’s

definition (see examples).

X0, x1 Two numeric variables. The initial guesses starting the algorithm.

roots_secant

imax

ftol

message

logg

Details

37

A positive integer. The maximum number of iterations of the algorithm. The
default value is 1e6, although convergence is normally obtained with a number
of iterations much smaller than imax. imax is important to stop search in those
cases in which the algorithm gets stuck in endless loops (non-convergence).

A real small number. The algorithm stops when | f(z)| < ftol. Default value is
le-09.

A logical variable to state whether messages about the root and the error have to
be printed. The default is for the messages to be printed (message=TRUE).

A logical variable to state whether information on the series of approximating
roots is printed (TRUE) or not (FALSE). Default is for such information not to
be printed (FALSE).

Parameters passed to function ‘fn‘, if needed.

Finding the zero of f(x) is equivalent to finding the roots of the equation:

flz)=0

The algorithm used is essentially a reworking of Newton-Raphson, where the first derivative is
replaced by a finite difference computed with values x0 and x1. Thus two values, x0 and x1, needs
to be selected to start the procedure. The convergence for this method is in general achieved faster
than with the bisection method and slightly less fast than with Newton-Raphson. The algorithm can
fail to converge when the secant in one of the iterations is parallel to the x axis.

Value

A numeric value, the zero of the function (or, equivalently, the root of the equation f(z) = 0).

Examples

The quadratic equation x*2-5%x+6=0 has two roots, 2 and 3
fn <= function(x) return(x*2-5%x+6)

Find root 2, starting from two points at the left of 2

X0 <- 0
x1 <=1

x <- roots_secant(fn,x0,x1)

print(x)

Find root 3 (no message printing)

X0 <- 5
x1 <- 4

X <- roots_secant(fn,x0,x1,message=FALSE)

print(x)

Function with a parameter f(x) = exp(kx) - 2
fn <- function(x,k=2) return(exp(k*x)-2)

Solution of exp(2x)-2=0 is log(2)/2

38

X0 <- 0
x1 <=1

solvelLS

X <- roots_secant(fn,x0,x1,k=2)

print(log(2)/2)

solvelS

Multilinear Least Squares

Description

Find the parameters, ay, ..., G;,+1, of the linear model with m parameters, using the least squares
technique on a group of n data points in the m dimensional Cartesian space.

Usage

solvelS(x, intercept = TRUE, tol = NULL)

Arguments

X

intercept

tol

Details

A n x (m + 1) matrix or data frame where the first m elements of each row
contain the coordinates of a data point, and the last element contain the value
corresponding to the linear model.

A logical variable. It indicates whether to omit or keep the constant a,,, 1 in the
model. The default is intercept=TRUE as removing the constant is not advis-
able, unless there is an absolute certainty (for example in mechanistic models)
that it has to be removed.

A real number. The solution of a linear system can be compromised when the
condition number of the matrix of coefficients is particularly high (ill-conditioned
matrices). tol is the reciprocal of the condition number. For values of tol
smaller than le-17, ill-conditioning is deemed to be sever enough not to guaran-
tee an accurate solution. For such values the function stops execution, returning
an error message. In fact, the solution can still be accurate, notwithstanding ill-
conditioning, and the user can force the calculation of a solution using a value
of tol smaller than le-17. Default is NULL, corresponding to a tol=1e-17.

The linear model with m parameters has the following analytic form:

Y =0a121 + a2 + - + ATy + Gm41

The n data points are contained in a matrix or data frame with m + 1 columns and n rows. The
first m elements of each row contain the coordinates of a data point; the last element contains the
corresponding value of the linear fitting, y;. The least squares procedure is carried out as solution
of a matrix equation, via the solve function.

solve_tridiag 39

Value

A vector of length m containing the m numeric values of the estimated linear model parameters.
The function also prints out the numerical value of the sum of squared residuals. If more than
one solution is possible (infinite-solutions case) the function returns a NULL and prints out a related
message.

Examples

5 points exactly ony = 2x_1 - x_2 + 3
pl <- c(0,1,2)
p2 <- c¢(1,0,5)
p3 <- c¢(1,1,4)
p4 <- c(0,2,1)
p5 <- c¢(2,0,7)

Assemble points in a single matrix for input
x <- matrix(c(p1,p2,p3,p4,p5),ncol=3,byrow=TRUE)

Find the least squares estimate of a_1,a_2,a_3
a <- solvelLS(x)
print(a)

solve_tridiag Tridiagonal linear system

Description

Solution of a system of n equations in n unknowns, where the coefficients form a tridiagonal matrix.

Usage

solve_tridiag(M)

Arguments
M The n x (n + 1) augmented matrix of coefficients corresponding to the system
of n linear equations in n unknowns, Az = b.
Details

The linear system to solve is Az = b, where A is the n x n matrix of coefficients of the n unknowns
in the n x 1 vector x, and b is the n x 1 vector of known numbers. Matrix A is a tridiagonal matrix.
This means that A is a sparse matrix with non-zero elements on the main diagonal and the two
diagonals adjacent to the main diagonal. The special form of the matrix of coefficients makes it
possible to solve the related system using a fast algorithm, here the Thomas algorithm.

40 transform_upper

Value

A vector of length n containing the n numeric solutions for the n unknowns. If the system has
no solutions or an infinite number of solutions, the function returns NULL and dumps a warning

message.
Examples
System of four equations in four unknowns
#
2x_1 + x_.2 =1
2x_1 + 3x_2 + x_3 2
X_2 + 4x_3 + 2x_4 = 3
x_3 + 3x_4 =4

ES

Augmented matrix M=(A|b)
M <- matrix(c(2,2,90,0,1,3,1,0,0,1,4,1,0,0,2,3,1,2,3,4),
ncol=5)

Solution via Thomas algorithm
X <- solve_tridiag(M)
print(x)

transform_upper Transform to upper triangular

Description

Transform an n X n matrix to upper-triangular form, using a series of row operations.

Usage

transform_upper (M)

Arguments

M Ann X norn X (n+ 1) matrix.

Details

The algorithm used for the transformation is Gauss elimination, which makes use of row operations.
If the input matrix has n + 1 columns, the transformed n x (n + 1) matrix can be used to find the
solution of the associated system of linear equations.

Value

The transformed n X n or n X (n + 1) matrix.

which_poly

Examples

3X3 matrix

#
#03 11
#01-1 2
-1 1 1]

Input matrix

41

A <- matrix(c(3,1,2,1,1,-1,1,1,-1),ncol=3)

Upper-triangular matrix
U <- transform_upper(A)

print(U)

which_poly

Find optimal polynomial model

Description

which_poly tries polynomial regression with polynomials from degree O (a constant) to degree
6, on data provided. It then outputs values of the variance of the residuals for each degree and
displays a plot of the same versus the degree number, in an effort to suggest the degree of the best
polynomial for the regression. The regression coefficients can then be calculated with the function

polysolvelsS.

Usage

which_poly(pts, mmax = 6, plt = TRUE, tol = NULL)

Arguments

pts

mmax

plt

tol

A n x 2 matrix or data frame where each row contains the coordinates of a data
point used for regression.

An integer. The highest degree of the polynomial to be used to calculate the
variance of the residuals. The default value is 6.

A logical variable to command the display of the plot of the variance vs the
polynomials’ degree. The default is p1t=TRUE.

A real number. The solution of a linear system can be compromised when the
condition number of the matrix of coefficients is particularly high (ill-conditioned
matrices). tol is the reciprocal of the condition number. For values of tol
smaller than 1e-17, ill-conditioning is deemed to be sever enough not to guaran-
tee an accurate solution. For such values the function stops execution, returning
an error message. In fact, the solution can still be accurate, notwithstanding ill-
conditioning, and the user can force the calculation of a solution using a value
of tol smaller than le-17. Default is NULL, corresponding to a tol=1e-17.

42 which_poly

Details

The ability of a polynomial regression to account for most data variability, without including data
noise is reflected in how the variance,

n

oe =0 _€)/(n—m—1)

i=1

drops with the increasing degree of the polynomial used to perform the regression. A sudden drop,
followed by values slowly decreasing, or alternating slightly increasing and decreasing behaviour,
indicates that the degree corresponding to the sudden drop belongs to the polynomial modelling
most data variability and neglecting data noise. As polynomial regression is normally used with
polynomials of degree up to 4 or 5, a default set of polynomials up to degree 6 is here tried out.
Degrees higher than 6 can be forced by the user, but the risk with higher degrees is that the system
of normal equations connected with regression becomes severly ill conditioned. In such situations
the user should change the tolerance (tol) to values smaller than the default 1e-17.

Value

A data frame with two columns, the first named m and including the degrees of all polynomials
tested. The second called sige and including the value of the variances corresponding to all values
of m. The function also displays a plot of sige vs m, by default.

Examples

21 points close to the quadratic x"2 - 5%*x + 6
x <- seq(-2,5,length=21)

set.seed(7766)

eps <- rnorm(21,mean=0,sd=0.5)

y <- x"2-5xx+6+eps

Data frame
pts <- data.frame(x=x,y=y)

Try function without plot
ddd <- which_poly(pts,plt=FALSE)
print(ddd)

Try function with plot and extending
highest polynomials' degree to 10
ddd <- which_poly(pts,mmax=10)

Index

backdif, 2 solve_tridiag, 39
BVPlinshoot2, 3 solvelS, 29, 38

BVPshoot2, 4
transform_upper, 40

condet, 6
which_poly, 41
decidepoly_n, 6
deriv_irr,7
deriv_reg, 8
divdif, 7,9

EPSturmLiouville2, 10
EulerODE, 12

forwdif, 14

gauss_elim, 15
Gquad, 16
GSeidel, 17

HeunODE, 18
illcond_sample, 20

linpol, 21
LUdeco, 22

nevaitpol, 24
numint_reg, 25

oddity, 26

PJacobi, 26
polydivdif, 28
polysolvelsS, 29, 41

RK40DE, 30

roots_bisec, 32
roots_newton, 34
roots_secant, 36

solve, 38

43

	backdif
	BVPlinshoot2
	BVPshoot2
	condet
	decidepoly_n
	deriv_irr
	deriv_reg
	divdif
	EPSturmLiouville2
	EulerODE
	forwdif
	gauss_elim
	Gquad
	GSeidel
	HeunODE
	illcond_sample
	linpol
	LUdeco
	nevaitpol
	numint_reg
	oddity
	PJacobi
	polydivdif
	polysolveLS
	RK4ODE
	roots_bisec
	roots_newton
	roots_secant
	solveLS
	solve_tridiag
	transform_upper
	which_poly
	Index

