Package ‘colorednoise’

February 28, 2024
Type Package

Title Simulate Temporally Autocorrelated Populations

Version 1.1.2

Date 2024-02-23

Maintainer July Pilowsky <pilowskyj@caryinstitute.org>

Description Temporally autocorrelated populations are correlated in their vi-
tal rates (growth, death, etc.) from year to year. It is very common for popula-
tions, whether they be bacteria, plants, or humans, to be temporally autocorre-
lated. This poses a challenge for stochastic population modeling, because a temporally corre-
lated population will behave differently from an uncorrelated one.
This package provides tools for simulating populations with white noise (no temporal autocorre-
lation), red noise (positive temporal autocorrelation), and blue noise (negative temporal autocor-
relation). The algebraic formulation for autocorrelated noise comes from Ruoko-
lainen et al. (2009) <doi:10.1016/j.tree.2009.04.009>. Models for unstructured popula-
tions and for structured populations (matrix models) are available.

License GPL-3
Language en-US
Depends R (>=3.3.0)

Imports stats (>= 3.3.2), purrr (>= 0.2.3), Repp (>= 1.0.5),
data.table (>=1.12.8)

LinkingTo Rcpp, ReppArmadillo
RoxygenNote 7.3.1
Encoding UTF-8

BugReports https://github.com/japilo/colorednoise/issues

Suggests ggplot2 (>=2.2.1), knitr (>= 1.17), rmarkdown (>= 1.6),
testthat (>= 1.0.2), covr (>= 3.0.0), pkgdown (>= 1.1.0)

VignetteBuilder knitr

NeedsCompilation yes

Author July Pilowsky [aut, cre] (<https://orcid.org/0000-0002-6376-2585>)
Repository CRAN

Date/Publication 2024-02-28 21:50:02 UTC

https://doi.org/10.1016/j.tree.2009.04.009
https://github.com/japilo/colorednoise/issues
https://orcid.org/0000-0002-6376-2585

2 autocorrelation

R topics documented:

autocorrelation L L L e e e e e 2
AULOCOIT_SIIM . .« v v v v o e e e e e e e e e e e e 3
colored_multi_rnorm e e 4
colored_NOiSE e 5
COT2COV © v v v v e e e e e e e e 5
matrix_model e 6
multi_Tnorm e e e e e e e 8
stdev_transform L L e 9
unstructured_Pop e e e e e e e e e e e e e e e 9
Index 12
autocorrelation Estimate the Temporal Autocorrelation of a Numeric Vector
Description

A wrapper for the acf function from the stats package that extracts only the temporal autocorrelation
at a lag of one timestep (which is the type of temporal autocorrelation that this package simulates).
The function omits NA values in the time series.

Usage

autocorrelation(x, biasCorrection = TRUE)

Arguments

X A numeric vector.

biasCorrection Autocorrelation estimates are biased for short time series. The function can
correct for this bias in the manner proposed by Quenouille (1949). Set to TRUE
by default.

Value

A single numeric value: the estimate of the temporal autocorrelation with a lag of 1.

Examples

rednoise <- colored_noise(timesteps = 50, mean = 0.5, sd = 0.2, phi = 0.3)
autocorrelation(rednoise)

autocorr_sim 3

autocorr_sim Simulate Temporally Autocorrelated Populations for Every Combina-
tion of Parameters

Description

Essentially a loop of unstructured_pop, this function simulates a population with temporally
autocorrelated vital rates for every combination of parameters you specify, with as many replicates
as desired. It also estimates the sample mean survival and fertility for each simulated population.
Please be advised that this function can be very computationally intensive if you provide many
possible parameter values and/or ask for many replicates.

Usage
autocorr_sim(
timesteps,
start,
survPhi,
fecundPhi,
survMean,
survsd,
fecundMean,
fecundSd,
replicates
)
Arguments
timesteps The number of timesteps you want to simulate. Individuals are added and killed
off every timestep according to the survival and fertility rates. Can be a scalar
or a vector of values to loop over.
start The starting population size. Can be a scalar or vector.
survPhi The temporal autocorrelation of survival. 0 is white noise (uncorrelated), posi-
tive values are red noise (directly correlated) and negative values are blue noise
(inversely correlated). Can be a scalar or a vector.
fecundPhi The temporal autocorrelation of fecundity. As above.
survMean The mean survival from timestep to timestep. Must be a value between 0 (all
individuals die) and 1 (all individuals live). Can be a scalar or a vector.
survsd The standard deviation of the survival from timestep to timestep. Must be a
value between 0 and 1. Can be a scalar or a vector.
fecundMean The mean fertility: mean offspring produced by each individual per timestep.
Can be a scalar or a vector.
fecundSd The standard deviation of the fertility. Can be a scalar or a vector of values.
replicates How many replicates you would like of each possible combination of parame-

ters.

4 colored_multi_rnorm

Value

A list of data frames, each with fourteen variables: timestep, newborns (new individuals added
this timestep), survivors (individuals alive last year who survived this timestep), population (total
individuals alive), growth (the increase or decrease in population size from last year), estimated
survival in the timestep, estimated fecundity in the timestep, and the seven parameters used to
generate the simulation.

Examples

survival_range <- autocorr_sim(timesteps = 30, start = 200, survPhi = 0.3, fecundPhi = 0.1,
survMean = c(0.2, 0.3, 0.4, 0.5, 0.6), survSd = 0.5,
fecundMean = 1.1, fecundSd = 0.5, replicates = 50)
head(survival_range[[1]]1)

colored_multi_rnorm Generate Multiple Cross-Correlated & Autocorrelated Variables

Description

Generates random variables that are correlated to each other and temporally autocorrelated.

Usage

colored_multi_rnorm(timesteps, mean, sd, phi, covMatrix)

Arguments
timesteps The number of temporally autocorrelated random numbers (one per timestep)
you want.
mean A vector giving the mean of each variable.
sd A vector giving the standard deviation of each variable.
phi A vector giving the temporal autocorrelation of each variable.
covMatrix A valid covariance matrix. The number of rows/columns must match the length
of the mu, sigma, and phi vectors.
Value

A matrix with as many rows as timesteps and as many columns as mu/sigma/phi values.

Examples

cov <- matrix(c(1, .53, 0.73, 0.53, 1, 0.44, 0.73, 0.44, 1), nrow = 3)

test <- colored_multi_rnorm(100, c(@, 3, 5), c(1, 0.5, 1), c(0.5, -0.3, @), cov)
var(test)

library(data. table)

as.data.table(test)[, .(VIi_mean = mean(V1), V2_mean = mean(V2), V3_mean = mean(V3),
V1_sd = sd(V1), V2_sd = sd(V2), V3_sd = sd(V3),

V1_autocorrelation = autocorrelation(V1), V2_autocorrelation = autocorrelation(V2),
V3_autocorrelation = autocorrelation(V3))]

colored_noise 5

colored_noise Generate Autocorrelated Noise

Description

Generates temporally autocorrelated random numbers with a mean, standard deviation, and auto-
correlation you specify.

Usage

colored_noise(timesteps, mean, sd, phi)

Arguments
timesteps The number of temporally autocorrelated random numbers (one per timestep)
you want.
mean The mean of the temporally autocorrelated random numbers.
sd The standard deviation of the temporally autocorrelated random numbers.
phi The temporal autocorrelation. 0 is white noise (uncorrelated), positive values
are red noise (directly correlated) and negative values are blue noise (inversely
correlated).
Value

A vector of temporally autocorrelated random numbers.

Examples

rednoise <- colored_noise(timesteps = 30, mean = 0.5, sd = 0.2, phi = 0.3)
rednoise

cor2cov Convert from Correlation Matrix to Covariance Matrix

Description

Convert a correlation matrix to a covariance matrix.

Usage

cor2cov(sigma, corrMatrix)

6 matrix_model

Arguments
sigma A vector of standard deviations for the variables you’re describing. Length must
be the same as the number of rows/columns of CorrMatrix.
corrMatrix A valid correlation matrix.
Value

A covariance matrix with the same dimensions as corrMatrix.

Examples

corr <- matrix(c(1, ©.53, 0.73, 0.53, 1, 0.44, 0.73, 0.44, 1), nrow = 3)
sigmas <- c(2, 0.3, 1.2)

covar <- cor2cov(sigmas, corr)

cov2cor(covar)

matrix_model Temporally Autocorrelated Matrix Population Models

Description

Simulate a structured population with temporal autocorrelation using standard Leslie matrices. Each
element in the Leslie matrix has a specified mean, variance, and temporal autocorrelation value. The
matrix can have arbitrary dimensions and can have transitions besides linear survival. This model
includes environmental stochasticity with colored noise. Density dependence and demographic
stochasticity not currently supported.

Usage

matrix_model(
data,
initialPop,
timesteps,
covMatrix = NULL,
colNames = NULL,
matrixStructure = NULL,
repeatElements = NULL,

survivalOverflow = "scale”
)
Arguments
data The input data can be one of two formats: a list of three matrices, or a data frame

with three columns.

If it is a list of three matrices, they must be standard Leslie matrices: the first a
matrix of mean values for each matrix element, the second a matrix of standard
deviations, and the third a matrix of temporal autocorrelations.

matrix_model 7

If it is a data frame, there must be three columns, one for mean vital rates, one
for standard deviations, and one labeled ’autocorrelation.’

If the population has n stages, the first n rows of the data frame must be the ma-
trix elements for the first stage, and the next n*(1-n) rows must be the transition
probabilities, each row of the matrix from first to last transposed vertically.

If you want to run a matrix population model without temporal autocorrelation,
simply set all autocorrelation values to zero.

initialPop An initial population vector. The length must be the same as the number of
classes in the matrices.

timesteps The number of timesteps you would like to simulate the population.

covMatrix Optional: Add a covariance matrix describing within-year covariances between
matrix elements. The matrix elements must be in the same order as they are
in the data frame format above: a Leslie matrix turned into a vector row-wise.
There should be as many columns as matrix elements, excluding repeat elements
(see below) or structural zeros.

colNames Optional: If the mean, sd, and autocorrelation columns of your data frame input
are not named 'mean’, ’sd’, and "autocorrelation’, provide their names here in a
character vector, e.g., ‘c(mean = "Mean’, sd = ’Standard Deviation’, autocorre-
lation = ’phi’)*

matrixStructure

Optional: By default, the function assumes that the first row of the matrix gives
fecundities while the rest of the matrix gives transition or survival probabilities.
However, these assumptions do not apply to many plant matrices. If your ma-
trix has transition probabilities in the first row or fecundities beyond the first row
(e.g., clonal reproduction), provide a character matrix here with the same dimen-
sions as your matrix that gives in strings whether each element is ’fecundity’ or
’transition’.

repeatElements Optional: Sometimes not all matrix elements can be measured, and some tran-
sitions or fertilities are generalized across classes. If you have any matrix el-
ements that are copies of other matrix elements (e.g., stage 3 is assumed to
have the same fertility as stage 4) indicate them here with a matrix of rowwise
(not column-wise) indices that show which elements are repeats and which are
unique. For example in a 2x2 matrix where both classes are assumed to have
the same fertility, input ‘matrix(c(1, 1, 3, 4), byrow = T, ncol = 2)*. If you indi-
cate repeat elements and you include a covariance matrix, the covariance matrix
must only have as many columns as unique matrix elements. Structural zeros
should not be included here as repeats, as they are automatically detected in the
function.

survivalOverflow
If the survival for a stage is very high or very variable, the function may some-
times generate projection matrices with survival that exceeds 1 for that stage.
The function has two methods of dealing with this problem: either discard all
projection matrices and generate new ones until the survival falls within accept-
able bounds ("redraw") or divide all the non-fertility matrix elements for that
stage by the survival such that they add to 1 ("scale"). The default is "scale".

8 multi_rnorm

Value

A data frame with n + 2 columns, where n is the number of stages in the matrix. One column
indicates the timestep, there is one column with the population size for each stage, and one column
for total population size.

Examples

meanMat <- matrix(c(@.55, 0.6, 0.24, 0.4), byrow = TRUE, ncol = 2)
sdMat <- matrix(c(@.3, .35, 0.05, 0.1), byrow = TRUE, ncol = 2)
phiMat <- matrix(c(-0.2, -0.2, @, @), byrow = TRUE, ncol = 2)
initialPop <- c(100, 100)

sim <- matrix_model(list(meanMat, sdMat, phiMat), initialPop, 50)
head(sim)

multi_rnorm Generate Correlated Normal Random Numbers

Description
Generate random numbers from a multivariate normal distribution. It can be used to create corre-
lated random numbers.

Usage

multi_rnorm(n, mean, sd)

Arguments
n The number of samples desired for each variable.
mean A vector giving the mean of each variable.
sd A valid covariance matrix.

Value

A matrix with n rows and as many columns as mean values.

Examples

mus <- c(@, 3, 5)

sigmas <- matrix(c(1, @.265, 2.19, 0.265, 0.25, 0.66, 2.19, .66, 9), ncol = 3)
mat <- multi_rnorm(10@, mus, sigmas)

var(mat)

stdev_transform 9

stdev_transform Translate Standard Deviation from the Natural Scale to the Log or
Logit Scale

Description

This function changes a given standard deviation so that when a vector of samples is drawn from
the given distribution, the original standard deviation will be recovered once it is back-transformed
from the log or logit scale. In effect, the function "translates" a standard deviation from the natural
scale to the log or logit scale for the purposes of random draws from a probability distribution.

Usage

stdev_transform(mu, sigma, dist)

Arguments

mu The mean of the distribution on the natural scale.

sigma The standard deviation of the distribution on the natural scale.

dist The distribution to which the standard deviation should be transformed.
Value

The standard deviation translated to the log or logit scale.

Examples
mean <- 10
stdev <- 2

mean_trans <- log(mean)

stdev_trans <- stdev_transform(mean, stdev, "log")
draws <- rnorm(50, mean_trans, stdev_trans)
natural_scale <- exp(draws)

mean (draws)

sd(draws)

unstructured_pop Simulated Time Series of an Unstructured Temporally Autocorrelated
Population

10

Description

unstructured_pop

This function simulates an unstructured population with temporally autocorrelated vital rates (sur-
vival and fertility). In other words, this function will show you the dynamics over time of a popula-
tion whose survival and fertility is stochastic, but also correlated to the survival and fertility in the
previous year, respectively. The assumptions of the simulation are that the population is asexually
reproducing or female-only, survival and fertility are the same at all ages / stages, and that indi-
viduals continue to be reproductively capable until they die. The function includes demographic
stochasticity as well as environmental stochasticity, and does not support density dependence at this

time.

Usage

unstructured_pop(

start,
timesteps,
survPhi,
fecundPhi,
survMean,
survsd,
fecundMean,
fecundSd

Arguments

start

timesteps

survPhi

fecundPhi

survMean

survSsd

fecundMean
fecundSd

Details

The starting population size.

The number of timesteps you want to simulate. Individuals are added and killed
off every timestep according to the survival and fertility rates. In ecological
applications, timesteps are usually years, but theoretically they can be any length
of time.

The temporal autocorrelation of survival. 0 is white noise (uncorrelated), posi-
tive values are red noise (directly correlated) and negative values are blue noise
(inversely correlated).

The temporal autocorrelation of fecundity. As above.

The mean survival from timestep to timestep. Must be a value between 0 (all
individuals die) and 1 (all individuals live).

The standard deviation of the survival from timestep to timestep. Must be a
value between 0 and 1.

The mean fertility: mean offspring produced by each individual per timestep.

The standard deviation of the fertility.

Be advised that not all combinations of values will work. If you set survival and fertility unreal-
istically high, the population size will tend toward infinity and the simulation will fail because the
numbers are too large to handle. Use your common sense as a demographer / population biologist.

unstructured_pop 11

Value

A data frame with four variables: timestep, population (total individuals alive at the start of the

timestep), newborns (new individuals born this timestep), and survivors (individuals who survive
this timestep).

Examples

seriesl <- unstructured_pop(start = 20, timesteps = 10, survPhi = 0.7, fecundPhi = -0.1,
survMean = 0.6, survSd = 0.52, fecundMean = 1.2, fecundSd = 0.7)
head(series1)

Index

acf, 2
autocorr_sim, 3
autocorrelation, 2

colored_multi_rnorm, 4
colored_noise, 5
cor2cov, 5

matrix_model, 6
multi_rnorm, 8

stdev_transform, 9

unstructured_pop, 3,9

12

	autocorrelation
	autocorr_sim
	colored_multi_rnorm
	colored_noise
	cor2cov
	matrix_model
	multi_rnorm
	stdev_transform
	unstructured_pop
	Index

