Package 'coloc'

October 3, 2023

Type Package

Imports data.table, ggplot2, methods, viridis, stats, grDevices, susieR (>= 0.12.06), utils

Suggests knitr, testthat, mvtnorm, magrittr, rmarkdown

Title Colocalisation Tests of Two Genetic Traits

Version 5.2.3

Date 2023-09-22

Maintainer Chris Wallace <cew54@cam.ac.uk>

Description Performs the colocalisation tests described in Giambartolomei et al (2013) <doi:10.1371/journal.pgen.1004383>, Wallace (2020) <doi:10.1371/journal.pgen.1008720>, Wallace (2021) <doi:10.1371/journal.pgen.1009440>.

License GPL

LazyLoad yes

VignetteBuilder knitr

RoxygenNote 7.2.3

Encoding UTF-8

URL https://github.com/chr1swallace/coloc

BugReports https://github.com/chr1swallace/coloc/issues

Collate 'coloc-package.R' 'boundaries.R' 'check.R' 'claudia.R' 'plot.R' 'private.R' 'sensitivity.R' 'split.R' 'susie.R' 'testdata.R' 'zzz.R'

Depends R (>= 3.5)

NeedsCompilation no

Author Chris Wallace [aut, cre], Claudia Giambartolomei [aut], Vincent Plagnol [ctb]

Repository CRAN

Date/Publication 2023-10-03 14:30:02 UTC

R topics documented:

coloc-package	. 3
annotate_susie	. 3
approx.bf.estimates	. 4
approx.bf.p	. 4
bin2lin	. 5
check_alignment	. 6
check_dataset	. 6
coloc.abf	. 8
coloc.bf_bf	. 9
coloc.detail	. 10
coloc.process	. 11
coloc.signals	. 12
coloc.susie	. 14
coloc.susie_bf	. 15
coloc_test_data	. 16
combine.abf	. 16
estgeno.1.ctl	. 17
est_cond	. 18
find.best.signal	. 18
findends	. 19
findpeaks	. 20
finemap.abf	. 21
finemap.bf	. 21
finemap.signals	. 22
logbf_to_pp	. 23
logdiff	. 24
logsum	. 24
map_cond	. 25
map_mask	. 26
plot.coloc_abf	. 26
plot_dataset	. 27
print.coloc_abf	. 28
process.dataset	. 29
runsusie	. 29
sdY.est	. 30
sensitivity	. 31
subset_dataset	. 32
Var.data	. 33
Var.data.cc	. 34

coloc-package

Description

Performs the colocalisation tests described in Plagnol et al (2009) and Wallace et al (2020) and draws some plots.

Author(s)

Chris Wallace cew54@cam.ac.uk

annotate_susie annotate susie_rss output for use with coloc_susie

Description

coloc functions need to be able to link summary stats from two different datasets and they do this through snp identifiers. This function takes the output of susie_rss() and adds snp identifiers. It is entirely the user's responsibility to ensure snp identifiers are in the correct order, coloc cannot make any sanity checks.

Usage

annotate_susie(res, snp, LD)

Arguments

res	output of susie_rss()	
snp	vector of snp identifiers	
LD	matrix of LD (r) between snps in snp identifiers. named by a string that exists in the vector snp	Columns, rows should be

Details

Note: this annotation step is not needed if you use runsusie() - this is only required if you use the susieR functions directly

Value

res with column names added to some components

Author(s)

Chris Wallace

approx.bf.estimates Internal function, approx.bf.estimates

Description

Internal function, approx.bf.estimates

Usage

```
approx.bf.estimates(z, V, type, suffix = NULL, sdY = 1)
```

Arguments

Z	normal deviate associated with regression coefficient and its variance
V	its variance
type	"quant" or "cc"
suffix	suffix to append to column names of returned data.frame
sdY	standard deviation of the trait. If not supplied, will be estimated.

Details

Calculate approximate Bayes Factors using supplied variance of the regression coefficients

Value

data.frame containing IABF and intermediate calculations

Author(s)

Vincent Plagnol, Chris Wallace

approx.bf.p *Internal function, approx.bf.p*

Description

Internal function, approx.bf.p

Usage

```
approx.bf.p(p, f, type, N, s, suffix = NULL)
```

bin2lin

Arguments

р	p value
f	MAF
type	"quant" or "cc"
Ν	sample size
S	proportion of samples that are cases, ignored if type=="quant"
suffix	suffix to append to column names of returned data.frame

Details

Calculate approximate Bayes Factors

Value

data.frame containing IABF and intermediate calculations

Author(s)

Claudia Giambartolomei, Chris Wallace

Description

Convert binomial to linear regression

Usage

bin2lin(D, doplot = FALSE)

Arguments

D	standard format coloc dataset
doplot	plot results if TRUE - useful for debugging

Details

Estimate beta and varbeta if a linear regression had been run on a binary outcome, given log OR and their variance + MAF in controls

sets beta = cov(x,y)/var(x) varbeta = $(var(y)/var(x) - cov(x,y)^2/var(x)^2)/N$

Value

D, with original beta and varbeta in beta.bin, varbeta.bin, and beta and varbeta updated to linear estimates

Author(s)

Chris Wallace

check_alignment check alignment

Description

check alignment between beta and LD

Usage

```
check_alignment(D, thr = 0.2, do_plot = TRUE)
```

```
check.alignment(...)
```

Arguments

D	a coloc dataset
thr	plot SNP pairs in absolute LD > thr
do_plot	if TRUE (default) plot the diagnostic
	arguments passed to check_alignment()

Value

proportion of pairs that are positive

Author(s)

Chris Wallace

check_dataset check_dataset

Description

Check coloc dataset inputs for errors

Usage

```
check_dataset(d, suffix = "", req = c("type", "snp"), warn.minp = 1e-06)
```

check.dataset(...)

check_dataset

Arguments

d	dataset to check
suffix	string to identify which dataset (1 or 2)
req	names of elements that must be present
warn.minp	print warning if no p value < warn.minp
	arguments passed to check_dataset()

Details

A coloc dataset is a list, containing a mixture of vectors capturing quantities that vary between snps (these vectors must all have equal length) and scalars capturing quantities that describe the dataset.

Coloc is flexible, requiring perhaps only p values, or z scores, or effect estimates and standard errors, but with this flexibility, also comes difficulties describing exactly the combinations of items required.

Required vectors are some subset of

beta regression coefficient for each SNP from dataset 1

varbeta variance of beta

pvalues P-values for each SNP in dataset 1

MAF minor allele frequency of the variants

snp a character vector of snp ids, optional. It will be used to merge dataset1 and dataset2 and will be retained in the results.

Preferably, give beta and varbeta. But if these are not available, sufficient statistics can be approximated from pvalues and MAF.

Required scalars are some subset of

N Number of samples in dataset 1

type the type of data in dataset 1 - either "quant" or "cc" to denote quantitative or case-control

s for a case control dataset, the proportion of samples in dataset 1 that are cases

sdY for a quantitative trait, the population standard deviation of the trait. if not given, it can be estimated from the vectors of varbeta and MAF

You must always give type. Then,

if type=="cc" s

if type=="quant" and sdY known sdY

if beta, varbeta not known N

If sdY is unknown, it will be approximated, and this will require

summary data to estimate sdY beta, varbeta, N, MAF

Optional vectors are

position a vector of snp positions, required for plot_dataset

check_dataset calls stop() unless a series of expectations on dataset input format are met

This is a helper function for use by other coloc functions, but you can use it directly to check the format of a dataset to be supplied to coloc.abf(), coloc.signals(), finemap.abf(), or finemap.signals().

Value

NULL if no errors found

Author(s)

Chris Wallace

coloc.abf

Fully Bayesian colocalisation analysis using Bayes Factors

Description

Bayesian colocalisation analysis

Usage

```
coloc.abf(dataset1, dataset2, MAF = NULL, p1 = 1e-04, p2 = 1e-04, p12 = 1e-05)
```

Arguments

dataset1	a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
dataset2	as above, for dataset 2
MAF	Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
p1	prior probability a SNP is associated with trait 1, default 1e-4
p2	prior probability a SNP is associated with trait 2, default 1e-4
p12	prior probability a SNP is associated with both traits, default 1e-5

Details

This function calculates posterior probabilities of different causal variant configurations under the assumption of a single causal variant for each trait.

If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP's MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.

$coloc.bf_bf$

Value

a list of two data.frames:

- summary is a vector giving the number of SNPs analysed, and the posterior probabilities of H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common causal variant)
- results is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal *if* H4 is true. This is only relevant if the posterior support for H4 in summary is convincing.

Author(s)

Claudia Giambartolomei, Chris Wallace

coloc.bf_bf	Coloc data through Bayes factors
-------------	----------------------------------

Description

Colocalise two datasets represented by Bayes factors

Usage

```
coloc.bf_bf(
    bf1,
    bf2,
    p1 = 1e-04,
    p2 = 1e-04,
    p12 = 5e-06,
    overlap.min = 0.5,
    trim_by_posterior = TRUE
)
```

Arguments

bf1	named vector of log BF, or matrix of BF with colnames (cols=snps, rows=signals)	
bf2	named vector of log BF, or matrix of BF with colnames (cols=snps, rows=signals)	
p1	prior probability a SNP is associated with trait 1, default 1e-4	
p2	prior probability a SNP is associated with trait 2, default 1e-4	
p12	prior probability a SNP is associated with both traits, default 1e-5	
overlap.min	see trim_by_posterior	
trim_by_posterior		
	it is important that the signals to be colocalised are covered by adequate numbers	
	of snps in both datasets. If TRUE, signals for which snps in common do not	

of snps in both datasets. If TRUE, signals for which snps in common do not capture least overlap.min proportion of their posteriors support are dropped and colocalisation not attempted.

Details

This is the workhorse behind many coloc functions

Value

coloc.signals style result

Author(s)

Chris Wallace

coloc.detail

Bayesian colocalisation analysis with detailed output

Description

Bayesian colocalisation analysis, detailed output

Usage

```
coloc.detail(
    dataset1,
    dataset2,
    MAF = NULL,
    p1 = 1e-04,
    p2 = 1e-04,
    p12 = 1e-05
)
```

Arguments

dataset1	a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
dataset2	as above, for dataset 2
MAF	Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
p1	prior probability a SNP is associated with trait 1, default 1e-4
p2	prior probability a SNP is associated with trait 2, default 1e-4
p12	prior probability a SNP is associated with both traits, default 1e-5

Details

This function replicates coloc.abf, but outputs more detail for further processing using coloc.process Intended to be called internally by coloc.signals

10

coloc.process

Value

a list of three data.tabless:

- summary is a vector giving the number of SNPs analysed, and the posterior probabilities of H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common causal variant)
- df is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal
- df3 is the same for all 2 SNP H3 models

Author(s)

Chris Wallace

See Also

coloc.process, coloc.abf

coloc.process

Post process a coloc.details result using masking

Description

Internal helper function

Usage

```
coloc.process(
    obj,
    hits1 = NULL,
    hits2 = NULL,
    LD = NULL,
    r2thr = 0.01,
    p1 = 1e-04,
    p2 = 1e-04,
    p12 = 1e-06,
    LD1 = LD,
    LD2 = LD,
    mode = c("iterative", "allbutone")
)
```

Arguments

obj	object returned by coloc.detail()
hits1	lead snps for trait 1. If length > 1, will use masking
hits2	lead snps for trait 2. If length > 1, will use masking
LD	named LD matrix (for masking)
r2thr	r2 threshold at which to mask
р1	prior probability a SNP is associated with trait 1, default 1e-4
p2	prior probability a SNP is associated with trait 2, default 1e-4
p12	prior probability a SNP is associated with both traits, default 1e-5
LD1	named LD matrix (for masking) for trait 1 only
LD2	named LD matrix (for masking) for trait 2 only
mode	either "iterative" (default) - successively condition on signals or "allbutone" - find all putative signals and condition on all but one of them in each analysis

Value

data.table of coloc results

Author(s)

Chris Wallace

coloc.signals Coloc with multiple signals per trait

Description

New coloc function, builds on coloc.abf() by allowing for multiple independent causal variants per trait through conditioning or masking.

Usage

```
coloc.signals(
  dataset1,
  dataset2,
  MAF = NULL,
  LD = NULL,
  method = c("single", "cond", "mask"),
  mode = c("iterative", "allbutone"),
  p1 = 1e-04,
  p2 = 1e-04,
  p12 = NULL,
  maxhits = 3,
  r2thr = 0.01,
  pthr = 1e-06
)
```

coloc.signals

Arguments

-	
dataset1	a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
dataset2	as above, for dataset 2
MAF	Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
LD	required if method="cond". matrix of genotype <i>correlation</i> (ie r, not r^2) be- tween SNPs. If dataset1 and dataset2 may have different LD, you can instead add LD=LD1 to the list of dataset1 and a different LD matrix for dataset2
method	default "" means do no conditioning, should return similar to coloc.abf. if method="cond", then use conditioning to coloc multiple signals. if method="mask", use masking to coloc multiple signals. if different datasets need different meth- ods (eg LD is only available for one of them) you can set method on a per-dataset basis by adding method="" to the list for that dataset.
mode	"iterative" or "allbutone". Easiest understood with an example. Suppose there are 3 signal SNPs detected for trait 1, A, B, C and only one for trait 2, D.
	Under "iterative" mode, 3 coloc will be performed: * trait 1 – trait 2
	<pre>* trait 1 conditioned on A - trait 2</pre>
	<pre>* trait 1 conditioned on A+B - trait 2</pre>
	Under "allbutone" mode, they would be
	<pre>* trait 1 conditioned on B+C - trait 2</pre>
	<pre>* trait 1 conditioned on A+C - trait 2</pre>
	<pre>* trait 1 conditioned on A+B - trait 2</pre>
	Only iterative mode is supported for method="mask".
	The allbutone mode is optimal if the signals are known with certainty (which they never are), because it allows each signal to be tested without influence of the others. When there is uncertainty, it may make sense to use iterative mode, because the strongest signals aren't affected by conditioning incorrectly on weaker secondary and less certain signals.
p1	prior probability a SNP is associated with trait 1, default 1e-4
p2	prior probability a SNP is associated with trait 2, default 1e-4
p12	prior probability a SNP is associated with both traits, default 1e-5
maxhits	maximum number of levels to condition/mask
r2thr	if masking, the threshold on r2 should be used to call two signals independent. our experience is that this needs to be set low to avoid double calling the same strong signal.
pthr	if masking or conditioning, what p value threshold to call a secondary hit "sig- nificant"

data.table of coloc results, one row per pair of lead snps detected in each dataset

Author(s)

Chris Wallace

coloc.susie run coloc using susie to detect separate signals

Description

colocalisation with multiple causal variants via SuSiE

Usage

```
coloc.susie(
  dataset1,
  dataset2,
  back_calculate_lbf = FALSE,
  susie.args = list(),
  ...
)
```

Arguments

dataset1	<i>either</i> a coloc-style input dataset (see check_dataset), or the result of running runsusie on such a dataset
dataset2	<i>either</i> a coloc-style input dataset (see check_dataset), or the result of running runsusie on such a dataset
<pre>back_calculate_</pre>	lbf
	by default, use the log Bayes factors returned by susie_rss. It is also possible to back-calculate these from the posterior probabilities. It is not advised to set this to TRUE, the option exists really for testing purposes only.
susie.args	a named list of additional arguments to be passed to runsusie
	other arguments passed to coloc.bf_bf, in particular prior values for causal association with one trait $(p1, p2)$ or both $(p12)$

Value

a list, containing elements * summary a data.table of posterior probabilities of each global hypothesis, one row per pairwise comparison of signals from the two traits * results a data.table of detailed results giving the posterior probability for each snp to be jointly causal for both traits *assuming H4 is true*. Please ignore this column if the corresponding posterior support for H4 is not high. * priors a vector of the priors used for the analysis

coloc.susie_bf

Author(s)

Chris Wallace

coloc.susie_bf run coloc using susie to detect separate signals

Description

coloc for susie output + a separate BF matrix

Usage

```
coloc.susie_bf(
    dataset1,
    bf2,
    p1 = 1e-04,
    p2 = 1e-04,
    p12 = 5e-06,
    susie.args = list(),
    ...
)
```

Arguments

dataset1	a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
bf2	named vector of log BF, names are snp ids and will be matched to column names of susie object's alpha
p1	prior probability a SNP is associated with trait 1, default 1e-4
p2	prior probability a SNP is associated with trait 2, default 1e-4
p12	prior probability a SNP is associated with both traits, default 1e-5
susie.args	named list of arguments to be passed to susieR::susie_rss()
	other arguments passed to coloc.bf_bf, in particular prior values for causal association with one trait (p1, p2) or both (p12)

Value

coloc.signals style result

Author(s)

Chris Wallace

coloc_test_data

Description

Simulated data to use in testing and vignettes in the coloc package

Usage

```
data(coloc_test_data)
```

Format

A four of two coloc-style datasets. Elements D1 and D2 have a single shared causal variant, and 50 SNPs. Elements D3 and D4 have 100 SNPs, one shared causal variant, and one variant unique to D3. Use these as examples of what a coloc-style dataset for a quantitative trait should look like.

Examples

```
data(coloc_test_data)
names(coloc_test_data)
str(coloc_test_data$D1)
check_dataset(coloc_test_data$D1) # should return NULL if data structure is ok
```

|--|--|

Description

Internal function, calculate posterior probabilities for configurations, given logABFs for each SNP and prior probs

Usage

```
combine.abf(l1, l2, p1, p2, p12, quiet = FALSE)
```

Arguments

11	merged.df\$lABF.df1
12	merged.df\$IABF.df2
p1	prior probability a SNP is associated with trait 1, default 1e-4
p2	prior probability a SNP is associated with trait 2, default 1e-4
p12	prior probability a SNP is associated with both traits, default 1e-5
quiet	don't print posterior summary if TRUE. default=FALSE

estgeno.1.ctl

Value

named numeric vector of posterior probabilities

Author(s)

Claudia Giambartolomei, Chris Wallace

estgeno.1.ctl estgenol

Description

Estimate single snp frequency distibutions

Usage

estgeno.1.ctl(f)

estgeno.1.cse(G0, b)

Arguments

f	MAF
GØ	single snp frequency in controls (vector of length 3) - obtained from estgeno.1.ctl
b	log odds ratio

Value

relative frequency of genotypes 0, 1, 2

Author(s)

Chris Wallace

See Also

estgeno2

 est_cond

Description

Internal helper function for est_all_cond

Usage

est_cond(x, LD, YY, sigsnps, xtx = NULL)

Arguments

х	coloc dataset
LD	named matrix of r
YY	sum((Y-Ybar)^2)
sigsnps	names of snps to jointly condition on
xtx	optional, matrix X'X where X is the genotype matrix. If not available, will be estimated from LD, MAF, beta and sample size (the last three should be part of the coloc dataset)

Value

data.table giving snp, beta and varbeta on remaining snps after conditioning

Author(s)

Chris Wallace

find.best.signal Pick out snp with most extreme Z score

Description

Internal helper function

Usage

find.best.signal(D)

Arguments

D standard format coloc dataset

findends

Value

z at most significant snp, named by that snp id

Author(s)

Chris Wallace

findends

trim a dataset to central peak(s)

Description

tries to be smart about detecting the interesting subregion to finemap/coloc.

Usage

findends(d, maxz = 4, maxr2 = 0.1, do.plot = FALSE)

Arguments

d	a coloc dataset
maxz	keep all snps between the leftmost and rightmost snp with $ z > maxz$
maxr2	expand window to keep all snps between snps with $r2 > maxr2$ with the left/rightmost snps defined by the maxz threshold
do.plot	if TRUE, plot dataset + boundaries

Value

logical vector of length d\$position indicating which snps to keep

Author(s)

Chris Wallace

See Also

findpeaks

findpeaks

Description

tries to be smart about detecting the interesting subregion to finemap/coloc.

Usage

findpeaks(d, maxz = 4, maxr2 = 0.1, do.plot = FALSE)

Arguments

d	a coloc dataset
maxz	keep all snps between the leftmost and rightmost snp with $ z > maxz$
maxr2	expand window to keep all snps between snps with $r2 > maxr2$ with the left/rightmost snps defined by the maxz threshold
do.plot	if TRUE, plot dataset + boundaries

Details

Differs from findends by finding multiple separate regions if there are multiple peaks

Value

logical vector of length d\$position indicating which snps to keep

Author(s)

Chris Wallace

See Also

findends

finemap.abf

Description

Bayesian finemapping analysis

Usage

finemap.abf(dataset, p1 = 1e-04)

Arguments

dataset	a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
p1	prior probability a SNP is associated with the trait 1, default 1e-4

Details

This function calculates posterior probabilities of different causal variant for a single trait.

If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP's MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.

Value

a data.frame:

 an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability of the SNP being causal

Author(s)

Chris Wallace

finemap.bf

Finemap data through Bayes factors

Description

Finemap one dataset represented by Bayes factors

Usage

finemap.bf(bf1, p1 = 1e-04)

Arguments

bf1	named vector of log BF, or matrix of log BF with colnames (cols=snps, rows=signals)
р1	prior probability a SNP is associated with the trait 1, default 1e-4

Details

This is the workhorse behind many finemap functions

Value

finemap.signals style result

Author(s)

Chris Wallace

finemap.signals Finemap multiple signals in a single dataset

Description

This is an analogue to finemap.abf, adapted to find multiple signals where they exist, via conditioning or masking - ie a stepwise procedure

Usage

```
finemap.signals(
   D,
   LD = D$LD,
   method = c("single", "mask", "cond"),
   r2thr = 0.01,
   sigsnps = NULL,
   pthr = 1e-06,
   maxhits = 3,
   return.pp = FALSE
)
```

Arguments

D	list of summary stats for a single disease, see check_dataset
LD	matrix of signed r values (not rsq!) giving correlation between SNPs
method	if method="cond", then use conditioning to coloc multiple signals. The default is mask - this is less powerful, but safer because it does not assume that the LD matrix is properly allelically aligned to estimated effect
r2thr	if mask==TRUE, all snps will be masked with r2 > r2thr with any sigsnps. Otherwise ignored

logbf_to_pp

sigsnps	SNPs already deemed significant, to condition on or mask, expressed as a numeric vector, whose <i>names</i> are the snp names
pthr	when p > pthr, stop successive searching
maxhits	maximum depth of conditioning. procedure will stop if p > pthr OR abs(z) <zthr been="" found.<="" have="" hits="" maxhits="" or="" td=""></zthr>
return.pp	if FALSE (default), just return the hits. Otherwise return vectors of PP
mask	use masking if TRUE, otherwise conditioning. defaults to TRUE

Value

list of successively significant fine mapped SNPs, named by the SNPs

Author(s)

Chris Wallace

logbf_to_pp

Description

generic convenience function to convert logbf matrix to PP matrix

logbf 2 pp

Usage

logbf_to_pp(bf, pi, last_is_null)

Arguments

bf	an L by p or p+1 matrix of log Bayes factors
pi	<i>either</i> a scalar representing the prior probability for any snp to be causal, <i>or</i> a full vector of per snp / null prior probabilities
last_is_null	TRUE if last value of the bf vector or last column of a bf matrix relates to the null hypothesis of no association. This is standard for SuSiE results, but may not be for BF constructed in other ways.

Value

matrix of posterior probabilities, same dimensions as bf

Author(s)

Chris Wallace

logsum

logdiff

logdiff

Description

Internal function, logdiff

Usage

logdiff(x, y)

Arguments

х	numeric
У	numeric

Details

This function calculates the log of the difference of the exponentiated logs taking out the max, i.e. insuring that the difference is not negative

Value

max(x) + log(exp(x - max(x,y)) - exp(y-max(x,y)))

Author(s)

Chris Wallace

logsum

logsum

Description

Internal function, logsum

Usage

logsum(x)

Arguments

x numeric vector

map_cond

Details

This function calculates the log of the sum of the exponentiated logs taking out the max, i.e. insuring that the sum is not Inf

Value

max(x) + log(sum(exp(x - max(x))))

Author(s)

Claudia Giambartolomei

map_cond

find the next most significant SNP, conditioning on a list of sigsnps

Description

Internal helper function for finemap.signals

Usage

map_cond(D, LD, YY, sigsnps = NULL)

Arguments

D	dataset in standard coloc format
LD	named matrix of r
YY	sum(y^2)
sigsnps	names of snps to mask

Value

named numeric - Z score named by snp

Author(s)

Chris Wallace

map_mask

Description

Internal helper function for finemap.signals

Usage

map_mask(D, LD, r2thr = 0.01, sigsnps = NULL)

Arguments

D	dataset in standard coloc format
LD	named matrix of r
r2thr	mask all snps with $r2 > r2$ thr with any in sigsnps
sigsnps	names of snps to mask

Value

named numeric - Z score named by snp

Author(s)

Chris Wallace

plot.coloc_abf plot a coloc_abf object

Description

plot a coloc_abf object

Usage

S3 method for class 'coloc_abf'
plot(x, ...)

Arguments

х	coloc_abf object to be plotted
	other arguments

Value

ggplot object

plot_dataset

Author(s)

Chris Wallace

plot_dataset plot a coloc dataset

Description

Plot a coloc structured dataset

Usage

```
plot_dataset(
  d,
  susie_obj = NULL,
  highlight_list = NULL,
  alty = NULL,
  ylab = "-log10(p)",
  show_legend = TRUE,
  color = c("dodgerblue2", "green4", "#6A3D9A", "#FF7F00", "gold1", "skyblue2",
   "#FB9A99", "palegreen2", "#CAB2D6", "#FDBF6F", "gray70", "khaki2", "maroon",
  "orchid1", "deeppink1", "blue1", "steelblue4", "darkturquoise", "green1", "yellow4",
    "yellow3", "darkorange4", "brown"),
  . . .
)
plot_dataset(
  d,
  susie_obj = NULL,
  highlight_list = NULL,
  alty = NULL,
  ylab = "-log10(p)",
  show_legend = TRUE,
  color = c("dodgerblue2", "green4", "#6A3D9A", "#FF7F00", "gold1", "skyblue2",
   "#FB9A99", "palegreen2", "#CAB2D6", "#FDBF6F", "gray70", "khaki2", "maroon",
  "orchid1", "deeppink1", "blue1", "steelblue4", "darkturquoise", "green1", "yellow4",
    "yellow3", "darkorange4", "brown"),
  • • •
)
```

Arguments

d	a coloc dataset	
susie_obj	optional, the output of a call to runsusie()	
highlight_list	optional, a list of character vectors. any snp in the character vector will be	
	highlighted, using a different colour for each list.	

alty	default is to plot a standard manhattan. If you wish to plot a different y value, pass it here. You may also want to change ylab to describe what you are plotting.
ylab	label for y axis, default is -log10(p) and assumes you are plotting a manhattan
show_legend	optional, show the legend or not. default is TRUE
color	optional, specify the colours to use for each credible set when susie_obj is supplied. Default is shamelessly copied from susieR::susie_plot() so that colours will match
	other arguments passed to the base graphics plot() function

Author(s)

Chris Wallace

print.coloc_abf print.coloc_abf

Description

Print summary of a coloc.abf run

Usage

S3 method for class 'coloc_abf'
print(x, ...)

Arguments

х	object of class coloc_abf returned by coloc.abf() or coloc.signals()
	optional arguments: "trait1" name of trait 1, "trait2" name of trait 2

Value

x, invisibly

Author(s)

Chris Wallace

process.dataset process.dataset

Description

Internal function, process each dataset list for coloc.abf.

Usage

```
process.dataset(d, suffix)
```

Arguments

d	list
suffix	"df1" or "df2"

Details

Made public for another package to use, but not intended for users to use.

Value

data.frame with log(abf) or log(bf)

Author(s)

Chris Wallace

runsusie

Run susie on a single coloc-structured dataset

Description

run susie_rss storing some additional information for coloc

Usage

```
runsusie(
   d,
   suffix = 1,
   maxit = 100,
   repeat_until_convergence = TRUE,
   s_init = NULL,
   ...
)
```

Arguments

d	coloc dataset, must include LD (signed correlation matrix) and N (sample size)
suffix	suffix label that will be printed with any error messages
maxit	maximum number of iterations for the first run of susie_rss(). If susie_rss() does not report convergence, runs will be extended assuming repeat_until_convergence=TRUE. Most users will not need to change this default.
<pre>repeat_until_c</pre>	onvergence
	keep running until susie_rss() indicates convergence. Default TRUE. If FALSE, susie_rss() will run with maxit iterations, and if not converged, runsusie() will error. Most users will not need to change this default.
s_init	used internally to extend runs that haven't converged. don't use.
	arguments passed to susie_rss. In particular, if you want to match some coloc defaults, set
	• prior_variance=0.2^2 (if a case-control trait) or (0.15/sd(Y))^2 if a quanti- tative trait
	 estimate_prior_variance=FALSE
	otherwise susie_rss will estimate the prior variance itself

Value

results of a susie_rss run, with some added dimnames

Author(s)

Chris Wallace

Examples

```
library(coloc)
data(coloc_test_data)
result=runsusie(coloc_test_data$D1)
summary(result)
```

sdY.est

Estimate trait variance, internal function

Description

Estimate trait standard deviation given vectors of variance of coefficients, MAF and sample size

Usage

sdY.est(vbeta, maf, n)

sensitivity

Arguments

vbeta	vector of variance of coefficients
maf	vector of MAF (same length as vbeta)
n	sample size

Details

Estimate is based on var(beta-hat) = var(Y) / (n * var(X)) var(X) = 2maf(1-maf) so we can estimate var(Y) by regressing n*var(X) against 1/var(beta)

Value

estimated standard deviation of Y

Author(s)

Chris Wallace

sensitivity

Prior sensitivity for coloc

Description

Shows how prior and posterior per-hypothesis probabilities change as a function of p12

Usage

```
sensitivity(
   obj,
   rule = "",
   dataset1 = NULL,
   dataset2 = NULL,
   npoints = 100,
   doplot = TRUE,
   plot.manhattans = TRUE,
   preserve.par = FALSE,
   row = 1
)
```

Arguments

obj	output of coloc.detail or coloc.process
rule	a decision rule. This states what values of posterior probabilities "pass" some
	threshold. This is a string which will be parsed and evaluated, better explained
	by examples. "H4 > 0.5" says post prob of H4 > 0.5 is a pass. "H4 > 0.9 &
	H4/H3 > 3" says post prob of H4 must be > 0.9 AND it must be at least 3 times
	the post prob of H3."

dataset1	optional the dataset1 used to run SuSiE. This will be used to make a Manhattan plot if plot.manhattans=TRUE.
dataset2	optional the dataset2 used to run SuSiE. This will be used to make a Manhattan plot if plot.manhattans=TRUE.
npoints	the number of points over which to evaluate the prior values for p12, equally spaced on a log scale between p1*p2 and $min(p1,p2)$ - these are logical limits on p12, but not scientifically sensible values.
doplot	draw the plot. set to FALSE if you want to just evaluate the prior and posterior matrices and work with them yourself
plot.manhattans	3
	if TRUE, show Manhattans of input data
preserve.par	if TRUE, do not change par() of current graphics device - this is to allow sensi- tivity plots to be incoporated into a larger set of plots, or to be plot one per page on a pdf, for example
row	when coloc.signals() has been used and multiple rows are returned in the coloc summary, which row to plot

Details

Function is called mainly for plotting side effect. It draws two plots, showing how prior and posterior probabilities of each coloc hypothesis change with changing p12. A decision rule sets the values of the posterior probabilities considered acceptable, and is used to shade in green the region of the plot for which the p12 prior would give and acceptable result. The user is encouraged to consider carefully whether some prior values shown within the green shaded region are sensible before accepting the hypothesis. If no shading is shown, then no priors give rise to an accepted result.

Value

list of 3: prior matrix, posterior matrix, and a pass/fail indicator (returned invisibly)

Author(s)

Chris Wallace

subset_dataset subset_dataset

Description

Subset a coloc dataset

Usage

subset_dataset(dataset, index)

Var.data

Arguments

dataset	coloc dataset
index	vector of indices of snps to KEEP

Value

a copy of dataset, with only the data relating to snps in index remaining

Author(s)

Chris Wallace

a Var.data

Description

variance of MLE of beta for quantitative trait, assuming var(y)=1

Usage

Var.data(f, N)

Arguments

f	minor allele freq
Ν	sample number

Details

Internal function

Value

variance of MLE beta

Author(s)

Claudia Giambartolomei

Var.data.cc

Description

variance of MLE of beta for case-control

Usage

Var.data.cc(f, N, s)

Arguments

f	minor allele freq
Ν	sample number
S	???

Details

Internal function

Value

variance of MLE beta

Author(s)

Claudia Giambartolomei

Index

* datasets coloc_test_data, 16 * package coloc-package, 3 annotate_susie, 3 approx.bf.estimates,4 approx.bf.p,4 bin2lin, 5 check.alignment(check_alignment), 6 check.dataset(check_dataset), 6 check_alignment, 6 check_dataset, 6, 8, 10, 13–15, 21, 22 coloc-package, 3 coloc.abf, 8, 11 coloc.bf_bf, 9, 14, 15 coloc.detail, 10 coloc.process, 11, 11 coloc.signals, 12 coloc.susie, 14 coloc.susie_bf, 15 coloc_test_data, 16 combine.abf, 16 est_cond, 18 estgeno.1.cse (estgeno.1.ctl), 17 estgeno.1.ctl, 17 find.best.signal, 18 findends, 19 findpeaks, 20 finemap.abf, 21 finemap.bf, 21 finemap.signals, 22 logbf_to_pp, 23 logdiff, 24 logsum, 24

map_cond, 25
map_mask, 26
plot.coloc_abf, 26
plot_dataset, 27
print.coloc_abf, 28
process.dataset, 29
runsusie, 14, 29
sdY.est, 30
sensitivity, 31
subset_dataset, 32
Var.data, 33

Var.data, 33 Var.data.cc, 34