Package 'codalm'

October 12, 2022

Type Package

Title Transformation-Free Linear Regression for Compositional Outcomes and Predictors

Version 0.1.2

Maintainer Jacob Fiksel <jfiksel@gmail.com>

Description Implements the expectation-

maximization (EM) algorithm as described in Fiksel et al. (2021) <doi:10.1111/biom.13465> for transformation-free linear regression for compositional outcomes and predictors.

License GPL-2

biocViews

Imports SQUAREM (>= 2020.3), future, future.apply

Encoding UTF-8

URL https://github.com/jfiksel/codalm

BugReports https://github.com/jfiksel/codalm/issues

RoxygenNote 7.1.1

Suggests knitr, gtools, remotes, testthat, rmarkdown

VignetteBuilder knitr

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Jacob Fiksel [aut, cre] (<https://orcid.org/0000-0001-7067-1334>), Abhirup Datta [aut]

Repository CRAN

Date/Publication 2021-07-26 18:40:02 UTC

codalm

R topics documented:

odalm	2
odalm_ci	;
odalm_indep_test	ļ
lucFM	j
redict_codalm)
7	l

Index

codalm

Transformation-free Linear Regression for Compositional Outcomes and Predictors

Description

Implements the expectation-maximization (EM) algorithm as described in Fiksel et al. (2020) for transformation-free linear regression for compositional outcomes and predictors.

Usage

codalm(y, x, accelerate = TRUE)

Arguments

У	A matrix of compositional outcomes. Each row is an observation, and must sum to 1. If any rows do not sum to 1, they will be renormalized
x	A matrix of compositional predictors. Each row is an observation, and must sum to 1. If any rows do not sum to 1, they will be renormalized
accelerate	A logical variable, indicating whether or not to use the Squarem algorithm for acceleration of the EM algorithm. Default is TRUE.

Value

A $D_s \ge D_r$ compositional coefficient matrix, where D_s and D_r are the dimensions of the compositional predictor and outcome, respectively

References

https://onlinelibrary.wiley.com/doi/full/10.1111/biom.13465

Examples

```
data("educFM")
father <- as.matrix(educFM[,2:4])
y <- father / rowSums(father)
mother <- as.matrix(educFM[,5:7] )
x <- mother/rowSums(mother)
codalm(y, x)</pre>
```

codalm_ci

Description

Implements percentile based bootstrapping to estimate the confidence intervals for the regression coefficients when doing linear regression for compositional outcomes and predictors

Usage

```
codalm_ci(
   y,
   x,
   accelerate = TRUE,
   nboot = 500,
   conf = 0.95,
   parallel = FALSE,
   ncpus = NULL,
   strategy = NULL,
   init.seed = 123
)
```

Arguments

У	A matrix of compositional outcomes. Each row is an observation, and must sum to 1. If any rows do not sum to 1, they will be renormalized
х	A matrix of compositional predictors. Each row is an observation, and must sum to 1. If any rows do not sum to 1, they will be renormalized
accelerate	A logical variable, indicating whether or not to use the Squarem algorithm for acceleration of the EM algorithm. Default is TRUE
nboot	The number of bootstrap repetitions to use. Default is 500
conf	A scalar between 0 and 1 containing the confidence level of the required intervals. Default is .95.
parallel	A logical variable, indicating whether or not to use a parallel operation for com- puting the permutation statistics
ncpus	Optional argument. When provided, is an integer giving the number of clusters to be used in parallelization. Defaults to the number of cores, minus 1.
strategy	Optional argument. When provided, this will be the evaluation function (or name of it) to use for parallel computation (if parallel = TRUE). Otherwise, if parallel = TRUE, then this will default to multisession. See plan.
init.seed	The initial seed for the permutations. Default is 123.

Value

A list, with ci_L and ci_U, giving the lower and upper bounds of each element of the B matrix

Examples

```
data("educFM")
father <- as.matrix(educFM[,2:4])
y <- father / rowSums(father)
mother <- as.matrix(educFM[,5:7] )
x <- mother/rowSums(mother)
codalm_ci(y, x, nboot = 50, conf = .95)</pre>
```

codalm_indep_test

Permutation Test for Linear Independence Between Compositional Outcomes and Predictors

Description

Implements the loss function based permutation test as described in Fiksel et al. (2020) for a test of linear independence between compositional outcomes and predictors.

Usage

```
codalm_indep_test(
   y,
   x,
   nperms = 500,
   accelerate = TRUE,
   parallel = FALSE,
   ncpus = NULL,
   strategy = NULL,
   init.seed = 123
)
```

Arguments

У	A matrix of compositional outcomes. Each row is an observation, and must sum to 1. If any rows do not sum to 1, they will be renormalized
x	A matrix of compositional predictors. Each row is an observation, and must sum to 1. If any rows do not sum to 1, they will be renormalized
nperms	The number of permutations. Default is 500.
accelerate	A logical variable, indicating whether or not to use the Squarem algorithm for acceleration of the EM algorithm. Default is TRUE.
parallel	A logical variable, indicating whether or not to use a parallel operation for com- puting the permutation statistics
ncpus	Optional argument. When provided, is an integer giving the number of clusters to be used in parallelization. Defaults to the number of cores, minus 1.

4

educFM

strategy	Optional argument. When provided, this will be the evaluation function (or
	name of it) to use for parallel computation (if parallel = TRUE). Otherwise, if
	parallel = TRUE, then this will default to multisession. See plan.
init.seed	The initial seed for the permutations. Default is 123.

Value

The p-value for the independence test

Examples

```
require(gtools)
x <- rdirichlet(100, c(1, 1, 1))
y <- rdirichlet(100, c(1, 1, 1))
codalm_indep_test(y, x)

data("educFM")
father <- as.matrix(educFM[,2:4])
y <- father / rowSums(father)
mother <- as.matrix(educFM[,5:7])
x <- mother/rowSums(mother)
codalm_indep_test(y, x)</pre>
```

educFM

education level of father (F) and mother (M)

Description

Education level of father (F) and mother (M) in percentages of low (l), medium (m), and high (h) of 31 countries in Europe.

Usage

educFM

Format

A data frame with 31 observations (rows) and 7 columns (country and education level)

Details

- country community code
- F.1 percentage of females with low edcuation level
- F.m percentage of females with medium edcuation level
- F.h percentage of females with high edcuation level

- F.1 percentage of males with low edcuation level
- F.m percentage of males with medium edcuation level
- F.h percentage of males with high edcuation level

Source

from robCompositions R package, https://cran.r-project.org/src/contrib/Archive/robCompositions/ robCompositions_2.3.0.tar.gz, which used the dataEurostat, https://ec.europa.eu/eurostat/

predict_codalm	Prediction for Transformation-free Linear Regression for Composi-
	tional Outcomes and Predictors

Description

Obtains compositional predictions for new compositional covariates using an established codalm model.

Usage

```
predict_codalm(object, newx)
```

Arguments

object	A codalm model
newx	A matrix of compositional predictors. Each row is an observation, and must sum to 1. If any rows do not sum to 1, they will be renormalized

Value

A $D_s \ge D_r$ compositional coefficient matrix, where D_s and D_r are the dimensions of the compositional predictor and outcome, respectively

Examples

```
data("educFM")
father <- as.matrix(educFM[,2:4])
y <- father / rowSums(father)
mother <- as.matrix(educFM[,5:7] )
x <- mother/rowSums(mother)
codalm_model <- codalm(y[1:20,], x[1:20,])
predict_codalm(codalm_model, x[-(1:20),])</pre>
```

Index

* datasets educFM, 5

codalm, 2
codalm_ci, 3
codalm_indep_test, 4

educFM, 5

plan, 3, 5
predict_codalm, 6