
Package ‘clarabel’
April 17, 2025

Type Package

Title Interior Point Conic Optimization Solver

Version 0.10.1

Description
A versatile interior point solver that solves linear programs (LPs), quadratic programs (QPs), sec-
ond-order cone programs (SOCPs), semidefinite programs (SDPs), and problems with exponen-
tial and power cone constraints (<https://clarabel.org/stable/>). For quadratic objec-
tives, unlike interior point solvers based on the standard homogeneous self-dual embed-
ding (HSDE) model, Clarabel handles quadratic objective without requiring any epigraphical re-
formulation of its objective function. It can therefore be significantly faster than other HSDE-
based solvers for problems with quadratic objective functions. Infeasible problems are de-
tected using using a homogeneous embedding technique.

License Apache License (== 2.0)

Encoding UTF-8

RoxygenNote 7.3.2

URL https://oxfordcontrol.github.io/clarabel-r/

BugReports https://github.com/oxfordcontrol/clarabel-r/issues

Suggests knitr, Matrix, rmarkdown, tinytest

VignetteBuilder knitr

SystemRequirements Cargo (Rust's package manager), rustc (>= 1.70.0),
and GNU Make

Imports methods

NeedsCompilation yes

Author Balasubramanian Narasimhan [aut, cre],
Paul Goulart [aut, cph],
Yuwen Chen [aut],
Hiroaki Yutani [ctb] (For vendoring/Makefile hints/R scripts for
generating crate authors/licenses),

David Zimmermann-Kollenda [ctb] (For configure scripts and tools/msvr.R
lifted from rtitoken package),

The authors of the dependency Rust crates [ctb] (see inst/AUTHORS file
for details)

1

https://clarabel.org/stable/
https://oxfordcontrol.github.io/clarabel-r/
https://github.com/oxfordcontrol/clarabel-r/issues

2 clarabel

Maintainer Balasubramanian Narasimhan <naras@stanford.edu>

Repository CRAN

Date/Publication 2025-04-17 19:10:02 UTC

Contents
clarabel . 2
clarabel_control . 4
solver_status_descriptions . 7

Index 8

clarabel Interface to ’Clarabel’, an interior point conic solver

Description

Clarabel solves linear programs (LPs), quadratic programs (QPs), second-order cone programs
(SOCPs) and semidefinite programs (SDPs). It also solves problems with exponential and power
cone constraints. The specific problem solved is:

Minimize
1

2
xTPx+ qTx

subject to
Ax+ s = b

s ∈ K

where x ∈ Rn, s ∈ Rm, P = PT and nonnegative-definite, q ∈ Rn, A ∈ Rm×n, and b ∈ Rm.
The set K is a composition of convex cones.

Usage

clarabel(A, b, q, P = NULL, cones, control = list(), strict_cone_order = TRUE)

Arguments

A a matrix of constraint coefficients.

b a numeric vector giving the primal constraints

q a numeric vector giving the primal objective

P a symmetric positive semidefinite matrix, default NULL

cones a named list giving the cone sizes, see “Cone Parameters” below for specifica-
tion

control a list giving specific control parameters to use in place of default values, with an
empty list indicating the default control parameters. Specified parameters should
be correctly named and typed to avoid Rust system panics as no sanitization is
done for efficiency reasons

clarabel 3

strict_cone_order

a logical flag, default TRUE for forcing order of cones described below. If FALSE
cones can be specified in any order and even repeated and directly passed to the
solver without type and length checks

Details

The order of the rows in matrix A has to correspond to the order given in the table “Cone Pa-
rameters”, which means means rows corresponding to primal zero cones should be first, rows cor-
responding to non-negative cones second, rows corresponding to second-order cone third, rows
corresponding to positive semidefinite cones fourth, rows corresponding to exponential cones fifth
and rows corresponding to power cones at last.

When the parameter strict_cone_order is FALSE, one can specify the cones in any order and even
repeat them in the order they appear in the A matrix. See below.

Clarabel can solve:

1. linear programs (LPs)
2. second-order cone programs (SOCPs)
3. exponential cone programs (ECPs)
4. power cone programs (PCPs)
5. problems with any combination of cones, defined by the parameters listed in “Cone Parame-

ters” below

Cone Parameters: The table below shows the cone parameter specifications. Mathematical
definitions are in the vignette.

Parameter Type Length Description
z integer 1 number of primal zero cones (dual free cones),

which corresponds to the primal equality constraints
l integer 1 number of linear cones (non-negative cones)
q integer ≥ 1 vector of second-order cone sizes
s integer ≥ 1 vector of positive semidefinite cone sizes
ep integer 1 number of primal exponential cones
p numeric ≥ 1 vector of primal power cone parameters
gp list ≥ 1 list of named lists of two items, a : a numeric vector of at least 2 exponent terms in the product summing to 1, and n : an integer dimension of generalized power cone parameters

When the parameter strict_cone_order is FALSE, one can specify the cones in the order they
appear in the A matrix. The cones argument in such a case should be a named list with names
matching ^z* indicating primal zero cones, ^l* indicating linear cones, and so on. For example,
either of the following would be valid: list(z = 2L, l = 2L, q = 2L, z = 3L, q = 3L), or, list(z1
= 2L, l1 = 2L, q1 = 2L, zb = 3L, qx = 3L), indicating a zero cone of size 2, followed by a linear
cone of size 2, followed by a second-order cone of size 2, followed by a zero cone of size 3,
and finally a second-order cone of size 3. Generalized power cones parameters have to specified
as named lists, e.g., list(z = 2L, gp1 = list(a = c(0.3, 0.7), n = 3L), gp2 = list(a = c(0.5,
0.5), n = 1L)).

Note that when strict_cone_order = FALSE, types of cone parameters such as integers, reals have
to be explicit since the parameters are directly passed to the Rust interface with no sanity checks.!

4 clarabel_control

Value

named list of solution vectors x, y, s and information about run

See Also

clarabel_control()

Examples

A <- matrix(c(1, 1), ncol = 1)
b <- c(1, 1)
obj <- 1
cone <- list(z = 2L)
control <- clarabel_control(tol_gap_rel = 1e-7, tol_gap_abs = 1e-7, max_iter = 100)
clarabel(A = A, b = b, q = obj, cones = cone, control = control)

clarabel_control Control parameters with default values and types in parenthesis

Description

Control parameters with default values and types in parenthesis

Usage

clarabel_control(
max_iter = 200L,
time_limit = Inf,
verbose = TRUE,
max_step_fraction = 0.99,
tol_gap_abs = 1e-08,
tol_gap_rel = 1e-08,
tol_feas = 1e-08,
tol_infeas_abs = 1e-08,
tol_infeas_rel = 1e-08,
tol_ktratio = 1e-06,
reduced_tol_gap_abs = 5e-05,
reduced_tol_gap_rel = 5e-05,
reduced_tol_feas = 1e-04,
reduced_tol_infeas_abs = 5e-05,
reduced_tol_infeas_rel = 5e-05,
reduced_tol_ktratio = 1e-04,
equilibrate_enable = TRUE,
equilibrate_max_iter = 10L,
equilibrate_min_scaling = 1e-04,
equilibrate_max_scaling = 10000,

clarabel_control 5

linesearch_backtrack_step = 0.8,
min_switch_step_length = 0.1,
min_terminate_step_length = 1e-04,
max_threads = 0L,
direct_kkt_solver = TRUE,
direct_solve_method = c("qdldl", "mkl", "cholmod"),
static_regularization_enable = TRUE,
static_regularization_constant = 1e-08,
static_regularization_proportional = .Machine$double.eps * .Machine$double.eps,
dynamic_regularization_enable = TRUE,
dynamic_regularization_eps = 1e-13,
dynamic_regularization_delta = 2e-07,
iterative_refinement_enable = TRUE,
iterative_refinement_reltol = 1e-13,
iterative_refinement_abstol = 1e-12,
iterative_refinement_max_iter = 10L,
iterative_refinement_stop_ratio = 5,
presolve_enable = TRUE,
chordal_decomposition_enable = FALSE,
chordal_decomposition_merge_method = c("none", "parent_child", "clique_graph"),
chordal_decomposition_compact = FALSE,
chordal_decomposition_complete_dual = FALSE

)

Arguments

max_iter maximum number of iterations (200L)

time_limit maximum run time (seconds) (Inf)

verbose verbose printing (TRUE)
max_step_fraction

maximum interior point step length (0.99)

tol_gap_abs absolute duality gap tolerance (1e-8)

tol_gap_rel relative duality gap tolerance (1e-8)

tol_feas feasibility check tolerance (primal and dual) (1e-8)

tol_infeas_abs absolute infeasibility tolerance (primal and dual) (1e-8)

tol_infeas_rel relative infeasibility tolerance (primal and dual) (1e-8)

tol_ktratio KT tolerance (1e-7)
reduced_tol_gap_abs

reduced absolute duality gap tolerance (5e-5)
reduced_tol_gap_rel

reduced relative duality gap tolerance (5e-5)
reduced_tol_feas

reduced feasibility check tolerance (primal and dual) (1e-4)
reduced_tol_infeas_abs

reduced absolute infeasibility tolerance (primal and dual) (5e-5)

6 clarabel_control

reduced_tol_infeas_rel

reduced relative infeasibility tolerance (primal and dual) (5e-5)
reduced_tol_ktratio

reduced KT tolerance (1e-4)
equilibrate_enable

enable data equilibration pre-scaling (TRUE)
equilibrate_max_iter

maximum equilibration scaling iterations (10L)
equilibrate_min_scaling

minimum equilibration scaling allowed (1e-4)
equilibrate_max_scaling

maximum equilibration scaling allowed (1e+4)
linesearch_backtrack_step

linesearch backtracking (0.8)
min_switch_step_length

minimum step size allowed for asymmetric cones with PrimalDual scaling (1e-1)
min_terminate_step_length

minimum step size allowed for symmetric cones && asymmetric cones with
Dual scaling (1e-4)

max_threads maximum solver threads for multithreaded KKT solvers, 0 lets the solver choose
for itself (0L)

direct_kkt_solver

use a direct linear solver method (required true) (TRUE)
direct_solve_method

direct linear solver ("qdldl", "mkl" or "cholmod") ("qdldl")
static_regularization_enable

enable KKT static regularization (TRUE)
static_regularization_constant

KKT static regularization parameter (1e-8)
static_regularization_proportional

additional regularization parameter w.r.t. the maximum abs diagonal term (.Machine.double_eps^2)
dynamic_regularization_enable

enable KKT dynamic regularization (TRUE)
dynamic_regularization_eps

KKT dynamic regularization threshold (1e-13)
dynamic_regularization_delta

KKT dynamic regularization shift (2e-7)
iterative_refinement_enable

KKT solve with iterative refinement (TRUE)
iterative_refinement_reltol

iterative refinement relative tolerance (1e-12)
iterative_refinement_abstol

iterative refinement absolute tolerance (1e-12)
iterative_refinement_max_iter

iterative refinement maximum iterations (10L)

solver_status_descriptions 7

iterative_refinement_stop_ratio

iterative refinement stalling tolerance (5.0)
presolve_enable

whether to enable presolvle (TRUE)
chordal_decomposition_enable

whether to enable chordal decomposition for SDPs (FALSE)
chordal_decomposition_merge_method

chordal decomposition merge method, one of 'none', 'parent_child' or 'clique_graph',
for SDPs ('none')

chordal_decomposition_compact

a boolean flag for SDPs indicating whether to assemble decomposed system in
compact form for SDPs (FALSE)

chordal_decomposition_complete_dual

a boolean flag indicating complete PSD dual variables after decomposition for
SDPs

Value

a list containing the control parameters.

solver_status_descriptions

Return the solver status description as a named character vector

Description

Return the solver status description as a named character vector

Usage

solver_status_descriptions()

Value

a named list of solver status descriptions, in order of status codes returned by the solver

Examples

solver_status_descriptions()[2] ## for solved problem
solver_status_descriptions()[8] ## for max iterations limit reached

Index

clarabel, 2
clarabel_control, 4
clarabel_control(), 4

solver_status_descriptions, 7

8

	clarabel
	clarabel_control
	solver_status_descriptions
	Index

