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Abstract

The R package clValid contains functions for validating the results
of a clustering analysis. There are three main types of cluster valida-
tion measures available, “internal”, “stability”, and “biological”. The
user can choose from nine clustering algorithms in existing R pack-
ages, including hierarchical, K-means, self-organizing maps (SOM),



and model based clustering. In addition, we provide a function to
perform the self-organizing tree algorithm (SOTA) method of cluster-
ing. Any combination of validation measures and clustering methods
can be requested in a single function call. This allows the user to si-
multaneously evaluate several clustering algorithms while varying the
number of clusters, to help determine the most appropriate method
and number of clusters for the dataset of interest. Additionally, the
package can automatically make use of the biological information con-
tained in the Gene Ontology (GO) database to calculate the biological
validation measures, via the annotation packages available in Biocon-
ductor. The function returns an object of S4 class clValid, which has
summary, plot, print, and additional methods which allow the user to
display the optimal validation scores and extract clustering results.

1 Introduction

Clustering is an unsupervised technique used to group together objects which
are “close” to one another in a multidimensional feature space, usually for
the purpose of uncovering some inherent structure which the data possesses.
Clustering is commonly used in the analysis of high-throughput genomic
data, with the aim of grouping together genes or proteins which have similar
expression patterns and possibly share common biological pathways (DeRisi
et al.l 1997 |Chu et al.l 1998 Eisen et al., 1998} Bhattacherjee et al., 2007)).
A plethora of clustering algorithms currently exist, many of which have
shown some promise in the analysis of genomic data (Herrero et al., 2001}
McLachlan et al., [2002; Dembele and Kastner, [2003; Fu and Medico, 2007)).
Deciding which clustering method to use can therefore be a daunting task for
the researcher conducting the experiment. An additional, related problem is
determining the number of clusters that are most appropriate for the data.
Ideally, the resulting clusters should not only have good statistical properties
(compact, well-separated, connected, and stable), but also give results that
are biologically relevant.

A variety of measures aimed at validating the results of a clustering
analysis and determining which clustering algorithm performs the best for a
particular experiment have been proposed (Kerr and Churchill, 2001} |[Yeung
et al., [2001; |Datta and Dattay, 2003). This validation can be based solely on
the internal properties of the data or on some external reference, and on the
expression data alone or in conjunction with relevant biological information
(Gibbons and Roth) 2002; |Gat-Viks et al., |2003; Bolshakova et al., 2005;
Datta and Datta, 2006). The article by Handl et al. (2005), in particular,
gives an excellent overview of cluster validation with post-genomic data and
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provides a synopsis of many of the available validation measures.

In this paper, we present an R package clValid which contains a variety of
methods for validating the results from a clustering analysis. The main func-
tion is c1Valid (), and the available validation measures fall into the three
general categories of “internal”; “stability”, and “biological”. The user can si-
multaneously select multiple clustering algorithms, validation measures, and
numbers of clusters in a single function call, to determine the most appropri-
ate method and an optimal number of clusters for the dataset. Additionally,
the clValid package makes use of the biological information contained in the
Gene Ontology (GO) database via the annotation packages in Bioconductor,
in order to automate the calculation of the biological validation measures.
The package also contains a function for implementing the self-organizing
tree algorithm (SOTA), which to our knowledge has not been previously
available in R packages on|CRAN. The function returns an object of S4 class
clValid, which has a variety of methods available to plot and summarize the
validation measures, display the optimal scores along with the corresponding
cluster method and number of clusters, and extract the clustering results for
a particular algorithm.

The rest of this paper is organized as follows. Section [2] contains a
detailed description of the validation measures that are available. Section
describes the clustering algorithms which are available to use with the
clValid package. Section [4 contain an example using mouse gene expression
data from Bhattacherjee et al.| (2007) that illustrates the use of the clValid
package functions and objects. Finally, Section [5| discusses some additional
validation software which is available, and some of the benefits our software
provides in comparison.

2 Validation Measures

The clValid package offers three types of cluster validation, “internal”; “sta-
bility”, and “biological”. Internal validation measures take only the dataset
and the clustering partition as input and use intrinsic information in the
data to assess the quality of the clustering. The stability measures are a
special version of internal measures. They evaluate the consistency of a
clustering result by comparing it with the clusters obtained after each col-
umn is removed, one at a time. Biological validation evaluates the ability of
a clustering algorithm to produce biologically meaningful clusters. We have
measures to investigate both the biological homogeneity and stability of the
clustering results.
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2.1 Internal measures

For internal validation, we selected measures that reflect the compactness,
connectedness, and separation of the cluster partitions. Connectedness re-
lates to what extent observations are placed in the same cluster as their
nearest neighbors in the data space, and is here measured by the connec-
tivity (Handl et al.| 2005). Compactness assesses cluster homogeneity, usu-
ally by looking at the intra-cluster variance, while separation quantifies the
degree of separation between clusters (usually by measuring the distance
between cluster centroids). Since compactness and separation demonstrate
opposing trends (compactness increases with the number of clusters but sep-
aration decreases), popular methods combine the two measures into a single
score. The Dunn Index (Dunn, [1974) and Silhouette Width (Rousseeuw)
1987) are both examples of non-linear combinations of the compactness and
separation, and with the connectivity comprise the three internal measures
available in clValid. The details of each measure are given below, and for a
good overview of internal measures in general see Handl et al.| (2005).

Connectivity

Let N denote the total number of observations (rows) in a dataset and
M denote the total number of columns, which are assumed to be numeric
(e.g., a collection of samples, time points, etc.). Define nn;jy as the jth
nearest neighbor of observation ¢, and let Ly ) be zero if ¢ and j are
in the same cluster and 1/j otherwise. Then, for a particular clustering
partition € = {C1,...,Cxk} of the N observations into K disjoint clusters,
the connectivity is defined as

N L
Conn(€) = Z Z Linnj)
i=1 j=1

where L is a parameter giving the number of nearest neighbors to use. The
connectivity has a value between zero and oo and should be minimized.

Silhouette Width

The Silhouette Width is the average of each observation’s Silhouette value.
The Silhouette value measures the degree of confidence in the clustering as-
signment of a particular observation, with well-clustered observations having
values near 1 and poorly clustered observations having values near —1. For



observation i, it is defined as

bi — a;

S(i) = ————,
(3) maz(b;, a;)

where q; is the average distance between ¢ and all other observations in the

same cluster, and b; is the average distance between 7 and the observations

in the “nearest neighboring cluster”, i.e.

i
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ckee\()(z')jeck n(Cy)

where C(7) is the cluster containing observation 4, dist(i,j) is the distance
(e.g. Euclidean, Manhattan) between observations ¢ and j, and n(C) is the
cardinality of cluster C'. The Silhouette Width thus lies in the interval
[—1,1], and should be maximized. For more information, see the help page
for the silhouette() function in package cluster (Rousseeuw et al., 2006).

Dunn Index

The Dunn Index is the ratio of the smallest distance between observations
not in the same cluster to the largest intra-cluster distance. It is computed
as

min min _ dist(i,j)
Oy, CEeC, Cp#Cy \i€Cy, JEC

diam(C
Imax, iam(Chy,)

D(€)

I

where diam(C),) is the maximum distance between observations in cluster
Cin. The Dunn Index has a value between zero and oo, and should be
maximized.

2.2 Stability measures

The stability measures compare the results from clustering based on the full
data to clustering based on removing each column, one at a time. These
measures work especially well if the data are highly correlated, which is
often the case in high-throughput genomic data. The included measures are
the average proportion of non-overlap (APN), the average distance (AD),
the average distance between means (ADM), and the figure of merit (FOM)
(Datta and Dattay, 2003} [Yeung et al., 2001). In all cases the average is taken
over all the deleted columns, and all measures should be minimized.



Average Proportion of Non-overlap (APN)

The APN measures the average proportion of observations not placed in the
same cluster by clustering based on the full data and clustering based on the
data with a single column removed. Let C* represent the cluster containing
observation i using the original clustering (based on all available data), and
C'! represent the cluster containing observation i where the clustering is
based on the dataset with column ¢ removed. Then, with the total number
of clusters set to K, the APN measure is defined as

APN(K ZZ( W)

=1 (=1

The APN is in the interval [0, 1], with values close to zero corresponding
with highly consistent clustering results.

Average Distance (AD)

The AD measure computes the average distance between observations placed
in the same cluster by clustering based on the full data and clustering based
on the data with a single column removed. It is defined as

1 N M
AD szncw—(cﬂ) > dist(i, )

i=1 (=1 i€CH0 jeCit

The AD has a value between zero and oo, and smaller values are preferred.

Average Distance between Means (ADM)

The ADM measure computes the average distance between cluster centers
for observations placed in the same cluster by clustering based on the full
data and clustering based on the data with a single column removed. It is
defined as

ADM ZZd’LSt ﬂfczz .’L‘Cz 0)

1121

where Zio0 is the mean of the observations in the cluster which contain
observation 7, when clustering is based on the full data, and Z . is similarly
defined. Currently, ADM only uses the Euclidean distance. It also has a
value between zero and oo, and again smaller values are prefered.



Figure of Merit (FOM)

The FOM measures the average intra-cluster variance of the observations
in the deleted column, where the clustering is based on the remaining (un-
deleted) samples. This estimates the mean error using predictions based on
the cluster averages. For a particular left-out column ¢, the FOM is

K

1 ) _
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where x; ¢ is the value of the ith observation in the /th column in cluster
Ck(€), and T, (y) is the average of cluster Cy(£). Currently, the only distance

available for FOM is Euclidean. The FOM is multiplied by an adjustment

_N_
N-K°

increases. The final score is averaged over all the removed columns, and has a
value between zero and oo, with smaller values equaling better performance.

factor to alleviate the tendency to decrease as the number of clusters

2.3 Biological

Biological validation evaluates the ability of a clustering algorithm to pro-
duce biologically meaningful clusters. A typical application of biological
validation is in microarray data, where observations correspond to genes
(where “genes” could be open reading frames (ORFs), express sequence tags
(ESTs), serial analysis of gene expression (SAGE) tags, etc.). There are two
measures available, the biological homogeneity index (BHI) and biological
stability index (BSI), both originally presented in |Datta and Datta (2006).

Biological Homogeneity Index (BHI)

As its name implies, the BHI measures how homogeneous the clusters are
biologically. Let B = {Bj,...,Br} be a set of F functional classes, not
necessarily disjoint, and let B(i) be the functional class containing gene 14
(with possibly more than one functional class containing 7). Similarly, we
define B(j) as the function class containing gene j, and assign the indicator
function I(B(i) = B(j)) the value 1 if B(i) and B(j) match (any one match
is sufficient in the case of membership to multiple functional classes), and
0 otherwise. Intuitively, we hope that genes placed in the same statistical
cluster also belong to the same functional classes. Then, for a given statis-
tical clustering partition € = {C,...,Ck} and set of biological classes B,



the BHI is defined as
TS
BHI(C,B) I(B(t) = B(j)) .
= E Y X B0 = B0)

Here ng = n(C, N B) is the number of annotated genes in statistical cluster
C%. Note that if ng = 1 or 0, i.e. there is only one or no annotated genes in
statistical cluster C}, then a value of zero is added for that cluster. The BHI
is in the range [0, 1], with larger values corresponding to more biologically
homogeneous clusters.

Biological Stability Index (BSI)

The BSI is similar to the other stability measures, and inspects the con-
sistency of clustering for genes with similar biological functionality. Each
sample is removed one at a time, and the cluster membership for genes with
similar functional annotation is compared with the cluster membership using
all available samples. The BSI is defined as

BSI(€,B) 3 n(CP N Cs Z)
- F Z (Bi)( Bk —1)M Z Z CZO ’
k=1 (=1 i#jEBy

where F is the total number of functional classes, C*Y is the statistical cluster
containing observation i based on all the data, and C7! is the statistical
cluster containing observation j when column ¢ is removed. Note that if
n(Bg) = 0 or 1, i.e. there are less than two genes belonging to functional
class By, then a value of zero is taken for that class. The BSI is in the
range [0, 1], with larger values corresponding to more stable clusters of the
functionally annotated genes.

3 Clustering Algorithms

The R statistical computing project (R Development Core Teaml |2006) has
a wide variety of clustering algorithms available in the base distribution and
various add-on packages. We make use of nine algorithms from the base
distribution and add-on packages cluster (Rousseeuw et al., [2006; [Kaufman
and Rousseeuw, [1990), kohonen (Wehrens, 2006)), and mclust (Fraley and
Rafteryl |2007; |[Fraley and A. E. Rafteryl |2003)), and in addition provide a
function for implementing SOTA in the clValid package. A brief description
of each clustering method and its availability is given below.



UPGMA

Unweighted Pair Group Method with Arithmetic Mean is probably the most
frequently used clustering algorithm (Kaufman and Rousseeuw, 1990). It is
an agglomerative, hierarchical clustering algorithm that yields a dendogram
which can be cut at a chosen height to produce the desired number of clus-
ters. Each observation is initially placed in its own cluster, and the clusters
are successively joined together in order of their “closeness”. The closeness
of any two clusters is determined by a dissimilarity matrix, and can be
based on a variety of agglomeration methods. UPGMA is included with the
base distribution of R in function hclust (), and is also implemented in the
agnes () function in package cluster.

K-means

K-means is an iterative method which minimizes the within-class sum of
squares for a given number of clusters (Hartigan and Wong, 1979)). The
algorithm starts with an initial guess for the cluster centers, and each ob-
servation is placed in the cluster to which it is closest. The cluster centers
are then updated, and the entire process is repeated until the cluster cen-
ters no longer move. Often another clustering algorithm (e.g., UPGMA) is
run initially to determine starting points for the cluster centers. K-means is
implemented in the function kmeans (), included with the base distribution
of R.

Diana

Diana is a divisive hierarchical algorithm that initially starts with all obser-
vations in a single cluster, and successively divides the clusters until each
cluster contains a single observation. Along with SOTA, Diana is one of a
few representatives of the divisive hierarchical approach to clustering. Diana
is available in function diana() in package cluster.

PAM

Partitioning around medoids (PAM) is similar to K-means, but is considered
more robust because it admits the use of other dissimilarities besides Eu-
clidean distance. Like K-means, the number of clusters is fixed in advance,
and an initial set of cluster centers is required to start the algorithm. PAM
is available in the cluster package as function pam().



Clara

Clara is a sampling-based algorithm which implements PAM on a number
of sub-datasets (Kaufman and Rousseeuw) (1990). This allows for faster
running times when a number of observations is relatively large. Clara is
also available in package cluster as function clara().

Fanny

This algorithm performs fuzzy clustering, where each observation can have
partial membership in each cluster (Kaufman and Rousseeuw, (1990). Thus,
each observation has a vector which gives the partial membership to each of
the clusters. A hard cluster can be produced by assigning each observation
to the cluster where it has the highest membership. Fanny is available in
the cluster package (function fanny()).

SOM

Self-organizing maps (Kohonen, [1997) is an unsupervised learning technique
that is popular among computational biologists and machine learning re-
searchers. SOM is based on neural networks, and is highly regarded for its
ability to map and visualize high-dimensional data in two dimensions. SOM
is available as the som() function in package kohonen.

Model based clustering

Under this approach, a statistical model consisting of a finite mixture of
Gaussian distributions is fit to the data (Fraley and Raftery, 2001). Each
mixture component represents a cluster, and the mixture components and
group memberships are estimated using maximum likelihood (EM algo-
rithm). The function Mclust () in package mclust implements model based
clustering.

SOTA

Self-organizing tree algorithm (SOTA) is an unsupervised network with a
divisive hierarchical binary tree structure. It was originally proposed by
Dopazo and Carazo| (1997) for phylogenetic reconstruction, and later applied
to cluster microarray gene expression data in (Herrero et al. [2001). It uses a
fast algorithm and hence is suitable for clustering a large number of objects.
SOTA is included with the clValid package as function sota().

10



4 Example - Mouse Mesenchymal Cells

To illustrate the cluster validation measures in package clValid, we use data
from an Affymetrix microarray experiment comparing gene expression of
mesenchymal cells from two distinct lineages, neural crest and mesoderm-
derived. The dataset consists of 147 genes and ESTs which were determined
to be significantly differentially expressed between the two cell lineages, with
at least a 1.5 fold increase or decrease in expression. There are three samples
for each of the neural crest and mesoderm-derived cells, so the expression
matrix has dimension 147 x 6. In addition, the genes were grouped into the
functional classes according to their biological description, with categories
ECM /receptors (16), growth/differentiation (16), kinases/phosphatases (7),
metabolism (8), stress-induced (6), transcription factors (28), and miscel-
laneous (25). The biological function of 10 genes was unknown, and 31
of the “genes” were ESTs. For further description of the dataset and the
experiments the reader is referred to Bhattacherjee et al. (2007)).
We begin by loading the dataset:

R> data(mouse)

his dataset has the typical format found in microarray data, with the
rows as genes (variables) and the columns as the samples. Although this is
a transposition of the data structure used for more conventional statistics
(rows are samples, columns are variables), in both cases the typical goal
is to cluster the rows based on the columns (although, in microarray data
analysis the samples are also commonly clustered). Hence, the clValid
function assumes that the rows of the input matrix are the intended items
to be clustered.

We want to evaluate the results from a clustering analysis, using the clus-
tering algorithms UPGMA, PAM, and K-means. Since the genes fall into one
of two groups, up or down-regulated in the neural crest vs. mesoderm-derived
tissue, the numbers of clusters is varied from 2 to 6. The distance metric
(both for the applicable clustering methods and validation measures) is set
to “euclidean”; other available options are “correlation” and “manhattan”.
The agglomeration method for hierarchical clustering is set to “average”.
We illustrate each category of validation measure separately, but it should
be noted that the user can request all three types of validation measures at
once (which would also be more computationally efficient).

11



4.1 Internal Validation

The internal validation measures are the connectivity, Silhouette Width,
and Dunn Index. The neighborhood size for the connectivity is set to 10 by
default, the neighbSize argument can be used to change this. Note that the
clustering method “agnes” was omitted, since this also performs hierarchical
clustering and would be redundant with the “hierarchical” method.

R> express <- mousel[,c("M1","M2",6"M3","NC1", "NC2","NC3")]

R> rownames (express) <- mouse$ID

R> intern <- clValid(express, 2:6, clMethods=c("hierarchical", "kmeans", "pam"),
+ validation="internal")

To view the results of the analysis, print, plot, and summary methods
are available for the c1Valid object intern. The summary statement will
display all the validation measures in a table, and also give the clustering
method and number of clusters corresponding to the optimal score for each
measure.

R> summary (intern)

Clustering Methods:
hierarchical kmeans pam

Cluster sizes:
23456

Validation Measures:

hierarchical Connectivity 5.3270 14.2528 20.7520 27.0726 30.6194

Dunn 0.1291 0.0788 0.0857 0.0899 0.0899
Silhouette 0.5133 0.4195 0.3700 0.3343 0.3233
kmeans Connectivity 13.2548 17.6651 37.3980 43.2655 50.6095
Dunn 0.0464 0.0873 0.0777 0.0815 0.0703
Silhouette 0.4571 0.4182 0.3615 0.3367 0.3207
pam Connectivity 18.7917 27.9651 30.9302 44.9671 32.9667
Dunn 0.0391 0.0597 0.0510 0.0761 0.0816
Silhouette 0.4271 0.3489 0.3563 0.3530 0.4152

Optimal Scores:

12



Score Method Clusters
Connectivity 5.3270 hierarchical 2
Dunn 0.1291 hierarchical 2
Silhouette 0.5133 hierarchical 2

Hierarchical clustering with two clusters performs the best in each case.
The validation measures can also be displayed graphically using the plot ()
method. Plots for individual measures can be requested using the measures
argument. A legend is also included with each plot. The default location of
the legend is the top right corner of each plot, this can be changed using the
legendLoc argument. Here, we combine all three plots into a single figure
and so suppress the legends in each individual plot.

R> op <- par(no.readonly=TRUE)

R> par (mfrow=c(2,2) ,mar=c(4,4,3,1))

R> plot(intern, legend=FALSE)

R> plot (nClusters(intern),measures(intern, "Dunn") [, ,1],type="n", axes=F,

+ xlab="",ylab="")

R> legend("center", clusterMethods(intern), col=1:9, 1ty=1:9, pch=paste(1:9))
R> par(op)

The plots of the connectivity, Dunn Index, and Silhouette Width are
given in Figure [1l Recall that the connectivity should be minimized, while
both the Dunn Index and the Silhouette Width should be maximized. Thus,
it appears that hierarchical clustering (UPGMA) outperforms the other clus-
tering algorithms under each validation measure. For hierarchical clustering
the optimal number of clusters is clearly two. For PAM, a case could be
made for using six clusters.

4.2 Stability Validation

The stability measures include the APN, AD, ADM, and FOM. The mea-
sures should be minimized in each case. Stability validation requires more
time than internal validation, since clustering needs to be redone for each of
the datasets with a single column removed.

R> stab <- clValid(express, 2:6, clMethods=c("hierarchical", "kmeans", "pam"),
+ validation="stability")

13
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Figure 1: Plots of the connectivity measure, the Dunn Index, and the Sil-

houette Width.
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Instead of viewing all the validation measures via the summary () method,
we can instead just view the optimal values using the optimalScores()
method.

R> optimalScores (stab)

Score Method Clusters
APN 0.0478101 hierarchical 2
AD 1.5271789 pam 6
ADM 0.1400795 pam 6
FOM 0.5158032 pam 6

For the APN measures, hierarchical clustering with two clusters again
gives the best score. However, for the other three measures PAM with six
clusters has the best score. It is illustrative to graphically visualize each of
the validation measures. The plot of the FOM measure is very similar to
the AD measure, so we have omitted it from the figure.

R> par (mfrow=c(2,2) ,mar=c(4,4,3,1))

R> plot(stab, measure=c("APN","AD","ADM"),legend=FALSE)

R> plot(nClusters(stab),measures(stab, "APN")[,,1],type="n",axes=F,

+ xlab="",ylab="")

R> legend("center", clusterMethods(stab), col=1:9, 1lty=1:9, pch=paste(1:9))
R> par(op)

The plots of the APN, AD, and ADM are given in Figure 2] The APN
measure shows an interesting trend, in that it initially increases from two
to four clusters but subsequently decreases afterwards. Though hierarchical
clustering with two clusters has the best score, PAM with six clusters is a
close second. The AD and FOM measures tend to decrease as the number
of clusters increases. Here PAM with six clusters has the best overall score,
though the other algorithms have similar scores. For the ADM measure
PAM with six clusters again has the best score, though the other methods
outperform PAM for smaller numbers of clusters.

4.3 Biological Validation

There are two options for biological validation using the BHI and BSI mea-
sures. The first option is to explicitly specify the functional clustering of the
genes. This requires the user to predetermine the functional classes of the
genes, e.g. using an annotation software package like FatiGO (Al-Shahrour

15
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et al., 2004) or FunCat (Ruepp et al., [2004). functional clustering of the
genes can be specified via either a named list or logical matrix. In “list”
format, each item in the list is a vector giving genes belonging to a par-
ticular biological class. In “matrix” format, each column is a logical vector
indicating which genes belong to the biological class. clValid will convert
the biological annotation to matrix format internally if initially given in list
format.

The functional categorization of the genes in the dataset mouse were
previously determined in Bhattacherjee et al.| (2007), so these will be used
initially to define the functional classes.

R> fc <- tapply(rownames (express),mouse$FC, c)

R> fc <- fc[!names(fc)/injic ("EST", "Unknown")]

R> bio <- clValid(express, 2:6, clMethods=c("hierarchical","kmeans","pam"),
+ validation="biological", annotation=fc)

The user also has the option of reading in the biological annotation
from an external file. The required format is comma separated, with the
first column indicating the biological functional category, and the remaining
columns containing the gene identifiers for those genes belonging to that
category. Comma separated files are easily created from within the Excel
program, and using 'CSV (Comma delimited)’ for the ’Save as type’ in the
‘Save As’ window. The file “fc.csv” is included as an illustration, the format
of the first two lines is:

ECM_Receptors, 1452671_s_at, 1423110_at, 1439381_x_at, 1450857_a_at
Growth_Differentiation, 1448995_at, 1448147_at, 1421180_at, 1416855_at

To read in the external biological annotation file, use the function readAn-
notationFile.

R> fc2 <- readAnnotationFile("fc.csv")

R> ## bio.fc2 <- clValid(express, 2:6, clMethods=c("hierarchical","kmeans", "pam"),
R> ## validation="biological", annotation=fc2)

R> ## all.equal (measures(bio), measures(bio.fc2))

Recall that both the BHI and BSI should be maximized. The optimal
values for each measure are given below.

R> optimalScores(bio)

17



Score Method Clusters
BHI 0.2025793 kmeans 5
BSI 0.6755826 hierarchical 2

K-means clustering with five clusters has the best value of the BHI, while
for the BSI hierarchical clustering with two clusters again does well. Plots
of the measures are given in Figures [3] and

The other option for biological validation is to use the annotation pack-
ages available in Bioconductor (Gentleman et al., |2004). This option uses
the annotation packages to map the genes to their corresponding GO terms.
There are three main ontologies, cellular component (“CC”), biological pro-
cess (“BP”), and molecular function (“MF”), which can be selected via the
GOcategory argument. The user must download, at a minimum, the Biobase
annotate, and GO packages from Bioconductor (http://www.bioconductor.org/),
then load them during the R session. In addition, any specific annota-
tion packages that are required will need to be downloaded (e.g., experi-
ments using the Affymetrix GeneChip hgu95av2 would require the hgu95av2
package). Once the appropriate annotation packages are downloaded, they
can be specified in the function call via the annotation argument. The
goTermFreq argument is used to select a threshold, so that only GO terms
with a frequency in the dataset above the threshold are used to determine
the functional classes.

To illustrate, the identifiers in the dataset mouse are from the Affymetrix
Murine Genome 430a GeneChip Array, with corresponding annotation pack-
age moe430a.db available from Bioconductor. We leave the goTermFreq
argument, at its default level of 0.05, and use all available GO categories
(GOcategory="all") for annotation.

R> if(require("Biobase", quietly = TRUE) && require("annotate", quietly = TRUE) &&

+ require("GO.db", quietly = TRUE) && require("moe430a.db", quietly = TRUE)) {

+  ## Need to know which affy chip was used in experiment

+ ## affymetrix murine genome 430a genechip arrays

+ bio2 <- clValid(express, 2:6, clMethods=c("hierarchical","kmeans", "pam"),

+ validation="biological",annotation="moe430a.db",GOcategory="all")
+ }

R>

R> if(exists("bio2")) optimalScores(bio2)

Score Method Clusters
BHI 0.3205595 hierarchical 2
BSI 0.7559907 hierarchical 2
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R> plot(bio, measure="BHI", legendLoc="topleft")
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Figure 3: Plot of the BHI measure, using predetermined functional classes.
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R> plot(bio, measure="BSI")
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Figure 4: Plot of the BSI measure, using predetermined functional classes.
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Further plots can be obtained by running

R> if(exists("bio2")) plot(bio2, measure="BHI", legendLoc="topleft")
R> if(exists("bio2")) plot(bio2, measure="BSI")

The user can also limit the level of evidence used to determine GO anno-
tation using the dropEvidence argument. In particular, the "IEA” evidence
code is a relatively weak association based only on electronic information,
and users may wish to omit this evidence when determining the functional
annotation classes.

R> if(require("Biobase", quietly = TRUE) && require("annotate", quietly = TRUE) &&

+ require("GO.db", quietly = TRUE) && require("moe430a.db", quietly = TRUE)) {

+  ## Need to know which affy chip was used in experiment

+  ## affymetrix murine genome 430a genechip arrays

+  bio2DE <- clValid(express, 2:6, clMethods=c("hierarchical", "kmeans","pam"),

+ validation="biological",annotation="moe430a.db",GOcategory="all",
+ dropEvidence="IEA")
+  optimalScores (bio2DE)
+ }

4.4 Rank Aggregation

As we saw in all three examples, the order of clustering algorithms on each
validation measure is rarely the same. Rank aggregation is helpful in recon-
ciling the ranks and producing a “super”-list, which determines the overall
winner and also ranks all the clustering algorithms based on their perfor-
mance as determined by all the validation measures simultaneously. This
idea was introduced in the clustering context by [Pihur et al. (2007)), and the
R package RankAggreg has functions for performing rank aggregation. The
package and associated functions are described in fuller detail in [Pihur et al.
(2009).

To illustrate, we cluster the mouse microarray data using the hierarchical,
K-means, and PAM algorithms with four to six clusters. Both internal and
stability measures are used for validation.

R> result <- clValid(express, 4:6, clMethods=c("hierarchical", "kmeans", "pam"),
+ validation=c("internal", "stability"))
R> res <- getRanksWeights(result)

The getRanksWeights function extracts the validation measures and
order of the clustering algorithms for each validation measure to use as input
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for RankAggreg. The validation measures are used for calculating weighted
distances.
The top three ranking algorithms for each measure are given below:

R> print(res$ranks[,1:3], quote=FALSE)

1 2 3

APN pam—6 hierarchical-6 hierarchical-5
AD pam-6 kmeans-6 hierarchical-6
ADM pam-6 hierarchical-6 hierarchical-5
FOM pam-6 kmeans-6 hierarchical-6
Connectivity hierarchical-4 hierarchical-5 hierarchical-6
Dunn hierarchical-5 hierarchical-6 hierarchical-4
Silhouette  pam-6 hierarchical-4 kmeans-4

We see that PAM with six clusters performs best on four of the six mea-
sures, so picking an overall winner is relatively straightforward in this case.
However, in many cases there is no clearly best performing algorithm. Also,
it would be rather difficult to give the overall ordered list, and we may be
interested in, say, the top three performing algorithms instead of restricting
ourselves to a single set of results. This can be accomplished using the Rank-
Aggreg function, which searches for the “master” list which minimizes the
distance between itself and the individual lists for each validation measure.
Two distances are available, the Spearman’s footrule distance and Kendall’s
tau distance. The two available search algorithms are a cross-entropy Monte
Carlo algorithm or a genetic algorithm (there is also a “brute force” search
method which does an exhaustive search, but this is not recommended ex-
cept for very small lists of five or fewer elements). Here, we perform rank
aggregation using the default cross-entropy method with weighted Spear-
man’s footrule to produce a “top five” overall list.

R> if(require("RankAggreg")) {

+  CEWS <- RankAggreg(x=res$ranks, k=5, weights=res$weights, seed=123, verbose=FALSE
+ CEWS

+ }

The optimal list is:
pam-6 hierarchical-6 hierarchical-5 hierarchical-4 kmeans-6

Algorithm: CE
Distance: Spearman
Score: 2.679264
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The top results are PAM with six clusters, then hierarchical clustering
with six and five clusters. Convergence was achieved in 15 iterations, with a
minimum objective function score of 2.679264. Since the search is stochastic
using a different seed may produce a different result, but repeating the search
using several different seeds gave the same result.

To get a visual representation of the results, a convenient plot function
is provided. It takes the object returned by the RankAggreg function as its
first argument and outputs three side-by-side plots with useful information
on the convergence properties and the final ranking.

4.5 Further Analysis

Hierarchical clustering consistently performs well for many of the validation
measures. The clustering results from any method can be extracted from a
clValid () object for further analysis, using the clusters() method. Here,
we extract the results from hierarchical clustering, to plot the dendogram
and view the observations that are grouped together at the various levels
of the topology. The dendrogram is plotted in Figure [0 with the genes
belonging to the “Growth/Differentiation” (GD) and “Transcription factor”
(TF) functional classes labeled. The genes belonging to the top two clusters
are cross-classified with their functional annotation given in the dataset.
Of potential interest, the second cluster contains no genes in the “EST”
or “Miscellaneous” categories. Further inspection of the results is left to a
subject matter expert.

R> hc <- clusters(bio, "hierarchical")

R> mfc <- factor(mouse$FC, labels=c("Re","EST","GD","KP","Met","Mis","St","TF","U"))
R> tf.gd <- ifelse(mfcjin/ic("GD","TF"),levels (mfc) [mfc],"")
R> plot(hc, labels=tf.gd, cex=0.7, hang=-1, main="Mouse Cluster Dendrogram")

R> two <- cutree(hc,2)
R> xtabs("mouse$FC + two)

two
mouse$FC 1 2
ECM/Receptors 12 4
EST 31 0
Growth/Differentiation 12 4
Kinases/Phosphatases 4 3

23



R> plot (CEWS)
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Figure 5: Visual Representation of the aggregation results through the plot()
function. The first plot in the top row shows the path of minimum values
of the objective function over time. The global minimum is shown in the
top right corner. The histogram of the objective function scores at the last
iteration is displayed in the second plot. Looking at these two plots, one
can get a general idea about the rate of convergence and the distribution
of candidate lists at the last iteration. The third plot at the bottom shows
the individual lists and the obtained%olution along with optional average
ranking.
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Figure 6: Plot of the dendogram for hierarchical clustering.
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Metabolism 7 1
Miscellaneous 25 0
Stress—-induced 4 2
Transcription factor 23 5
Unknown 9 1

5 Discussion

We have developed an R package, clValid, which contains measures for val-
idating the results from a clustering procedure. We categorize the measures
into three distinct types, “internal”, “stability”, and “biological”, and provide
plot, summary, and additional methods for viewing and summarizing the val-
idation scores and extracting the clustering results for further analysis. In
addition to the object-oriented nature of the language, implementing the val-
idation measures within the R statistical programming framework provides
the additional advantage in that it can interface with numerous clustering
algorithms in existing R packages, and accommodate further algorithms as
they are developed and coded into R libraries. Currently, c1Valid () accepts
up to ten different clustering methods. This permits the user to simultane-
ously vary the number of clusters and the clustering algorithms to decide
how best to group the observations in her/his dataset. Lastly, the package
makes use of the annotation packages available in Bioconductor| to calculate
the biological validation measures, so that the information contained in the
GO database can be used to assist in the cluster validation process.

The illustration for the clValid package we have given here focuses on
clustering genes, but it is common in microarray analysis to cluster both
genes and samples to create a “heatmap”. Though the “biological” valida-
tion measures are specifically designed for validation of clustering genes, the
other measures could also be used with clustering of samples in a microarray
experiment. Also, for microarray data, it is a good idea to limit the number
of genes being clustered to a small subset (100 ~ 600) of the thousands of
expression measures routinely available on a microarray, both for compu-
tational and visualization purposes. Typically, some initial pre-selection of
the genes based on t-statistics, p-values, or expression ratios is performed.

There are several R packages that also perform cluster validation and
are available from CRAN or Bioconductor. Examples include the clustIn-
dex () function in package cclust (Dimitriadou, [2006), which performs 14
different validation measures in three classes, cluster.stats() and clus-
terboot () in package fpc (Hennig, 2006), the clusterRepro (Kapp and Tib-
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shirani, [2006) and clusterSim (Walesiak and Dudek, 2007) packages, and
the clusterStab (MacDonald et al., |2006) package from Bioconductor. The
cl_validity() function in package clue (Hornik, [September 2005b) does
validation for both paritioning methods (“dissimilarity accounted for”) and
hierarchical methods (“variance accounted for”), and function fclustIn-
dex() in package e1071 (Dimitriadou et al.l 2006) has several fuzzy cluster
validation measures. However, to our knowledge none of these packages of-
fers biological validation or the unique stability measures which we present
here. Handl et al. (2005) provides C++ code for the validation measures
which they discuss, and the Caat tool available in the |GEPAS| software
suite offers a web-based interface for visualizing and validating (using the
Silhouette Width) cluster results. However, neither of these two tools are
as flexible for interfacing with the variety of clustering algorithms that are
available in the R language, or can automatically access the annotation in-
formation which is available in Bioconductor. Hence, the clValid package is
a valuable addition to the growing collection of cluster validation software
available for researchers.
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