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1 Introduction

Overview This program is designed to improve causal inference via a method of matching
that is widely applicable in observational data and easy to understand and use (if you
understand how to draw a histogram, you will understand this method). The program
implements the coarsened exact matching (CEM) algorithm, described below. CEM may be
used alone or in combination with any existing matching method. This algorithm, and its
statistical properties, are described in

Stefano M. lacus, Gary King, and Giuseppe Porro, “Causal Inference With-
out Balance Checking: Coarsened Exact Matching”, http://gking.harvard.
edu/files/abs/cem-plus-abs.shtml. and Stefano M. lacus, Gary King, and
Giuseppe Porro, “Multivariate Matching Methods That are Monotone Imbalacne
Bounding”, http://gking.harvard.edu/files/abs/cem-math-abs.shtml.

Properties CEM is a monotonoic imbalance bounding (MIB) matching method — which
means both that the maximum imbalance between the treated and control groups may be
chosen by the user ex ante, rather than discovered through the usual laborious process of ex
post checking and repeatedly reestimating, and that adjusting the maximum imbalance on
one variable has no effect on the maximum imbalance of any other.

This paper also shows that CEM bounds through ex ante user choice both the degree
of model dependence and the average treatment effect estimation error, eliminates the need
for a separate procedure to restrict data to common empirical support, meets the congru-
ence principle, is robust to measurement error, works well with multiple imputation and
other methods for missing data, can be completely automated, and is fast computationally
even with very large data sets. After preprocessing data with CEM, the analyst may then
use a simple difference in means, or whatever matching method or statistical model they
would have applied to the raw data. CEM also works for multicategory treatments, creating
randomized blocks in experimental designs, and evaluating extreme counterfactuals.

Goal Matching is not a method of estimation; it is a way to preprocess a data set so that
estimation of SATT based on the matched data set will be less “model-dependent” (i.e., less
a function of apparently small and indefensible modeling decisions) than when based on the
original full data set. Matching involves pruning observations that have no close matches on
pre-treatment covariates in both the treated and control groups. The result is typically less
model-dependence, bias, and (by removing heterogeneity) inefficiency (King and Zeng, 2006;
Ho et al., 2007; Iacus, King and Porro, 2011, 2012). If used for analyzing observational data,
applications of CEM (and all other methods of causal inference) require an assumption of
ignorability (a.k.a. “no omitted variable bias” or “no confounding”).
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The specific statistical goal is to estimate some version of a causal effect, such as the
sample average treatment effect on the treated (the “SATT”). Thus, let Y; be the dependent
variable for unit ¢, T; be a treatment variable, and X; be a vector of pre-treatment control
variables. Although CEM works as easily with multicategory treatment variables, we simplify
this introductory description by assuming that 7T} is dichotmous and takes on the value 1 for
“treated” units and 0 for “control” units. Then define the treatment effect for treated units
as the difference between two potential outcomes: TE; = Y;(T; = 1) — Y;(T; = 0), where
Yi(T; = 1) =Y; is always obseved and Y;(7; = 0), the value that Y; would have taken on if
it were the case that 7; = 0, is always unobserved. Then Y;(7; = 0) is estimated with Y;
from matched controls (i.e., among units for which X; ~ X;), either directly, Y;(T; = 0) =
Y;(T; = 0), or via a model, Y;(T; = 0) = §(X;). Then SATT can be computed as a simple
average: SATT = .- 37\ TE;.

Algorithm The CEM algorithm then involves three steps:

1. Temporarily coarsen each control variable in X as much as you are willing, for the
purposes of matching. For example, years of education might be coarsened into grade
school, middle school, high school, college, graduate school. Most researchers are
intimately familiar with the concept and practice of coarsening, as it is widely used in
applied data analyses in many fields, although unlike its present use coarsening for data
analysis involves a permanent removal of information from the analysis and ultimate
estimates.

2. Sort all units into strata, each of which has the same values of the coarsened X.

3. Prune from the data set the units in any stratum that do not include at least one
treated and one control unit.

Following these three steps, the researcher can apply any method to the matched data
that they might have to the raw data to estimate the causal effect, with the addition of a
weight that equalizes the number of treated and control units within each stratum. Thus,
any existing method of matching may be used within CEM strata to further prune the data
in other ways, in which case the combined approach still inherits all of CEM’s properties.
Whether or not another method of matching is applied, one must compute the causal effect,
either by a (weighted) difference in means in Y among the treated and control units, or with
the application of a statistical model.

If the coarsened bins are set to zero width, then CEM returns the exact matching solution,
in which case model dependence will be eliminated (other than the ignorability assumption),
but too few observations may be left. If instead the coarsened bins are set too wide, then
few observations will be discarded, but differences within the large strata must be spanned
with a statistical model, in which case model dependence may be an issue.

What if the level of coarsening is set as large as the researcher finds reasonable, but the
number of observations is still too small? This of course may happen with a single continuous
covariate with little or no coarsening or due to higher order interactions among a large set of



discrete covariates. We offer below a “progressive coarsening” procedure that may help you
rethink some of your coarsening choices by indicating how many more observations you would
recover by loosening up the coarsening level for each variable. But if the remaining sample
is still too small, the only possibilites involve collecting more data; setting the coarsening
level artificially large and relying on theory to rule out some of the model dependence; or
living with the model dependence and increasing the uncertainty with which you draw your
inferences and represent your conclusions. To be clear, in this situation, you are in a bind
and no method of matching or analysis is likely to save you. Statistics of course is not magic
and can only get you so far given limited information. When in this situation, it is best to
recognize the limits of your data relative to the question you are asking, and decide whether
to devote whatever resources at your disposal to collecting more data, developing better
theory, dealing with the uncertainty, or choosing a different research project.

Measuring Balance Although CEM is MIB, the actual degree of imbalance achieved in
the matched sample may be lower than the chosen maximum, and so we also introduce a
simple and comprehensive multivariate imbalance measure (lacus, King and Porro, 2011).
The measure is based on the £; difference between the multidimensional histogram of all
pretreatment covariates in the treated group and that in the control group. To do this, we
first choose the number of bins for each continuous variable via standard automated uni-
variate histogram methods and with categorical variables left as is. These bin sizes must be
defined separately from and prior to the coarsening levels chosen for CEM. Although this
initial choice poses all the usual issues and potential problems when choosing bins in drawing
histograms, we use it only as a fixed reference to evaluate pre and post matching imbalance.
(We also offer a function, which are logically similar to ROC curve for classification prob-
lems, that compute this measure for a very large number of coarsenings to see whether one
matching solution dominates others; see L1.profile.)

Our functions compute these bin sizes automatically using automated histogram meth-
ods (and with smaller bins than would typically be chosen in running CEM), or they can
optionally be set by the user, so long as this level is fixed through all subseqent matching.
Then, we cross-tabulate the discretized variables as X; x ... x X}, for the treated and control
groups separately, and record the k-dimensional relative frequencies for the treated fy,..,
and control gy, ...,, units. Finally, our measure of imbalance is the absolute difference over all
the cell values:

ﬁl(fu g) = % Z ’f@l---@k - g€1---€k| (1)

Lyl

and where the summation is over all cells of the multivariate histogram, but is feasible
to compute because it contains at most n nonzero terms. The £; measure' varies in [0, 1].
Perfect (up to discretization) global balance results in £; = 0, and £; = 1 indicates complete
separation of the multimensional histograms. Any value in the interval (0,1) indicates the
amount of difference between k-dimensional frequencies of the two groups.

1
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CEM also offers several other measures of imbalance such as the global difference in
means and the difference in means within the strata that are defined by every matching
method.

2 Setup

2.1 Software Requirements

CEM works in conjunction with the R Project for Statistical Computing, and will run on any
platform where R is installed (Windows, Linux, or Mac). R is available free for download at
the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/. CEM
has been tested on the most recent version of R.

CEM may be run by installing the program directly, as indicated below, or by using the
alternative interface to CEM provided by Matchlt (http://gking.harvard.edu/matchit,
(Ho et al., Forthcoming)). Using CEM directly is faster. The Matchlt interface is easier
for some applications and works seemlessly with Zelig (http://gking.harvard.edu/zelig)
for estimating causal effects after matching, but presently only offers a subset of features
of the R version. A Stata verison of CEM is also available at the CEM web site, http:
//gking.harvard.edu/cem.

2.2 Installation

To install cem, type at the R command prompt,
> install.packages("cem"

and CEM will install itself onto your system automatically from CRAN. You may alterna-
tively load the beta test version as

> install.packages("cem",repos="http://r.iq.harvard.edu", type="source")

2.3 Loading CEM

You need to install CEM only once, but you must load it prior to each use. Do this at the
R prompt:

> library(cem)

2.4 Updating CEM

We recommend that you periodically update CEM at the R prompt by typing:
> update.packages()

which will update all the libraries including CEM and load the new version of the package
with

> library(cem)
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3 A User’s Guide

We show here how to use CEM through a simple running example: the National Supported
Work (NSW) Demonstration data, also known as the Lalonde data set (Lalonde, 1986).
This program provided training to selected individuals for 12-18 months and help finding
a job in the hopes of increasing their’ earnings. The treatment variable, treated, is 1 for
participants (the treatment group) and 0 for nonparticipants (the control group). The key
outcome variable is earnings in 1978 (re78).

Since participation in the program was not assigned strictly at random, we must control
for a set of pretreatment variables by the CEM algorithm. These pre-treatment variables
include age (age), years of education (education), marital status (married), lack of a high
school diploma (nodegree), race (black, hispanic), indicator variables for unemployment in
1974 (u74) and 1975 (u75), and real earnings in 1974 (re74) and 1975 (re75). Some of these
are dichotomous (married, nodegree, black, hispanic, u74, u75), some are categorical
(age and education), and the earnings variables are continuous and highly skewed with
point masses at zero. We modify these data by adding a (fictitious) variable to illustrate
discrete responses called g1, the answer to a survey question asking before assignment for
an opinion about this job training program, with possible responses strongly agree, agree,
neutral, strongly disagree, disagree, and no opinion; note that the last category is not on the
same ordered scale as the other responses. Ten percent of the observations have missing data
(added randomly by us to illustrate how CEM deals with missingness). We call this new
data set the LeLonde (intentionally misspelling Lalonde); the original, unmodified Lalonde
(1986) data are contained in data set LL.

3.1 Basic Evaluation and Analysis of Unmatched Data

We begin with a naive estimate of SATT — the simple difference in means — which would
be useful only if the in-sample distribution of pre-treatment covariates were the same in the
treatment and control groups:

> require(cem)
> data(LeLonde)

We remove missing data from the the data set before starting the analysis (we show better
procedures for dealing with missing data in Section 3.6).

> Le <- data.frame(na.omit (LeLonde))
and then compute the size of the treated and control groups:

> tr <- which(Le$treated==1)
> ct <- which(Le$treated==0)
> ntr <- length(tr)
> nct <- length(ct)



Thus, the data include 258 treated units and 392 control units. The (unadjusted and there-
fore likely biased) difference in means is then:

> mean(Le$re78[tr]) - mean(Le$re78[ct])
[1] 759

Because the variable treated was not randomly assigned, the pre-treatment covariates
differ between the treated and control groups. To see this, we focus on these pre-treatment
covariates:

> vars <- c("age", "education", "black", "married", "nodegree'", '"re74",
+ Ilre75ll’ Ilhispanicﬂ, Ilu7 H’ Hu75ll’ Ilqlll)

The overall imbalance is given by the £ statistic:
We compute L, statistic, as well as several unidimensional measures of imbalance via our
imbalance function. In our running example:

> imbalance(group=Le$treated, data=Le[vars])

Multivariate Imbalance Measure: L1=0.902
Percentage of local common support: LCS=5.8Y%

Univariate Imbalance Measures:

statistic  type L1 min 25%  50% 75% max
age -0.2562373 (diff) 5.102¢-03 0 0 0.0 -1.0 -6.0
education 0.153635 (diff) 8.464e-02 1 0 1.0 1.0 1.0
black -0.010323 (diff) 1.032e-02 0 O 0.0 0.0 0.0
married -0.009551 (diff) 9.551e-03 0 0 0.0 0.0 0.0
nodegree -0.081217 (diff) 8.122e-02 0 -1 0.0 0.0 0.0
re74 -18.160447 (diff) 4.330e-15 0 0 284.1 806.3 -2139.0
re75 101.501762 (diff) 4.330e-15 0 0 485.6 1238.4 490.4
hispanic -0.010145 (diff) 1.014e-02 0 O 0.0 0.0 0.0
u74 -0.045582 (diff) 4.558e-02 0 0 0.0 0.0 0.0
u7b -0.065555 (diff) 6.556e-02 0 O 0.0 0.0 0.0
ql 7.494021 (Chi2) 1.067e-01 NA NA NA NA NA

Only the overall £; statistic measure includes imbalance with respect to the joint distri-
bution, including all interactions, of the covariates; in the case of our example, £; =0.902.
The unidimensional measures in the table are all computed for each variable separately.

The first column in the table of unidimensional measures, labeled statistic, reports the
difference in means for numerical variables (indicated by the second column, type, reporting
(diff)) or a chi-square difference for categorical variables (when the second column reports
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(Chi2)). The second column, labeled L1, reports the ,C{ measure, which is £ computed for
the j-th variable separately (which of course does not include interactions). The remaining
columns in the table report the difference in the empirical quantile of the distributions of the
two groups for the Oth (min), 25th, 50th, 75th, and 100th (max) percentiles for each variable.
When the variable type is Chi2, the only variable-by-variable measure that is defined in this
table is E{; others are reported missing.

This particular table shows that variables re74 and re75 are imbalanced in the raw data
in many ways and variable age is balanced in means but not in the quantiles of the two
distributions. This table also illustrates the point that balancing only the means between
the treated and control groups does not necessarily guarantee balance in the rest of the
distribution. Most important, of course, is the overall £; measure, since even if the marginal
distribution of every variable is perfectly balanced, the joint distribution can still be highly
imbalanced.

As an aside, we note that for convenience that the function imbalance allows you to
drop some variables before computation:

todrop <- c("treated", "re78")
imbalance (group=Le$treated, data=Le, drop=todrop)

3.2 Coarsened Exact Matching

We now apply the coarsened exact matching algorithm by calling the function cem. The
CEM algorithm performs exact matching on coarsened data to determine matches and then
passes on the uncoarsened data from observations that were matched to estimate the causal
effect. Exact matching works by first sorting all the observations into strata, each of which
has identical values for all the coarsened pre-treatment covariates, and then discarding all
observations within any stratum that does not have at least one observation for each unique
value of the treatment variable.

To run this algorithm, we must choose a type of coarsening for each covariate. We show
how this is done this via a fully automated procedures in Section 3.2.1. Then we show how
to use explicit prior knowledge to choose the coarsening in Section 3.2.2, which is normally
preferable when feasible.

In CEM, the treatment variable may be dichotomous or mutichotomous. Alternatively,
cem may be used for randomized block experiments without specifying a treatment variable;
in this case no strata are deleted and the treatment variable is (randomly) assigned to units
within each strata to ensure that each has at least one observation assigned each value of
the treated variable.

3.2.1 Automated Coarsening

In our running example we have a dichotomous treatment variable. In the following code,
we match on all variables but re78, which is the outcome variable and so should never be
included. Hence we proceed specifying "re78" in argument drop:



> mat <- cem(treatment = "treated", data = Le, drop = "re78",keep.all=TRUE)
Using 'treated'='l' as baseline group

The output object mat contains useful information about the match, including a (small)
table about the number of observations in total, matched, and unmatched, as well as the
results of a call to the imbalance function for information about the quality of the matched
data (unless eval.imbalance is set to FALSE). Since cem bounds the imbalance ex ante, the
most important information in mat is the number of observations matched. But the results
also give the imbalance in the matched data using the same measures as that in the original
data described in Section 3.1. Argument keep.all=TRUE returns the coarsened data set in
the output of cem. Thus,

> mat

GO G1
All 392 258
Matched 95 84
Unmatched 297 174

We can see from these results the number of observations matched and thus retained,
as well as those which were pruned because they were not comparable. By comparing the
imbalance results to the original imbalance table given in the previous section, we can see
that a good match can produce a substantial reduction in imbalance, not only in the means,
but also in the marginal and joint distributions of the data.

The function cem also generates weights for use in the evaluation of imbalance measures
and estimates of the causal effect (stored in mat$w).

3.2.2 Coarsening by Explicit User Choice

The power and simplicity of CEM comes from choosing the coarsening yourself rather than
using the automated algorithm as in the previous section. Choosing the coarsening enables
you to set the maximum level of imbalance ex ante, which is a direct function of the coarsening
you choose. By controlling the coarsening, you also put an explicit bound on the degree of
model dependence and the SATT estimation error.

Fortunately, the coarsening is a fundamentally substantive act, almost synonymous with
the measurement of the original variables. In other words, if you know something about the
data you are analyzing, you almost surely have enough information to choose the coarsening.
(And if you don’t know something about the data, you might ask why you are analyzing it
in the first place!)

In general, we want to set the coarsening for each variable so that substantively indis-
tinguishable values are grouped and assigned the same numerical value. Groups may be of
different sizes if appropriate. Recall that any coarsening during CEM is used only for match-
ing; the original values of the variables are passed on to the analysis stage for all matched
observations.



The function cem treats categorical and numerical variables differently.
For categorical variables, we use the grouping option. For example, variable q1 has the
following levels

> levels(Le$ql)

[1] "agree" "disagree" "neutral"
[4] "no opinion" "strongly agree" "strongly disagree"

Notice that the levels are not ordered in the original data set. One can possibly tranform the
variable q1 from factor to ordered factor using the command ordered in R or may want to
group them in three groups as follows:

> ql.grp <- list(c("strongly agree", "agree"), c("neutral,'"no opinion"), c("strongly di

For numerical variables, we use the cutpoints option. Thus, for example, in the US ed-
ucational system, the following discretization of years of education corresponds to different
levels of school

Grade school 0-6
Middle school 7-8
High school 9-12
College 13-16

Graduate school >16

Using these natural breaks in the data to create the coarsening is generally a good approach
and usually better than caliper matching in this context, as it would disregard these mean-
ingful breaks. (The venerable technique of caliper matching of course may be useful for
certain other types of data.) Because in our data, no respondents fall in the last category,

> table(Le$education)

3 4 5 6 7 8 9 10 11 12 13 14 15
1 5 4 6 12 55 106 146 173 113 19 9 1

we define the cutpoints as:
> educut <- c¢(0, 6.5, 8.5, 12.5, 17)
and run cem adding only the grouping and cutpoints options, leaving the rest unchanged:

> matl <- cem(treatment = "treated", data = Le, drop = "re78",
+ cutpoints = list(education=educut), grouping=list(ql=ql.grp))

Using 'treated'='l' as baseline group

> matl
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GO G1
All 392 258
Matched 158 115
Unmatched 234 143

As we can see, this matching solution differs from that resulting from our automated approach
in the previous section. For comparison, the automatic cutpoints produced by cem are stored
in the output object in slot breaks. So, for example, our automated coarsening produced:

> mat$breaks$education
[1] 3.0 4.2 5.4 6.6 7.8 9.0 10.2 11.4 12.6 13.8 15.0

whereas we can recover our personal choice of cutpoints as

> matl$breaks$education

[1] 0.0 6.5 8.5 12.5 17.0

3.3 Progressive coarsening

Although the maximum imbalance is fixed ex ante by the user’s coarsening choices, the
number of observations matched is determined as a consequence of the matching procedure.
If you are dissatisfied with the number of observations available after matching, and you feel
that it is substantively appropriate to coarsen further, then just increase the coarsening (by
using fewer cutpoints). The result will be additional matches and of course a concommitant
increase in the maximum possible imbalance between the treated and control groups. This
is easy with CEM because CEM is a monotonic imbalance bounding (MIB) method, which
means that increasing the imbalance on one variable (by widening the coarsened bin sizes)
will not change the maximum imbalance on any other variable. MIB thus enables you to
tinker with the solution one variable at a time to quickly produce a satisfactory result, if one
is feasible.

If, however, you feel that additional coarsening is not appropriate, than too few obser-
ations may indicate that your data contains insufficient information to estimate the causal
effects of interest without model dependence; in that situation, you either give up or will
have to attempt adjusting for the pre-treatment covariates via modeling assumptions.

Suppose, instead, that you are unsure whether to coarsen further or how much to coarsen,
and are willing to entertain alternative matching solutions. We offer here an automated way
to compute these solutions. The idea is to relax the initial cem solution selectively and
automatically, to prune equivalent solutions, and to present them in a convenient manner
so that users can ascertain where the difficulties in matching in these data can be found
and what choices would produce which outcomes in terms of the numbers of observations
matched.

For categorical variables, the algorithm considers the numerical values associated to each
level of the variable. In R the numerical values associated to the levels go from 1 to the
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number of levels, say k. The coarsening occurs by partitioning the interval [1, k] into intervals
of growing size starting from, say, ¢ = 1. So in all cases, coarsening occurs by grouping
adjacent levels from “left” to “right”. This is of course not completely appropriate for pure
unordered categorical variables, but to treat them in a proper way additional combinatorics
would be necessary. The progressive coarsening is instead intended as an instrument which
gives a feeling on which variable is more likely to prevent matching for a given data set.

We start by illustrating what happens when we relax a CEM solution “by hand”. The
following three runs show the effect on the matching solution (in terms of the number of
observations and imbalance) when the coarsening for one variable (age) is relaxed from 10
to 6 to 3 bins. As can be seen, fewer cutpoints (which means larger bins) produces more
matched units and high maximum (and in this case actual) imbalance:

> cem("treated", Le, cutpoints = list(age=10), drop="re78", grouping=list(ql=ql.grp))

Using 'treated'='l' as baseline group
GO G1

All 392 258

Matched 142 100

Unmatched 250 158

> cem("treated", Le, cutpoints = list(age=6), drop="re78", grouping=list(ql=ql.grp))

Using 'treated'='l' as baseline group
GO G1

A1l 392 258

Matched 169 125

Unmatched 223 133

> cem("treated", Le, cutpoints = list(age=3), drop="re78", grouping=list(ql=ql.grp))

Using 'treated'='l' as baseline group
GO G1

A1l 392 258

Matched 217 147

Unmatched 175 111

We automate this progressive coarsening procedure here in the relax.cem function. This
function starts with the output of cem and relaxes variables one (depth=1), two (depth=2),
or three (depth=3) at a time, while optionally keeping unchanged a chosen subset of the
variables which we know well or have important effects on the outcome (fixed). The function
also allows one to specify the minimal number of breaks of each variable (the default limit
being 1). We begin with this example (the argument perc=0.3 is passed to the plot function
and implies that only the solutions with at least 30% of the units are matched)

> tab <- relax.cem(mat, Le, depth=1, perc=0.3)

12



Executing 47 different relaxations

I
| | 0%

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
A1l 392 258
Matched 181 130
Unmatched 211 128
age(1)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
A1l 392 258
Matched 173 123
Unmatched 219 135
age(2)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0
Sample sizes:
GO G1
All 392 258
Matched 163 119
Unmatched 229 139
age(3)
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: O

Sample sizes:
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GO G1
All 392 258
Matched 148 111
Unmatched 244 147
age (4)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 131 101
Unmatched 261 157
age(5)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 131 101
Unmatched 261 157
age (6)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 124 096
Unmatched 268 162
age (7)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0
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Sample sizes:

GO G1
A1l 392 258
Matched 124 96
Unmatched 268 162
age(8)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
A1l 392 258
Matched 124 096
Unmatched 268 162
age(9)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 156 109
Unmatched 236 149
education(1)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 126 95
Unmatched 266 163
education(2)
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matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 151 104
Unmatched 241 154
education(3)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 125 93
Unmatched 267 165
education(4)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 121 91
Unmatched 271 167
education(b)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0
Sample sizes:

GO G1

A1l 392 258
Matched 124 90
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Unmatched 268 168
education(6)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 121 91
Unmatched 271 167
education(7)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 96 85
Unmatched 296 173
education(8)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 95 84
Unmatched 297 174
education(9)

I
I | 20%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0
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Sample sizes:

GO G1
All 392 258
Matched 109 90
Unmatched 283 168
black(1)

I
I | 30%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 108 93
Unmatched 284 165
married(1)

|
I | 40%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 95 84
Unmatched 297 174
nodegree (1)

I
I | 50%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0
Sample sizes:

GO G1
A1l 392 258
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Matched 107 90
Unmatched 285 168
re74(1)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 107 90
Unmatched 285 168
re74(2)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 106 89
Unmatched 286 169
re74(3)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0
Sample sizes:
GO G1
All 392 258
Matched 103 87
Unmatched 289 171
re74(4)
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: O

Sample sizes:
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GO G1
All 392 258
Matched 101 86
Unmatched 291 172
re74(5)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 101 86
Unmatched 291 172
re74(6)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 101 86
Unmatched 291 172
re74(7)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0
Sample sizes:
GO G1
A1l 392 258
Matched 101 86
Unmatched 291 172
re74(8)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0
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Sample sizes:

GO G1
All 392 258
Matched 101 86
Unmatched 291 172
re74(9)

I
| | 60%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 98 89
Unmatched 294 169
re75(1)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
A1l 392 258
Matched 98 89
Unmatched 294 169
re75(2)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
A1l 392 258
Matched 98 89
Unmatched 294 169
re75(3)
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matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 98 89
Unmatched 294 169
re75(4)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 96 87
Unmatched 296 171
re75(5)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 96 87
Unmatched 296 171
re75(6)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0
Sample sizes:

GO G1

A1l 392 258
Matched 96 87
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Unmatched 296 171
re75(7)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 96 87
Unmatched 296 171
re75(8)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 96 87
Unmatched 296 171
re75(9)

|
I | 70%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 100 89
Unmatched 292 169
hispanic(1)

I
I | 80%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
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CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 102 091
Unmatched 290 167
u74(1)

I
I | 90%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: O

Sample sizes:

GO G1
All 392 258
Matched 102 092
Unmatched 290 166
u75(1)

I
I | 100%
matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql

CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 197 146
Unmatched 195 112
ql(1)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0
Sample sizes:

GO G1
A1l 392 258
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Matched 155 119
Unmatched 237 139
ql1(2)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 137 94
Unmatched 255 164
ql(3)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 123 91
Unmatched 269 167
ql(4)

matching on variables:age education black married nodegree re74 re75 hispanic u74 u75 ql
CEM Subclasses: 0

Sample sizes:

GO G1
All 392 258
Matched 105 88
Unmatched 287 170
q1(5)

After all possible coarsening relaxations are attempted, the function returns a list of
tables, one per group (i.e. treated and control). Each row of the tables contain information
about the number of treated and control units matched, the value of the £; measure, and
the type of relaxation made. Each table is the sorted according to the number of treated (or
control) units matched.

The user may want to see the output of tab$G1l or tab$GO but these tables may be very
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Figure 1: Example of the graphical output of relax.cem.

long, and so we provide a method plot to view these tables more conveniently. The output
of plot(tab) is plotted in Figure 1 from which it is seen that the most difficult variables
to match are age and education. On the z-axis of the plot the variable and the number of
equally sized bins used for the coarsening are used (color-coded by variable). On the y-axis
on the right is the absolute number of treated units matched, while the left side y-axis reports
the same number in percentages. The numbers below the dots in the graphs represent the £,
measure corresponding to that matching solution. This graph also gives a feeling of the MIB
behaviour of cem. When the tables produced by relax.cem are too large, the plot function,
allows for some reduction like printing only the best matching solutions (in the terms of
number of treated units matched), removing duplicates (i.e. different coarsenings may lead
to the same matching solution), or printing only solution where at least some percentage of
treated units, have been matched, or a combination of these. For more information refer to
the reference manual for the function relax.plot which can be called directly instead of
plot.

Here is one example of use of plot in which we specify that only solutions with at least
60% of the treated units are matched and duplicated solutions are removed. The output can
be seen in Figure 2

> plot(tab, group="1", perc=0.35,unique=TRUE)
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Figure 2: Example of reduced graphical output of relax.cem.

3.4 Restricting the Matching Solution to a k-to-k£ Match

By default, CEM uses maximal information, resulting in strata that may include different
numbers of treated and control units. To compensate for the differential strata sizes, cem also
returns weights to be used in subsequent analyses. Although this is generally the best option,
a user with enough data may opt for a k-to-k solution to avoid the slight inconvenience of
needing to use weights.

The function k2k accomplishes this by pruning observations from a cem solution within
each stratum until the solution contains the same number of treated and control units in
all strata. Pruning occurs within a stratum (for which observations are indistuinguishable
to cem proper) by using nearest neighbor selection using a distance function specified by
the user (including euclidean, maximum, manhattan, canberra, binary, or minkowski). By
default method is set to NULL, which means random matching inside cem strata, an option
that may reduce the chance for bias. (For the Minkowski distance the power can be specified
via the argument mpower. For more information on method != NULL, refer to dist help
page.) The option keep.all=TRUE must be used in cem calls otherwise k2k will not work.

Here is an example of this approach. First, by running cem:

> mat <- cem(treatment="treated",data=Le, drop="re78",6keep.all=TRUE)
Using 'treated'='l' as baseline group

> mat
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GO G1
All 392 258
Matched 95 84
Unmatched 297 174

> mat$k2k

[1] FALSE

and now pruning to a k-to-k solution, using the euclidean distance within CEM strata:

> mat2 <- k2k(mat, Le, "euclidean", 1)

Transforming factor/charater variable to numeric to calculate distance in k2k matching..
> mat2

GO G1
All 392 258
Matched 70 70
Unmatched 322 188

> mat2$k2k
[1] TRUE

Alternatively, we can produce the same result in one step by adding the k2k=TRUE option to
the original cem call.

3.5 Estimating the Causal Effect from cem output

Using the output from cem, we can estimate SATT via the att function. The simplest
approach requires a weighted difference in means (unless k2k was used, in which case no
weights are required). For convenience, we compute this as a regression of the outcome
variable on a constant and the treatment variable,

> data(LL)
> mat <- cem(treatment="treated", data=LL, drop="re78")

Using 'treated'='l' as baseline group

> est <- att(mat, re78 ~ treated, data = LL)
> est
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GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 550.962564 (p.value=0.368242)
95% conf. interval: [-647.777701, 1749.702830]

where the SATT estimate is the coefficient on the treated variable, in our case 550.96. The
function att allows for R’s standard formula interface and, by default, uses a linear model
to estimate the att using the weights produced by cem.

If exact matching (i.e., without coarsening) was chosen this procedure is appropriate as
is. In other situations, with some coarsening, some imbalance remains in the matched data.
The remaining imbalance is strictly bounded by the level of coarsening, which can be seen
by any remaining variation within the coarsened bins. Thus, a reasonable approach in this
common situation is to attempt to adjust for the remaining imbalance via a statistical model.
(Modeling assumptions for models applied to the matched data are much less consequential
than they would otherwise be because CEM is known to strictly bound the level of model
dependence.) To apply a statistical model to control for the remaining imbalance, we use
the formula interface in att. For example:

> est2 <- att(mat, re78 ~ treated + re74, data = LL)
> est2

GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)
95% conf. interval: [-636.606542, 1742.834014]

The user can also specify the option model which accepts one of the following string
arguments

e linear or 1m (the default) for linear model, when the treatment effect is supposed to
be homogeneous

> att(mat, re78 ~ treated + re74 , data = LL, model="linear")
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GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)
95% conf. interval: [-636.606542, 1742.834014]

e linear-RE or 1me for linear model with random effects in cem strata, for non-homogeneous
treatment effect

> att(mat, re78 ~ treated + re74 , data = LL, model="linear-RE")

GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear random effect model on CEM matched data:

SATT point estimate: 552.448961 (p.value=0.000000)
95% conf. interval: [364.067068, 740.830853]

e logistic or logit for dichotomous response variable?, for homogeneous treatment
effect.

e forest or rf for random forest model, also for non-homogeneous treatment effect. It
accepts continuous, dichotomous or counting outcomes

> att(mat, re78 ~ treated + re74 , data = LL, model="forest")

GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Random forest model on CEM matched data:

SATT point estimate: 530.170726 (p.value=0.555232)
95% conf. interval: [-1231.224566, 2291.566018]

2We do not provide an example here, model the syntax is the same for the other models.
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All the above models run on the CEM matched subsamples, so the quantity of interest may
change in case of non-homogeneous treatment effect. The option extrapolate, if set TRUE,
extrapolates each of the above models also to the set of treated units not matched. In this
case the quantity of interest is kept fixed but the estimation is more model dependent.

> att(mat, re78 ~ treated + re74 , data = LL, model="linear", extra=TRUE)

GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model with extrapolation:

SATT point estimate: 674.337762 (p.value=0.347286)
95% conf. interval: [-236.091964, 1584.767489]

> att(mat, re78 ~ treated + re74 , data = LL, model="linear-RE", extra=TRUE)

GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear random effect model with extrapolation:

SATT point estimate: 902.087484 (p.value=0.000000)
95% conf. interval: [816.567245, 987.607724]

> att(mat, re78 ~ treated + re74 , data = LL, model="rf", extra=TRUE)

GO G1
All 425 297
Matched 222 163
Unmatched 203 134

Random forest model with extrapolation:

SATT point estimate: 86.342750 (p.value=0.895403)
95% conf. interval: [-1200.849336, 1373.534835]

As Figure 3 shows, it is also possible to plot the results of the SATT estimation as follows

> est3 <- att(mat, re78 ~ treated + re74 , data = LL)
> est3
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Figure 3: Example of a plot of the output of att. The top panel gives observation-level
causal effect estimates sorted in numerical order and colored in ranges — negative (in blue),
not significantly different from zero (black), or positive (red). For each range of effects,
the bottom panel gives parallel plots; each line in a parallel plot represents the (covariate)

characteristics of a single observation.

GO G1
A1l 425 297
Matched 222 163

Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)

95% conf. interval: [-636.606542,

1742.834014]

"re74", "re75"))

> plot(est3, mat, LL, vars=c("education", "age",

For more information, see the reference manual entry for att.
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3.6 Matching and Missing Data

Almost all previous methods of matching assume the absence of any missing values. In
contrast, CEM offers two valid approaches to dealing with missing values (item nonresponse).
In the first, where we treat missing values as one of the values of the variables, is appropriate
when “NA” is a valid value that is not really missing (such as when “no opinion” really means
no opinion); see Section 3.6.1. The other is a special procedure to allow for multiply imputed
data in CEM, as described in Section 3.6.2.

3.6.1 Matching on Missingness

In the next example, we use our original LeLonde data with missing values and we compare
the result with Le from which we dropped the NA values. For comparability, we use the same
cutpoints we used in Section 3.2 on the Le data. The cutpoints are contained in mat$breaks

> mat3 <- cem("treated", LeLonde, drop="re78", cutpoints = mat$breaks, grouping=list(qls
The data contain missing values. CEM will match on them; see the manual for other option
Using 'treated'='l' as baseline group

> mat3

GO G1
All 425 297
Matched 134 101
Unmatched 291 196

and we compare the above with the solution obtained by dropping the observations with
missing data

> mat4 <- cem("treated", Le, drop="re78", cutpoints = mat$breaks, grouping=list(ql=ql.gz
Using 'treated'='l' as baseline group
> mat4

GO G1
All 392 258
Matched 132 100
Unmatched 260 158

and, as expected, the two solutions differ somewhat. The gain (in terms of number of
matched units) decreases as the number of covariates increases.
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3.6.2 Matching Multiply Imputed Data

Consider a data set to be matched, some of which is missing. One approach to analyzing
data with missing values is multiple imputation, which involves creating m (usually about
m = 5) data sets, each of which is the same as the original except that the missing values
have been imputed in each. Uncertainty in the values of the missing cells is represented by
variation in the imputations across the different imputed data sets (King et al., 2001).

As an example we take the original LeLonde data with missing values

> summary (LeLonde)

treated age education black married
Min. :0.000 Min. :17.0 Min. : 3.0 Min. :0.0 Min. :0.000
1st Qu.:0.000 1st Qu.:19.0 1st Qu.: 9.0 1st Qu.:1.0 1st Qu.:0.000
Median :0.000 Median :23.0 Median :10.0 Median :1.0 Median :0.000
Mean :0.411 Mean :24.5 Mean :10.3 Mean :0.8 Mean :0.163
3rd Qu.:1.000 3rd Qu.:27.0 3rd Qu.:11.0 3rd Qu.:1.0 3rd Qu.:0.000
Max. :1.000 Max. :55.0 Max. :16.0 Max. :1.0 Max. :1.000
NA's :8 NA's :8 NA's 01 NA's :9
nodegree re74 re75 re78
Min. :0.000 Min. : 0 Min. : 0 Min. : 0
1st Qu.:1.000 1st Qu.: 0 1st Qu.: 0 1st Qu.: 0
Median :1.000 Median : 824 Median : 941 Median : 4033
Mean :0.778 Mean : 3662 Mean : 3051 Mean : 5486
3rd Qu.:1.000 3rd Qu.: 5237 3rd Qu.: 3993 3rd Qu.: 8813
Max. :1.000 Max. 139571 Max. : 37432 Max. 160308
NA's :5 NA's :8 NA's 14 NA's e
hispanic ur4 u7b ql
Min. :0.000  Min. :0.000  Min. :0.000 agree 111
1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.000 disagree 0121
Median :0.000 Median :0.000 Median :0.000 neutral 1129
Mean :0.104 Mean :0.453 Mean :0.402 no opinion :117
3rd Qu.:0.000 3rd Qu.:1.000 3rd Qu.:1.000 strongly agree 1121
Max. :1.000 Max. :1.000 Max. :1.000 strongly disagree:118
NA's 111 NA's :3 NA's 3 NA's : b

Now we use Amelia package (Honaker, King and Blackwell, 2010) to create multiply imputed
data sets:

require (Amelia)

set.seed(123)

imputed <- amelia(LeLonde,noms=c("black","hispanic","treated", "married", "nodegree",
”1174 n uu75u ”ql u))

+ VvV Vv V
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-- Imputation 1 --
1 2 3 4

-- Imputation 2 --
1 2 3

-- Imputation 3 --
1 2 3

-- Imputation 4 --
1 2 3

-- Imputation 5 --

1 2 3 4
> imputed <- imputed$imputations[1:5]

Now imputed contains a list of 5 multiply imputed versions of LeLonde. We pass this list
to the cem function in the argument datalist and cem produces a set of multiply imputed
solutions, as usual with the original uncoarsened values of the variables, but now assigning
each multiply imputed observation to the strata where it falls most frequently. The output
of cem is a list of cem.match solutions (named matchl, match2,..., match5). (Be sure to
also name the original data frame in option data or cem will merely run the basic algorithm
five separate times on each of the input data sets, a procedure that can be useful for batch
processing of data to be matched, but is not recommended for multiply imputed data sets
since the strata will not be the same across the data sets.) For example:

> mat2 <- cem("treated", datalist=imputed, drop="re78", data=LeLonde, grouping=list(ql=g
Using 'treated'='l' as baseline group
> mat2

GO G1
All 425 297
Matched 127 96
Unmatched 298 201

Now we estimate SATT via the usual multiple imputation combining formulas (averaging
the point estimates and within and between variances, as usual; see King et al. 2001). The
function att implements these procedures:
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> out <- att(mat2, re78 ~ treated, data=imputed)
> out

Linear regression model on CEM matched data:

SATT point estimate: 1011.046304 (p.value=0.218104)
95% conf. interval: [-597.947467, 2620.040075]

3.7 Creating paired samples

In same cases, it is useful to apply CEM so some data to create paired matched samples.
Given an output of cem, the function pair produces two sets of indexes corresponding to
pair matched units.

\

data(LL)

> # cem match: automatic bin choice
> mat <- cem(data=LL, drop="re78")
> # we want a set of paired units

> psample <- pair(mat, data=LL)

Total number of units paired in CEM strata: 352
Total number of units matched: 722

each pair of observation has a different strata number

> table(psample$paired)

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
41 42 43 44 45 46 47 48 49 50 b1 52 53 54 55 56 57 58 59
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
61 62 63 64 65 66 67 68 69 VO T1 Y2 73 74 75 76 T7 T8 79
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
81 82 83 84 85 8 87 838 89 90 91 92 93 94 95 96 97 98 99
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
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not all observations can be matched in cem strata

> psample$paired[1:100]

15993
NA
16006
NA
16019
NA
16032
NA
16045
3
16058
NA
16071
NA
16084
8

the remaining observations are then matched and the final list of all paired units is contained

15994
NA
16007
NA
16020
NA
16033
NA
16046
NA
16059
NA
16072
6
16085
NA

15995
NA
16008
NA
16021
NA
16034
NA
16047
NA
16060
NA
16073
NA
16086
NA

156996
NA
16009
NA
16022
NA
16035
NA
16048
4
16061
NA
16074
NA
16087
9

in the filed full.paired

15997
NA
16010
NA
16023
NA
16036
NA
16049
NA
16062
NA
16075
7
16088
NA

> table(psample$full.paired)

1
2
21
2
41
2
61
2
81
2
101 1

121 1

141 1

161 1

2 3
2 2
22 23
2 2
42 43
2 2
62 63
2 2
82 83
2 2
02 103
2 2
22 123
2 2
42 143
2 2
62 163
2 2

4
2
24
2
44
2
64
2
84
2
104 1

124 1

144 1

164 1

5 6
2 2
25 26
2 2
45 46
2 2
65 66
2 2
85 86
2 2
05 106
2 2
25 126
2 2
45 146
2 2
65 166
2 2

27

47

67

87
2
107 1
2
127 1
2
147 1
2
167 1

15998
NA
16011
NA
16024

16037
NA
16050
NA
16063
NA
16076
NA
16089
9

8 9
2 2
28 29
2 2
48 49
2 2
68 69
2 2
88 89
2 2
08 109
2 2
28 129
2 2
48 149
2 2
68 169
2 2

15999
NA
16012
NA
16025
NA
16038
NA
16051
NA
16064
NA
16077
NA
16090
NA

10

30

50

70

90

110 1

130 1

150 1

170 1
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16000

NA

16013

NA

16026

NA

16039

NA

16052

NA

16065

NA

16078

NA

16091

11

31

51

71

91

11

31

51

71

NA

12

32

52

72

92

112

132

152

172

16001
NA
16014
NA
16027
NA
16040
NA
16053
NA
16066
NA
16079
NA
16092
NA

13

33

53

73

93

113 1

133 1

163 1

173 1

16002

NA

16015

NA

16028

1

16041

NA

16054

NA

16067

NA

16080

14

34

54

74

94

14

34

54

74

NA

15

35

55

75

95

115

135

155

175

16003
NA
16016
NA
16029
NA
16042
NA
16055
NA
16068
NA
16081
NA

16

36

56

76

96

116 1

136 1

156 1

176 1

16004

NA

16017

NA

16030

NA

16043

NA

16056

NA

16069

16082

17

37

57

77

o7

17

37

57

77

NA

18

38

58

78

98

118

138

158

178

16005

NA

16018

NA

16031

NA

16044

NA

16057

NA

16070

16083

19

39

59

79

99

119

139

159

179

NA
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181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 2564 265 2566 257 258 259 260
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

361
2

> psample$full.paired[1:10]

15993 15994 15995 15996 15997 15998 15999 16000 16001 16002
247 299 320 212 228 226 197 341 360 230

paired; if they cannot be paired, the function indicates which units are left without a mate.

> # cem match: automatic bin choice, we drop one row from the data set

> matl <- cem(data=LL[-1,], drop="re78")

> # we want a set of paired units but we have an odd number of units in the data
> psample <- pair(matl, data=LL[-1,])

Total number of units paired in CEM strata: 352
Total number of units matched: 720
Unit corresponding to row ~15994', not paired

> table(psample$full.paired)

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
41 42 43 44 45 46 47 48 49 50 51 52 53 b4 55 56 57 58 59 60
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61 62 63 64 65 66 67 68 69 7O Y1 Y2 73 74 75 76 77 78 79 80
81 82 83 84 85 8 87 83 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
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