Package 'ccpsyc'

October 12, 2022

Type Package

Title Methods for Cross-Cultural Psychology

Version 0.2.6

Description With the development of new cross-cultural methods this package is intended to combine multiple functions automating and simplifying functions providing a unified analysis approach for commonly employed methods.

License GPL-3

Depends R (>= 4.0.0)

Imports magrittr, dplyr, lavaan, readr, MCMCpack, psych, ufs, xlsx, tibble, rlang, RcppAlgos, tidyr

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Author Johannes Karl [aut, cre]

Maintainer Johannes Karl < johannes.a.karl@gmail.com>

Repository CRAN

Date/Publication 2022-05-11 05:50:06 UTC

R topics documented:

boot_inv_eff	2
clearing_fa	3
dMACS	4
equival	4
example	5
format_boot_inv_eff	6
gamma_hat_scaled	7

invariance_eff	7
lavTestScore.clean	8
mg_rel_table	
MNCI	9
multi_group_eff	
pancultural	10
prost	11
release_bonferroni	
splitgroup	12
	13

Index

boot_inv_eff Bootstrapped pairwise differences in psychometric function of groups.

Description

Bootstrapped pairwise differences in psychometric function of groups.

Usage

```
boot_inv_eff(
    n,
    n_sample,
    df,
    items,
    group,
    eff_sizes = c("SDI2", "UDI2", "WSDI", "WUDI", "dmacs"),
    seed = 2711
)
```

Arguments

n	Number of bootstraps
n_sample	Number of participants to sample
df	Data to resample
items	Items to resample for the model as vector of strings
group	String variable indicating grouping variable
eff_sizes	Effect sizes to be returned
seed	Seed for replicability

Value

Returns a dataframe with the bootstrapped effect sizes based on the invariance_eff function in this package for two country comparisons.

clearing_fa

Examples

clearing_fa

Function to quickly organize and clear psych factor loadings

Description

Function to quickly organize and clear psych factor loadings

Usage

```
clearing_fa(
   psych_fa,
   cutoff = 0.4,
   dbl_dist = 0.2,
   key_file = NULL,
   cleaned = TRUE
)
```

Arguments

psych_fa	Output from the psych package, can be either fa or principal with at least two dimensions
cutoff	Desired cutoff below which loadings are omitted defaults to .40
dbl_dist	Desired distance between highest and second highest loading for an item to remove double loadings, defaults to .20
key_file	Optional: Either a .csv or .xlsx file with at least two columns: 1 labeled item containing the item labels as in the data frame, 2 a column labeled wording containing the item wording.
cleaned	If true (default), only the cleaned solution with a message for descriptive stats are returned. If false the function returns a list of data frames one cleaned and one showing all in-between steps

Value

clean This column contains the assignment after removing NAs and double loadings dir This column contains the direction (positive or negative) of the highest loading.

equival

Examples

```
library(psych)
fa_solution <- fa(example[c(paste0("help", 1:6, "m"), c(paste0("voice", 1:5, "m")))], nfactors = 2)
clearing_fa(fa_solution)</pre>
```

```
dMACS
```

Computes dMACS

Description

Computes dMACS

Usage

dMACS(fit.cfa, group1, group2)

Arguments

fit.cfa	Lavaan output object with two groups and a single factor.
group1	String for first group in the grouping factor
group2	String for second group in the grouping factor

Value

Returns dMACS for each item.

Examples

dMACS

equival	One-step equivalence testing The function allows for a simple one step
	test of configural, metric, and scalar equivalence between multiple
	groups.

Description

One-step equivalence testing The function allows for a simple one step test of configural, metric, and scalar equivalence between multiple groups.

Usage

```
equival(x, dat, group, standart_lv = TRUE, orthog = TRUE, estim = "MLM")
```

4

example

Arguments

x	CFA model identical to models provided to lavaan.
dat	A data frame or tibble containing the raw data for the specified model.
group	A character string that indicates the column of dat that contains the grouping variable. e.g "country"
standart_lv	A boolean that indicates whether the latent variables should be standardised.
orthog	A boolean that indicates whether the latent variables should be orthogonal.
estim	A string indicating the estimator to be used MLM for complete data and MLR for incomplete data. Defaults to MLM

Value

Returns a data frame with the fit indices for each model and delta values comparing the different levels of equivalence. For a step by step interpretation see.

Examples

example

Help and Voice Behavior in different countries

Description

Help and Voice Behavior in different countries

Usage

example

Format

A data frame with 5201 rows and 13 variables:

- country Country of sample
- help1m First Help Item
- help2m Second Help Item
- help3m Third Help Item
- help4m Fourth Help Item
- help5m Fifth Help Item

help6m Sixth Help Item
help7m Seventh Help Item
voice1m First Voice Item
voice2m Second Voice Item
voice3m Third Voice Item
voice4m Fourth Voice Item
...

Source

https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01507/full

format_boot_inv_eff Improving boot effectsize output

Description

Improving boot effectsize output

Usage

```
format_boot_inv_eff(x)
```

Arguments

х

The output of a bootstrapped invariance effect call

Value

A formatted tibble with all effect sizes reported by boot_inv_eff from this package and significant determined by 95% CIs either crossing 0 or .30

Examples

6

gamma_hat_scaled Gamma Hat from MLM fitted lavaan object

Description

Gamma Hat from MLM fitted lavaan object

Usage

```
gamma_hat_scaled(object)
```

Arguments

object A lavaan output object that was fitted with a MLM estimator

invariance_eff Invariance Effect Sizes

Description

Invariance Effect Sizes

Usage

```
invariance_eff(
   df,
   items,
   group,
   nodewidth = 0.01,
   intercept_fix = 1,
   lowerLV = -10,
   upperLV = 10,
   ....
)
```

Arguments

df	Multi-group dataframe
items	vector of items for the target construct
group	string defining grouping variable
nodewidth	Steps tested
intercept_fix	Which item should have a fixed intercept defaults to the first item
lowerLV	Lower range of latent variable tested
upperLV	Upper range of latent variable tested
	Passes on to lavaan CFA functions

Value

Returns a dataframe with a row for each item comprising the uni-factorial solution and one column for each invariance effect size. A detailed interpretation of each effect size is provided in Gunn et al. (2019).

lavTestScore.clean Get more comprehensible output from lavTestScore

Description

Get more comprehensible output from lavTestScore

Usage

```
lavTestScore.clean(lavaan.fit, ndigit = 3, ...)
```

Arguments

lavaan.fit	Model fitted with lavaan
ndigit	Defines the rounding
	Arguments passed to lavTestScore

Value

Returns a dataframe which contains one row for each constrained parameter in the model together with a chi-square test indicating whether the parameter significantly differs between groups. This is a cleaned version identical to lavTestScore.

Author(s)

Maksim Rudnev

mg_rel_table Multi-group reliability table

Description

Multi-group reliability table

Usage

```
mg_rel_table(df_s, measure_list, group, digitn = 3, seed = 2711)
```

MNCI

Arguments

df_s	The full dataframe with all groups and items.
<pre>measure_list</pre>	A named list of vectors containing the item names. The format should be list(measure_name1 = c('Item1', 'Item2', 'Item3'), measure_name2 = c('Item1', 'Item2', 'Item3'))
group	Grouping variable in the dataset as string for example "country"
digitn	Controls the amount of digits shown in the output
seed	Seed for the bootstrapped confidence intervals

Value

Returns a formatted dataframe with the reliability of all constructs by group

MNCI	Non-Centrality Index
Description	
Non-Centrality In	ndex
Usage	
MNCI(object)	
Arguments	
object	A lavaan object that was fitted with a MLM estimator/
multi_group_eff	Pairwise Effect sizes of similarities and difference in the psychometric structure between multiple groups

Description

Pairwise Effect sizes of similarities and difference in the psychometric structure between multiple groups

Usage

```
multi_group_eff(
    df,
    group,
    items,
    eff_sizes = c("SDI2", "UDI2", "WSDI", "WUDI", "dmacs")
)
```

Arguments

df	Multi-Group data frame
group	String variable indicating the grouping variable
items	Vector of strings indicating items for the uni-factorial construct
eff_sizes	Effect sizes to be returned

Value

The function returns a list of dataframes with the first reporting the averaged results per item and the second reporting the pairwise comparisons.

Examples

```
example_s <- dplyr::filter(example, country %in% c("NZ", "BRA"))
multi_group_eff(df = example, group = "country", items = paste0("voice",1:3, "m"))</pre>
```

pancultural

Creating a Pan-Cultural Loading Matrix

Description

Creating a Pan-Cultural Loading Matrix

Usage

```
pancultural(df, group, nfactors)
```

Arguments

df	A data frame contains the variables for the exploratory factor analysis and the grouping variable.
group	The name of the column tht cointains the grouping supplied as a string.
nfactors	The number of factors expected.

Value

returns a Pan-Cultural loading matrix.

Examples

```
pancultural(example, "country", 5)
```

prost

Description

Procrustes rotation function, returning Tucker's Phi

Usage

prost(loading, norm, rotated = FALSE, digits = 2)

Arguments

loading	A correlation matrix to be rotated towards a target
norm	A correlation matrix that is the goal of the rotation
rotated	A TRUE/FALSE operator indicating if the rotated matrix should be returned in addition to Tucker's Phi
digits	The number of digits to be displayed in the output, defaults to 2

Value

Returns Tuckers Phi evaluating the congruence of the loading matrix to the normative matrix

release_bonferroni	Examening chisquare improvement if paths are unconstrained. The function returns the paths to be unconstrained based on chisquare change. Adjusted P-values are calculated based on iterative Bonfer- roni corrections.
	Tom corrections.

Description

Examening chisquare improvement if paths are unconstrained. The function returns the paths to be unconstrained based on chisquare change. Adjusted P-values are calculated based on iterative Bonferroni corrections.

Usage

```
release_bonferroni(lavaan.fit, ndigit = 3, exp_p = 0.05, ...)
```

Arguments

lavaan.fit	Model fitted with lavaan
ndigit	Number of digits to round chi and p to
exp_p	Expected p-value
	Arguments passed to lavTestScore

Value

Returns a dataframe representing a Bonferroni corrected version of lavTestScore.clean.

Author(s)

Maksim Rudnev

splitgroup

Description

Split by groups

Usage

```
splitgroup(df, group, named = FALSE, name.list = NA)
```

Split by groups

Arguments

df	Dataframe
group	Variable from the dataset that defines the groups
named	TRUE/FALSE argument wheter the resulting list should be named
name.list	Supply a list of names same length as number of groups

Value

Returns a list of dataframes with only the selected groups

Index

* datasets example, 5 $\texttt{boot_inv_eff, 2}$ $clearing_{fa}, 3$ dMACS, 4 equival, 4 example, 5 format_boot_inv_eff, 6 $\texttt{gamma_hat_scaled, 7}$ invariance_eff,7 lavTestScore, 8 lavTestScore.clean, 8, 12 mg_rel_table, 8 MNCI, 9 multi_group_eff, 9 pancultural, 10prost, 11

 $\texttt{release_bonferroni}, 11$

splitgroup, 12