Semiparametric Least Squares Inference for Causal Effects with R

Pierre Chausse* Mihai Giurcanu! Marinela Capanu? George Luta$

Abstract

This vignette explains how to use the causalSLSE package to estimate causal effects using the
semiparametric least squares methods developed by Giurcanu et al. (2023). We describe the classes and
methods implemented in the package as well as how they can be used to analyze synthetic and real data.

1 Introduction

This document presents the causalSLSE package describing the functions implemented in the package. It is
intended for users interested in the details about the methods presented in Giurcanu et al. (2023) and how
they are implemented. We first present the theory and then present the package in the following sections.

The general semiparametric additive regression model is

Y =B0(1=2)+ B2+ Y froX)(1—2)+ Y fr(X)Z +¢)
=1 =1

=61 -2)+B1Z+ fo(X)(1 - Z) + fL(X)Z + &,

where Y € R is the response variable, Z is the treatment indicator defined as Z = 1 for the treated and Z = 0
for the nontreated, and X € R? is a g-vector of confounders. We approximate this model by the following
regression model:

q q
Y =B(1=2)+BZ+ Y Ul —2)+ > v iUinZ +¢ o)
=1 =1

=Bo(1 - 2)+ BiZ + 4t Uo(1 — Z) +yiU Z + ¢,

where Uy, = w1 (Xi) = (uj,6(X;) @ 1 <j <px) € RPLF is a vector of basis functions corresponding to
the [*" nonparametric component of the &** group f1.6(X1), Y1 € RPUF is an unknown vector of regression
coefficients, Uy = up(X) = (wp(Xy) @+ 1 <1 <¢q) € RP* and ¢, = (Y1 : 1 <1 <gq) € RP*, with
Pk = Y j—; Pik- In this paper, we propose a data-driven method for selecting the vectors of basis functions
up(X) and uq(X). Note that we allow the number of basis functions (p; ;) to differ across confounders and
groups.

Let the following be the regression model estimated by least squares:

Y = Bo(1 — Zi) + b1 Zi + b Uio(1 — Zi) + 01 Uin Zi + ¢ for i = 1, .., m, (3)

*University of Waterloo, pchausse@uwaterloo.ca

TUniversity of Chicago, giurcanu@uchicago.edu

#Memorial Sloan Kettering Cancer Center, capanum@mskcc.org
SGeorgetown University, George.luta@georgetown.edu

mailto:pchausse@uwaterloo.ca
mailto:giurcanu@uchicago.edu
mailto:capanum@mskcc.org
mailto:George.luta@georgetown.edu

and BO, Bl, 1&0 and 1/31 be the least squares estimators of the regression parameters. Then, the semiparametric
least squares estimators (SLSE) of the average causal effect (ACE), causal effect on the treated (ACT) and
causal effect on the nontreated (ACN) are defined respectively as follows:

ACE = f1 — fo +9TU, — 48 T
ACT = Bl - BO + ?$1TU1,1 - ﬁoTUo,l (4)
ACN = By — Bo + 9T Uro — 92 Uoyo

where Uy, = %2?21 Uik, Uy = n% Yo Uik, Uko = 7710 Yo Uik(l = Z;), for k= 0,1, and ng and ny
are the sample sizes of the nontreated and treated groups respectively. As shown by Giurcanu et al. (2023),
under some regularity conditions these estimators are consistent and asymptotically normal.

To derive the variance of these causal effect estimators, note that they can be expressed as a linear combination
of the vector of least squares estimators. Let 0= {/3’0, 31, z/?ér, z/AJ;f}T Then, the causal effect estimators can be
written as D76 for c=ACE, ACT or ACN, with Dacg = {—1,1,—UF,UF}7, Dacr = {-1,1, ~-U¢,, U3
and Dacy = {-1,1, ff]gjo, U'lT_O}T. Since D, is random, we need a first order Taylor expansion to derive the
variance of the estimators. Aésuming that the data set is iid and using the asymptotic properties of least
squares estimators, we can show that the variance of ACE:lA)KCEGA can be consistently estimated as follows
(we can derive a similar expression for the ACT and ACN):

2ADO 20,1 zA]o,é —30
Vace = (B0 B1 Digg) %31,0 Azl E},é B ; (5)
Yoo g1 Xy) \Dace

where ¥ = var(Uy), f]k,l = cov(Uy, U)), ik,é = f]gk = cov(Uk,é), for k,1 = 0,1, and f)é is a consistent
estimator of the variance of §. We will discuss the choice of the covariance matrix estimator flé in the next
section.

To understand the package, it is important to know how the u; (X;)’s are defined. For clarity, let’s write
Uk =w k(X)) as U =u(X) = (u;(X) : 1<j <p)eRP. We just need to keep in mind that it is different
for the treated and nontreated groups and also for different confounders. We describe here how to construct
the local linear splines for a given confounder X in a given group. To this end, let {x1,...,K,—1} be a set
of p — 1 knots strictly inside the support of X satisfying x1 < k2 < ... < Kp—1. In the case of local linear
splines described in the paper, we have:

ui(z) = xI(z < k1) + k1l (z > K1)
uj(@) = (z — Kj—)l(kj—1 Sv < K;) + (5 —Kj—1) (@ > k), 2<j<p-1 (6)
((

Therefore, if the number of knots is equal to 1, we only have two local linear splines. Since the knots must be
strictly inside the support of X, for any categorical variable with two levels, the number of knots must be
equal to zero. In this case, u(z) = x. For general ordinal variables, the number of knots cannot exceed the
number of levels minus two. The following illustrates local linear spline functions when the number of knots
is equal to 3:

— uy(x;
== uyx

us(x
= uglx

u(x)

min(X)

min(X) ki ke ks max(X)

Note that for the sample regression, the knots of X; for group k, [= 1,..., ¢, must be strictly inside the
sample range of (X;; : 1 <i<mn, Z; =k) € R", where ny, is the sample size in group k, instead of inside
the support of X;.

The following section explains in details how to use the package to estimate the causal effects using this
method, and the last section summarizes the package by providing a list of all objects and methods.

2 The causalSLSE package

2.1 The Semiparametric LSE model

Note that the regression model presented by Equation (3) can expressed as:

Y; = Bo+ ¢l Uio+ Gio forist. Z; =0

T . (7)

Y =p1+ Uix +Cia forist. Z; =1.
Estimating Equation (3) is identical to estimating the previous two models separately. The latter may even
be numerically more accurate since it avoids many unnecessary operations. Also, as mentioned in the previous
section, the knots and basis functions are obtained separately for the treated and nontreated. Therefore, we
can see the model from Equation (3) as two semiparametric LSE (SLSE) models, one for the treated and one
for the nontreated, and this is the approach that we take in the package. One benefit of this approach is to
allow an extension to multiple treatment models. For example, a two treatment model, with two treated
groups and one nontreated group, is like a one treatment model with one more SLSE model.

Since our causal SLSE model is a collection of SLSE models, we start by presenting how SLSE models are

defined in the package. We ignore for now that our objective is to estimate causal effects and consider the
following SLSE model:

q
Y=8+> %Ui+¢
= (8)

=B+9TU+¢,

where U = w (X)) = (uj (X)) + 1<j<p) €RP, ¢ € R is an unknown vector of regression coefficients,
U=u(X)=(w(X;) : 1<l<qg)eRPand ¢ = (¢ : 1<1<gq)€RP, withp=> 7, p. The next section
explains how the knots are determined.

2.1.1 The starting knots

The starting knots are automatically generated by the function slseKnots. The following is the list of
arguments of the function:

e form: A formula with the right-hand side being the list of covariates. If a left-hand side is provided,
the slseKnots function will ignore it, because its purpose is only to generate the knots.

e data: A data.frame containing all variables included in the formula.

o X: Alternatively, we can input directly the matrix of covariates. If a matrix X is provided, the arguments
form and data are ignored.

e nbasis: A function that determines the number of basis functions as explained in the procedure below.
The default is nbasis=function(n) n~0.3.

e knots: This argument is used to set the knots manually. We will explain how to use this argument in
the next section.

The following is the procedure implemented by the function slseKnots. It explains the procedure for any
covariate X.

1. The starting number of knots, also equal to the number of basis functions minus 1, depends on the type
of covariate. Unless it has a type that restricts the number of knots, which is explained below, it is
determined by the argument nbasis. This is a function of one argument, the same size, and it returns
the default number of basis functions. This number cannot be smaller than 2 (we will see other ways
of forcing the number of basis functions to be equal to 1 below) and must be an integer. To be more
specific, the number of basis functions is set to the maximum between 2 and the ceiling of what the
nbasis function returns. For example, if the sample size is 500, the default starting number of basis
functions is 7=ceiling(50070.3), which implies a starting number of knots of 6. It is possible to have
a number of knots that does not depend on the sample size. All we need is to set the argument nbasis
to a function that returns an integer, e.g., nbasis=function(n) 4 for 4 basis functions or 3 knots.

2. Let (p — 1) be the number of knots determined in the previous step. The default knots are obtained by
computing p + 1 sample quantiles of X for equally spaced probabilities from 0 to 1, and by dropping
the first and last quantiles. For example, if the number of knots is 3, then the initial knots are given by
quantiles for the probabilities 0.25, 0.5 and 0.75.

3. We drop any duplicated knots and any knots equal to either the max or the min of X. If the resulting
number of knots is equal to 0, the vector of knots is set to NULL. When the vector of knots is equal to
NULL for a variable X, it means that u(z) = x.

The last step implies that the number of knots for all categorical variables with two levels is equal to 0. For
nominal variables with a small number of levels, the number of knots, a subset of the levels, may be smaller
than the ones defined by nbasis. For example, when the number of levels for a nominal variable is 3, the
number of knots cannot exceed 1.

To illustrate how to use the package, we are using the dataset from Lalonde (1986). The purpose of this
dataset is to estimate the causal effect of a training program on real income, but we ignore it for the moment.
The dataset is included in the causalSLSE package and can be loaded as follows.

library(causalSLSE)
data(nsw)

The dependent variable is the real income in 1978 (re78) and the dataset contains the following covariates:
the continuous variables age (age), education (ed) and the 1975 real income (re75), and the binary variables
black, hisp, married and nodeg. We start by considering a model that includes the covariates age, re75,
ed, and married. Since we do not need to specify the left-hand side, we can create the initial knots as follows

k <- slseKnots(form = ~ age + re75 + ed + married, data = nsw)

The function returns an object of class slseKnots and its print method produces a nice display separating
confounders with and without knots. For example, the following are the starting knots:

print (k)

Covariates with no knots:
married

Covariates with knots:
age :

12.5% 25% 37.5% 50% 62.5% 75% 87.5%
Knots 18 19 21 23 26 27 31

re75 :
50% 62.5% 75% 87.5%
Knots 936.2 2037 4023 8015

ed :
12.5% 25% 37.5% 62.5% 87.5%
Knots 8 9 10 11 12

The sample size is equal to 722 and the default nbasis is n%3, which implies a default number of starting
knots equal to 7 = ceiling(722°-3)-1. This is the number of knots we have for age. However, the number of
knots for ed is 5 and it is 4 for re75. To understand why, the following shows the 7 default quantiles for
re75 and ed (the type argument of the quantile function is the same as it is implemented in the package):

p <- seq(0,1,1en=9) [c(-1,-9)] # these are the probabilities with 7 knots
quantile(nsw[, 're75'], p, type=1)

12.5% 25% 37.5% 50% 62.5% 75% 87.5%
0.0000 0.0000 0.0000 936.1773 2036.7900 4023.2110 8015.4420

quantile(nsw[,'ed'], p, type=1)

12.5%, 25% 37.5% 50% 62.5%, 75% 87.5%
8 9 10 10 11 11 12

We can see that the first three quantiles of re75 are equal to its minimum, so they are removed. For the ed
variable, 10 and 11 appear twice, so one 10 and one 11 must be removed.

Note that each object in the package is S3-class, so the elements can be accessed using the operator $. For
example, we can extract the knots for age as follows:
k$age

12.5% 25% 37.5% 50% 62.5% 75% 87.5%

18 19 21 23 25 27 31
Note that the covariates are listed in the “no knots” section when their values are set to NULL. In the above
example, it is the case of married because it is a binary variable. As we can see its list of knots it set to NULL:

k$married

NULL

2.1.2 Creating a SLSE model

The SLSE model is created by the function slseModel. The arguments of the function are the same as for
the slseKnots function except for the argument X, which is not needed. The difference is that form must
include the left-hand side variable. For example, we can create a SLSE model using re78 as dependent
variable and the same covariates used in the previous section as follows:

modl <- slseModel(form = re78 ~ age + re7b + ed + married, data = nsw)

The function returns an object of class slseModel and its print method provides a summary of its specification:

print(mod1)

Semiparametric LSE Model
ek ok ok sk sk ok ok ok ok ok ok ok ok ok o ok ok

Number of observations: 722
Selection method: Default

Covariates approximated by SLSE (num. of knots):
age(7), re75(4), ed(5)

Covariates not approximated by SLSE:
married

Note that the selection method is set to Default when the knots are selected using the procedure described
in the previous section. Also, the print function shows the number of knots for each covariate inside the
parentheses next to its name. In this example, we see that the initial number of knots for age, re75 and ed
are respectively 7, 4 and 5. The function selects the knots using the slseKnots and stores them in the object
under knots. We can print them using the $ operator as follows and compare them with the ones obtained
in the previous section:

modl$knots

Covariates with no knots:
married

Covariates with knots:
age :

12.5% 25% 37.5% 50% 62.5% 75% 87.5%
Knots 18 19 21 23 256 27 31

re75 :
50% 62.5% 75% 87.5%
Knots 936.2 2037 4023 8015

ed :
12.5% 25% 37.5% 62.5% 87.5%
Knots 8 9 10 11 12

Note that we can also print the knots by running the command print(modl, which="selKnots").

In order to present another example with different types of covariates, the dataset simDat4 is included in the
package. This is a simulated dataset which contains special types of covariates. It helps to further illustrate
how the knots are determined. The dataset contains a continuous variable X1 with a large proportion of zeros,
the categorical variable X2 with 3 levels, an ordinal variable X3 with 3 levels, and a binary variable X4. The
levels for X2 are {“first”,“second”,“third”} and for X3 the levels are {1,2,3}.

data(simDat4)

mod2 <- slseModel(Y ~ X1 + X2 + X3 + X4, data = simDat4)
print (mod2, which="selKnots")

Semiparametric LSE Model: Selected knots
stk ok ok ok sk sk o ok ok ok sk sk s ok ok ok sk sk ok sk ok sk sk o sk ok ok ok sk o ok ok

Selection method: Default

Covariates with no knots:
X2second, X2third, X4

Covariates with knots:
X1 :

42.86% 57.14% 71.43% 85.71%
Knots 0.4258 2.304 7.911 17.58

X3 :
42.86%
Knots 2

Character-type variables are automatically converted into factors. It is also possible to define a numerical
variable like X3 as a factor by using the function as.factor in the formula. We see that the 2 binary variables
X2second and X2third are created and X2first is omitted to avoid multicollinearity. For the binary variable
X4, the number of knots is set to 0, and for the ordinal variable X3, the number of knots is set to 1 because
the min and max values 1 and 3 cannot be selected.

2.1.3 Selecting the knots manually

The user has control over the selection of knots through the argument knots. When the argument is missing
(the default), all knots are set automatically as described above. One way to set the number of knots to 0 for
all variables is to set the argument to NULL.

slseModel(~ age + re75 + ed + married, data = nsw, knots = NULL)

Semiparametric LSE Model
sk ok ok ook sk ok ok ok ok ok ok Kok ok o ok ok

Number of observations: 722
Selection method: User Based

Covariates approximated by SLSE (num. of knots):
None

Covariates not approximated by SLSE:
age, re75, ed, married

Notice that the selection method is defined as “User Based” whenever the knots are provided manually by
the user. The other option is to provide a list of knots. For each variable, we have three options:

e NA: The knots are set automatically for this variable only.
e NULL: The number of knots is set to 0 for this variable only.

e A numeric vector: The vector cannot contain missing or duplicated values and must be strictly inside
the sample range of the variable.

In the following, we describe all possible formats for the list of knots.
Case 1: An unnamed list of length equal to the number of covariates.

In that case, the knots must be defined in the same order as the order of the variables implied by the
formula. For example, if we want to set an automatic selection for age, no knots for ed and the knots
{1000, 5000, 10000} for re75, we proceed as follows. Note that setting the value to NA or NULL has the same
effect for the binary variable married.

selK <- list(NA, c(1000,5000,10000), NULL, NA)

mod <- slseModel(re78 ~ age + re75 + ed + married, data = nsw,

knots = selK)
print(mod, which = "selKnots")

Semiparametric LSE Model: Selected knots
sk ok ok ok sk ok o ok ok K oK sk o ok ok ok sk sk o ok ok ok sk o sk ok ok ok ok ok ok

Selection method: User Based

Covariates with no knots:
ed, married

Covariates with knots:
age :

12.5% 25% 37.5% 50% 62.5% 75% 87.5%
Knots 18 19 21 23 25 27 31

re75 :
k1 k2 k3
Knots 1000 5000 10000

Case 2: A named list of length equal to the number of covariates.

In that case, the order of the list of variables does not matter. The slseModel function will automatically
reorder the variables to match the order implied by the formula. The names must match perfectly the variable
names generated by R. In the following example, we want to add the interaction between ed and age. We
want the same set of knots as in the previous example and no knots for the interaction term. The name of the
interaction depends on how we enter it in the formula. For example, it is “age:ed” if we enter age*ed in the
formula and “ed:age” if we enter ed*age. For factors, the names depend on which binary variable is omitted.
Using the above example with the simDat4 model, if we interact X2 and X4 by adding X2*X4 to the formula,
the names of the interaction terms are “X2second:X4” and “X2third:X4”. When we are uncertain about the
names, we can print the knots of a model with the default sets of knots. In the following, we change the
order of variables to show that the order does not matter.

selK <- list(married = NA, ed = NULL, 'age:ed' = NULL, re75 = c(1000,5000,10000), age = NA)
model <- slseModel(re78 ~ age * ed + re75 + married, data = nsw, knots = selkK)
print (model, which="selKnots")

Semiparametric LSE Model: Selected knots
sekok ke ok ko sk ks stk sk ko ok stk sk ks ok sk sk stk sk ko ok sk ok

Selection method: User Based

Covariates with no knots:
ed, married, age:ed

Covariates with knots:
age :

12.5% 25% 37.5% 50% 62.5% 75% 87.5%
Knots 18 19 21 23 256 27 31

re75 :
k1 k2 k3
Knots 1000 5000 10000

Case 3: A named list of length strictly less than the number of covariates.

The names of the selected variables must match perfectly the names generated by R and the order does
not matter. This is particularly useful when the number of covariates is large. If we consider the previous
example, the knots are set manually only for age. By default, all names not included in the list of knots are
set to NA. Therefore, we can create the same model from the previous example as follows:

selK <- list(ed = NULL, 'age:ed' = NULL, re75 = c(1000,5000,10000))
model <- slseModel(re78 ~ age * ed + re75 + married, data = nsw, knots = selK)
print(model, which="selKnots")

Semiparametric LSE Model: Selected knots
ok ok ok ok ok oK o oK ok KoK oK ok oK ok o ok oK o oK ok KoK oK ok ok ok ok oK K ok

Selection method: User Based

Covariates with no knots:
ed, married, age:ed

Covariates with knots:
age :

12.5% 25% 37.5% 50% 62.5% 75% 87.5%
Knots 18 19 21 23 25 27 31

re75 :
k1 k2 k3
Knots 1000 5000 10000

Note that the previous case offers an easy way of setting the number of knots to 0 for a subset of the covariates.
For example, suppose we want to add more interaction terms and set the knots to 0 for all of them. We can
proceed as follows.
selK <- list('age:ed' = NULL, 'ed:re75' = NULL, 'ed:married' = NULL)
model <- slseModel(re78 ~ age * ed + re75 * ed + married * ed,

data = nsw, knots = selK)

model

Semiparametric LSE Model
sk ok ok koK sk ok ok ok ok ok ok ok ok ok o ok ok

Number of observations: 722
Selection method: User Based

Covariates approximated by SLSE (num. of knots):
age(7), ed(5), re75(4)

Covariates not approximated by SLSE:
married, age:ed, ed:re75, ed:married

Note also that slseModel deals with interaction terms as with any other variable. For example, ed:black is
like a continuous variable with a large proportion of zeros. The following shows the default selected knots for
ed:black.

model <- slseModel(re78 ~ age + ed * black, data = nsw)
model$knots[["ed:black"]]

26% 37.5% 50% 62.5% 87.5Y
8 9 10 11 12

We can see that the number of knots is smaller than 7. This is because ed:black has many zeros and the
quantiles equal to the minimum value are removed.

2.1.4 Methods for slseModel objects

Other methods are registered for slseModel objects. For example, we can estimate slseModel objects using
the estSLSE method and summarize the results using the summary method. The following is an example
using a simpler model:

mod2 <- slseModel(form = re78 ~ ed + married, data = nsw)

fit2 <- estSLSE(mod2)
summary (£it2)

Semiparametric LSE
ko ok sk ok ok sk ook sk ok ok ok ok ok

Selection method: Default

Residuals:
Min 1Q Median 3Q Max
-11472 -4846 -1548 3195 55335

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3384.7 2304.0 1.469 0.1418

U.ed_1 201.2 328.0 0.613 0.5396

U.ed_2 752.2 824.6 0.912 0.3616

U.ed_3 -900.4 695.0 -1.296 0.1951

U.ed_4 126.5 672.5 0.188 0.8508

U.ed_5 672.8 735.9 0.914 0.3605

U.ed_6 1997.6 1105.1 1.808 0.0707 .

U.married 674.2 652.5 1.033 0.3015

Signif. codes: O 'xx*x' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6212 on 714 degrees of freedom
Multiple R-squared: 0.02276, Adjusted R-squared: 0.01317

We can also plot the predicted dependent variable as a function of education using the plot method and add
a confidence region:
plot(fit2, "ed", interval="confidence", level=0.95)

re78 vs ed using SLSE

20000
1

15000
|

re78

10000
|

5000
1

ed

In the next section, we present the cslseModel class which represents the causal-SLSE model of Equation
(3). We will see that it is just a list of slseModel objects. Therefore, the methods registered for cslseModel
objects are derived from slseModel methods. Since this vignette is about causal-SLSE, we choose to present
these methods through the cslseModel object.

2.2 The causal-SLSE model (cslseModel)

The function cslseModel returns an object of class cslseModel (or causal-SLSE model). It is a list of
slseModel objects, one for the treated and one for the nontreated. The function has the same arguments
as slseModel, plus the argument groupInd that specifies which value of Z is associated with the treated
and which one is associated with the nontreated. The default is groupInd=c(treated = 1, nontreated =
0). It is possible to have other values or even characters as indicator, but the names must be treated and
nontreated. We will allow more names in future version of the package once the multiple treatment method
is implemented.

The argument form must include a formula linking the outcome and the treatment indicator and a formula
listing the confounders, separated by the operator |. In the following example, we see the formula linking the
outcome re78 and the treatment indicator treat, and a list of confounders:

modell <- cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw)

Its print method summarizes the characteristics of the model. It is like the slseModel object, but the
information is provided by treatment group
modell

Causal Semiparametric LSE Model
sk sk ok koK sk o sk ok ok ok sk ok sk ok sk sk sk ok ok ok ok

Number of treated : 297
Number of nontreated : 425
Selection method: Default

Confounders approximated by SLSE (num. of knots):
treated: age(5), re75(3), ed(4)
nontreated: age(6), re75(4), ed(4)
Confounders not approximated by SLSE:
treated: married
nontreated: married

The object also contains additional information about the model stored as attributes:
attr(modell, "treatedVar")

[1] "treat"

10

attr(modell, "groupInd")

treated nontreated
1 0

This information is needed in order to compute the causal effects. The object modell is a list of 2 elements,
treated and nontreated, which are slseModel objects. Following Section 2.1.2, we can therefore access the
knots of a specific group as follows:

modell$treated$knots

Covariates with no knots:
married

Covariates with knots:

age :

16.67% 33.33% 50% 66.67% 83.33%
Knots 19 21 23 26 29
re75 :

50% 66.677 83.33J
Knots 1117 2657 6511

ed :
16.67% 33.33% 50% 83.33%
Knots 9 10 11 12

Alternatively, we can use the print method for slseModel objects and print the knots of a specific group
using the command print (modell$treated, which="selKnots"). To print the list of knots for both groups,
we can print the cslseModel object as follows:

print(modell, which="selKnots")

treated

3% %k %k %k %k %k k

Selection method: Default

Covariates with no knots:
married

Covariates with knots:

age :

16.67% 33.33% 50% 66.67% 83.33%
Knots 19 21 23 26 29
re75 :

507 66.677 83.33)
Knots 1117 2657 6511

ed :

16.67% 33.33% 50% 83.33%
Knots 9 10 11 12
nontreated
ook ok ok ok ok ok K K K

Selection method: Default

Covariates with no knots:
married

Covariates with knots:

age :

14.297, 28.57%, 42.86% 57.14}, 71.43}, 85.71},
Knots 18 20 22 25 27 31
re75 :

42.86% 57.14}, 71.43}, 85.71},

11

Knots 240.1 1406 2856 7667

ed :
14.297, 42.86% 57.147, 85.71%
Knots 9 10 11 12

To understand how to create a cslseModel when the treatment indicator is not binary, consider the dataset
simDat4 that we described in Section 2.1.2. The dataset also contains the variable treat, which is a character
variable equal to “treat” when Z=1 and “notreat” when Z=0. We can create a cslseModel object using treat
instead of Z by specifying the value associated with each group in the argument groupInd:

model2 <- cslseModel(Y ~ treat | ~ X1 + X2 + X3 + X4, data = simDat4,
groupInd = c(treated = "treat", nontreated = "notreat"))
model2

Causal Semiparametric LSE Model
sk ok ok koK Rk o sk ok ok ok sk ok sk ok sk sk sk ok ok ok ok o

Number of treated : 246
Number of nontreated : 254
Selection method: Default

Confounders approximated by SLSE (num. of knots):
treated: X1(4), X3(1)
nontreated: X1(4), X3(1)
Confounders not approximated by SLSE:
treated: X2second, X2third, X4
nontreated: X2second, X2third, X4

If some values of the treatment indicator variable differ from the values in groupInd, the function will return
an error message.

2.2.1 Setting the knots manually

As for SLSE models, we can select the knots using the argument knots. The procedure is the same as in
Section 2.1.3 (Cases 1 to 3), but we need to specify the name of the group associated with the knots. If
knots is set to NULL, the number of knots is set to 0 for all confounders and all groups. If we only want the
number of knots to be 0 for one group, we need to specify which group. For example, the number of knots is
set to 0 for the treated only in the following:

selK <- list(treated=NULL)

cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw,
knots = selkK)

Causal Semiparametric LSE Model
sk ok ok ok sk sk sk ok ok sk sk sk sk ok ok sk sk sk ok ok ok ok o

Number of treated : 297

Number of nontreated : 425

Selection method for the treated: User Based
Selection method for the nontreated: Default

Confounders approximated by SLSE (num. of knots):
treated: None
nontreated: age(6), re75(4), ed(4)
Confounders not approximated by SLSE:
treated: age, re75, ed, married
nontreated: married

If a group is missing from the argument knots, the knots of the missing group are set automatically. For
example, if we want to set the knots as in Case 1, but only for the nontreated and let cslseModel choose
them for the treated, we would proceed as follows:

selK <- list(nontreated=1list(NA, c(1000,5000,10000), NULL, NA))

model <- cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw,
knots = selK)

print(model, which = "selKnots")

12

treated
kKK KKK

Selection method: Default

Covariates with no knots:
married

Covariates with knots:

age :

16.67% 33.33% 50% 66.67% 83.33%
Knots 19 21 23 26 29
re75 :

50% 66.677 83.33)
Knots 1117 2657 6511

ed :

16.67% 33.33% 50% 83.33%
Knots 9 10 11 12
nontreated
ok ok ok ok ok ok KKK

Selection method: User Based

Covariates with no knots:
ed, married

Covariates with knots:

age :

14.297, 28.57%, 42.86% 57.14}, 71.43}, 85.71},
Knots 18 20 22 25 27 31
re75 :

k1 k2 k3
Knots 1000 5000 10000

2.2.2 Estimating the model

Given the set of knots from the model object, the estimation is just a least squares method applied to the
regression model given by:

Y =Bo(1—2)+ 51 Z + ¢ Us(1 — Z) + 1T U1 Z + ¢,

where Uy = up(X) and U; = u1(X) are defined above (which depend on the knots of the model). The method
that estimates the model is estSLSE which has two arguments, but one of them is mainly used internally by
other functions. We present them in case they are needed. The arguments are:

e model: A model created by the function cslseModel.

e selKnots: It is a list of one or two elements, one for each group. Each element is a list of integers
to select knots for the associated group. For example, suppose we have 2 confounders with 5 knots
each. If we want to estimate the model with only the first knot for the first confounder and knots 3
and 5 for the second confounder for the treated and all knots for the nontreated, we set selKnots to
list(treated=1list (1L,c (3L, 5L))). By default it is missing and all the knots from the model are
used.

We illustrate the use of estSLSE with a simple model containing 2 confounders and a maximum of one knot.

model <- cslseModel(re78 ~ treat | ~ age + married, data = nsw,
nbasis = function(n) 2)

Note that the cslseModel object is a list of slseModel objects. Also, we saw that the above model can be
written as two regression models, one for each group. Therefore, the estSLSE method is simply estimating
the slseModel objects separately. For example, we can obtain {/31,1} as follows:

13

estSLSE (model$treated)
Semiparametric LSE

ook ok ok ok ok ok ok ok K K K kK K Kk K
Selection method: Default

(Intercept) U.age_1 U.age_2 U.married
3754.98 89.25 22.22 1435.28

The output is an object of class s1seFit. When we apply the method to model, the model is estimated for

each group:
fit <- estSLSE(model)
fit

Causal Semiparametric LSE
sk ok ok ok sk sk sk ok sk ok sk sk ok ok sk ok sk ok ok ok ok

Selection method: Default

treated

Hokskok Kok ok

(Intercept) U.age_1 U.age_2 U.married
3754.98 89.25 22.22 1435.28

nontreated

sokskok ok ko ok ok

(Intercept) U.age_1 U.age_2 U.married
4558.28 27.80 -12.51 -115.82

This is an object of class cslseFit, which is a list of slseFit. Like cslseModel objects, it also contains
the information about the treatment indicator variable and the value associated with each group stored as
attributes:

attr(fit, "treatedVar")

[1] "treat"
attr(fit, "groupInd")

treated nontreated
1 0

When we print, fit, the coefficients are separated by group. The coefficients for the treated correspond to
{1,111} and the coefficients for the nontreated correspond to {8y, %0}. We can access the estimated SLSE
model for each group using the $ operator. For example, the following is the estimated model for the treated:
fit$treated

Semiparametric LSE
ek sk ok sk ok ok ok sk ok ok sk ok ok ok ok

Selection method: Default

(Intercept) U.age_1 U.age_2 U.married
3754.98 89.25 22.22 1435.28

A more detailed presentation of the results can be obtained using the summary method. The only arguments
of summary are the cslseFit object and vcov.. The latter is a function that returns the estimated covariance
matrix of the LSE. By default, it is equal to the vcovHC function of the sandwich package (Zeileis (2006))
with its default type="HC3". The following is an example with the previous model using the HCO type:

s <- summary(fit, type="HCO")

The object s is an object of class summary.cslseFit, which is a list of objects of class summary.slseFit,
one for each group. By default, if we print s, we will see the two LSE summary tables, one for each group.
Alternatively, we can print the result for one group using the $ operator. For example, the following is the
result for the nontreated:

14

s$nontreated

Semiparametric LSE
ook Kok ok oKk Kok Kok ok ok k

Selection method: Default

Residuals:
Min 1Q Median 3Q Max
-5198 -5031 -1364 3216 34341

Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 4558.28 2711.20 1.681 0.0927 .

U.age_1 27.80 135.20 0.206 0.8371
U.age_2 -12.51 54.80 -0.228 0.8194
U.married -115.82 782.92 -0.148 0.8824
Signif. codes: O 'xxx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5738 on 421 degrees of freedom
Multiple R-squared: 0.0001584, Adjusted R-squared: -0.006966

We can see that the only knot for age in the nontreated group is 23:
model$nontreated$knots$age

50%
23

Therefore, the coeflicient of U.age_1 is the effect of age for the nontreated on re78 when age< 23 and
U.age_2 is the effect when age> 23.

The extract method

The package comes with an extract method for slseFit objects, which allows to present estimated SLSE
models in a LaTeX table using the texreg package of Leifeld (2013). There is no extract method for
cslseFit objects, but we can still use texreg by converting cslseFit objects into lists using the method
as.list. Here is an example (the argument table=FALSE is used to avoid having a floating table):

library(texreg)
texreg(as.list(fit), table=FALSE)

treated nontreated
(Intercept) 3754.98 4558.28
(4479.03) (3101.89)

U.age_1 89.25 27.80
(215.11) (151.03)
U.age 2 22.22 —12.51
(84.70) (61.58)
U.married 1435.28 —115.82
(1123.99) (788.83)
R? 0.01 0.00
Adj. R? —0.00 —0.01
Num. obs. 297 425

**p < 0.001; **p < 0.01; *p < 0.05

2.2.3 The predict method

The predict method is very similar to predict.1lm. We use the same arguments: object, interval, se.fit,
newdata and level. The difference is that it returns the predicted outcome for the treated and nontreated
separately, and the argument vcov. provides a way of changing how the least squares covariance matrix is
computed. By default, it is computed using vcovHC from the sandwich package. The function returns a list
of 2 elements, treated and nontreated. By default (se.fit=FALSE and interval="none"), each element
contains a vector of predictions. Here is an example with the previously fitted model fit:

predict(fit, newdata = data.frame(treat = c(1,1,0,0),age = 20:23, married = 1))

15

$treated
[1] 6975.337 7064.591

$nontreated
[1] 5054.036 5081.834

If interval is set to “confidence”, but se.fit remains equal to FALSE, each element contains a matrix
containing the prediction, and the lower and upper confidence limits, with the confidence level determined by
the argument level (set to 0.95 by default). Here is an example with the same fitted model:

predict(fit, mnewdata = data.frame(treat = c(1,1,0,0),age = 20:23, married = 1),
interval = "confidence")

$treated

fit lower upper
1 6975.337 4646.673 9304.001
2 7064.591 4741.653 9387.528

$nontreated

fit lower upper
3 5054.036 3574.096 6533.975
4 5081.834 3544.849 6618.820

If se.fit is set to TRUE, each element, treated or nontreated, is a list with the elements pr, containing the
predictions, and se.fit, containing the standard errors. In the following, we show the result for the same
fitted model:

predict(fit, newdata = data.frame(treat = c(1,1,0,0),age = 20:23, married = 1),
se.fit = TRUE)

$treated
$treated$fit
[1] 6975.337 7064.591

$treated$se.fit
1 2
1188.116 1185.194

$nontreated
$nontreated$fit
[1] 5054.036 5081.834

$nontreated$se.fit
3 4
755.0851 784.1907

2.2.4 The plot method

The predict method is called by the plot method to visually represent the predicted outcome for the treated
and nontreated with respect to a given confounder, controlling for the other variables in the model. Note
that this method is very close to the plot method for slseFit objects. In fact, the arguments are the same
with some exceptions that we briefly explain below. Since the predicted outcome is obtained separately for
the treated and nontreated the method for cslseFit objects simply applies the method for slseFit objects
to each group. The following is the list of arguments:

e x: An object of class cslseFit (or slseFit).
e y: An alias for which for compatibility with the generic plot function.

o which: confounder to plot against the outcome variable. It can be an integer (the position of the
confounder) or a character (the name of the confounder)

o interval: The type of confidence interval to display. The default is “none”. The alternative is
“confidence”.

¢ level: The confidence level when interval="confidence". The default is 0.95.

16

o fixedCov: Optional named lists of fixed values for some or all other confounders in each group. The
values of the confounders not specified are determined by the argument FUN. To fix some confounders
for both groups, fixedCov is just a named list with the names being the variable names. To fix them
to different values for the treated and nontreated, fixedCov is a named list of 1 or 2 elements (for the
treated, nontreated or both), each element being a named list of values for the covariates. See the
examples below. When applied to slseFit objects, it is just a named list with the variables names.

e vcov.: An optional function to compute the estimated matrix of covariance of the least squares
estimators. This argument only affects the confidence intervals. The default is vcovHC from the
sandwich package with type="HC3".

« add: Should the curves be added to an existing plot? The default is FALSE.

e addToLegend: An optional character string to add to the legend next to “treated” and “nontreated”.
Note that a legend is not added when applied to slseFit objects, so this argument has no effect in
that case.

e addPoints: Should we include the scatterplot of the outcome and confounder to the graph? The
default is FALSE.

e FUN: A function to determine how the other confounders are fixed. The default is mean. Note that
the function is applied to each group separately.

o plot: By default, the method produces a graph. Alternatively, we can set this argument to FALSE
and it returns one data.frame per group with the variable selected by which and the prediction. This
could be useful if one wants to design the graphs differently.

o graphPar: A list of graphical parameters if not satisfied with the default ones.
e ...: Other arguments are passed to the vcov. function.

The default set of graphical parameters can be obtained by running the function causalSLSE: : : . initParCSLSE()
(or causalSLSE:::.initParSLSE() for slseFit objects). The function returns a list of four elements:
treated, nontreated, common, legend. The first two are lists of two elements: points for the list of
parameters of the scatterplot produced when addPoints=TRUE and lines for the line parameters. For
example, we can see that the type of points for the treated is initially set to pch=21 and their colour to 2:
causalSLSE: :: .initParCSLSE() $treated$points

$pch
[11 21

$col
[1] 2

The element common is for parameters not specific to a group like the main title or the axis labels, and legend
are the parameters that control the legend (for cslseFit only). Note, however, that the colour and line
shapes for the legend are automatically determined by the lines and points parameters of the treated and
nontreated elements.

The default parameters can be modified by the argument graphPar. This argument must follow the structure
of causalSLSE: ::.initParCSLSE() (or causalSLSE:::.initParSLSE() for slseFit objects). For example,
if we want a new title, new x-axis label, new type of lines for the treated, new type of points for the nontreated
and a different position for the legend, we create the following graphPar:

graphPar <- list(treated = list(lines = list(lty=5, col=4)),
nontreated = list(points = list(pch=25, col=3)),
common = list(xlab = "MyNewLab", main="My New Title"),
legend = list(x = "top"))

In the following, we illustrate some examples.

Example 1:

17

Consider the model:

modell <- cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw)
fitl <- estSLSE(modell)

Suppose we want to compare the predicted income between the two treatment groups with respect to age
or education, holding the other variables fixed to their group means (the default). The following are two
examples with some of the default arguments modified. Note that vcov.1m is used in the first plot function
and vcovHC (the default) of type HCI in the second plot.
library(sandwich)
argl <- list(treated = list(lines = list(col = "darkred", lty = 4)),

nontreated = list(lines = list(col = "darkgreen", 1ty = 2)),

legend = list(x = "topleft"))
arg2 <- list(legend = list(x = "top", cex=0.7))
plot(fitl, "ed", vcov. = vcov, graphPar=argl, interval = 'confidence')
plot(fitl, "age", interval = 'confidence', level = 0.9, type = "HC1", graphPar=arg2)

re78 vs ed using SLSE re78 vs age using SLSE
o
8 A - Treated
|-~ Treated o’ =] — Nontreated
---- Nontreated K4
o ’ —
o .
[’
g S 8 |
. . S
© - i [
o -
S | - o
(=] o _
v o
N
o - o -
T T T T T T T T T T 1
4 6 8 10 12 14 16 20 30 40 50
ed age

Example 2:

If we want to fix the other confounders using another function, we can change the argument FUN. The new
function must be a function of one argument. For example, if we want to fix the other confounders to their
group medians, we set FUN to median (no quotes). We proceed the same way for any function that requires
only one argument. If the function requires more than one argument, we have to create a new function.
For example, if we want to fix them to their group 20% empirical quantiles, we can set the argument to
function(x) quantile(x, .20). The following illustrates the two cases:

plot(fitl, "age", FUN = median)
plot(fitl, "age", FUN = function(x) quantile(x, 0.20))

re78 vs age using SLSE re78 vs age using SLSE
\]
[N i ---- Treated ISEN
g | ' RN — Nontreated
3 8 |
o
o ©
8 -
g~ R o
e e 8
S | B
o
©
]
o -
S - g
['2)
T T T T T T T T
20 30 40 50 20 30 40 50
age age

Example 3:

It is also possible to set some of the other confounders to a specific value by changing the argument fixedCov.

18

To fix some variables to the same values for both groups, fixedCov must be a named list with the names
corresponding to the variables you want to fix. You can also add a description to the legend with the argument
addToLegend. In the following re75 is fixed at 10,000 and we compare the predicted outcome for the married
individuals (the left graph) with the non-married ones (the right graph)

arg2 <- list(legend = list(cex = 0.8), common=list(ylim=c(4000,9000)))

plot(fitl, "age", fixedCov = list(married = 1, re75 = 10000),
addToLegend = "married", graphPar = arg2)

plot(fitl, "age", fixedCov = list(married = 0, re75 = 10000),
addToLegend = "non-married", graphPar = arg2)

re78 vs age using SLSE re78 vs age using SLSE
N » --- Treated (married) N --- Treated (non-married)
'\ ’s o —— Nontreated (married) —— Nontreated (non-marrigd)
=} / = o
S | S |
S S
@ @
© b © b
~ N~
L o ® o
S | S |
S S
) ©
o o
o _| o 1 |
))
< T T T T < T T T T
20 30 40 50 20 30 40 50
age age

Example 4:

To better compare the two groups, it is also possible to have them plotted on the same graph by setting the
argument add. to TRUE. We just need to adjust some of the arguments to better distinguish the different
curves. In the following example, we set the colors and line shapes to different values and change the position
of the legend for the second set of lines.
arg3 <- list(legend = list(cex = 0.7),
common = list(ylim = c(3000, 10000)))
plot(fitl, "age", fixedCov = list(married = 1, re75 = 10000),
addToLegend = "married", graphPar = arg3)
arg4 <- list(treated = list(lines = list(col = "darkred", 1ty = 5)),
nontreated = list(lines = list(col = "darkgreen", 1ty = 4)),
legend = list(x = "topleft", cex = 0.7))
plot(fitl, "age", fixedCov = list(married = 0, re75 = 10000),
addToLegend = "non-married", add = TRUE, graphPar = arg4)

re78 vs age using SLSE

T|—— Treated (non-married) - -~ Treated (married)
o -=-= Nontreated (non-married) —— Nontreated (married)
o _|
o N -
S A s~ o .
| , - .-
o
o _|
0] o
N~ ~
(0]
— —
o
o _|
o
e}
o
o _|
o
™ [I I [
20 30 40 50
age

19

Example 5:

Finally, it is also possible to add the actual observations to the graph.

argh <- list(treated = list(lines = list(col = "darkred", lty = 4)),
nontreated = list(lines = list(col = "darkgreen", 1lty = 2)),
legend = list(x = "topleft"))

plot(fitl, "ed", addPoints = TRUE, graphPar = argb)

plot(fitl, "re75", addPoints = TRUE)

re78 vs ed using SLSE re78 vs re75 using SLSE

60000
]
°
o
60000
]
o

- Treated -o- Treated
-@- Nontreated —8— Nontreated

40000
1
o
40000
1

re78
|
a

re78
|

20000
1
a
u}
oo
20000
1

0
|
o
o
0
|

8 10 12 14 16 0 10000 20000 30000

ed re75

2.2.5 Factors, interactions and functions of confounders

The package allows some of the confounders to be factors, functions of other confounders or interactions. For
example, the dataset simDat4 includes one factor, X2, with levels equal to “first”, “second” and “third”. We
can include this confounder directly to the list of confounders. For example,

data(simDat4)
mod <- cslseModel(Y ~ Z | ~ X1 + X2 + X4, data = simDat4)
mod

Causal Semiparametric LSE Model
ok ok ok ok ook oK o oK ok KoK oK oK ok ok oK oK ok K ok oK

Number of treated : 246
Number of nontreated : 254
Selection method: Default

Confounders approximated by SLSE (num. of knots):
treated: X1(4)
nontreated: X1(4)
Confounders not approximated by SLSE:
treated: X2second, X2third, X4
nontreated: X2second, X2third, X4

We see that R has created 2 binary variables, one for X2="second" and one for X2="third". These two
variables are automatically included in the group of confounders not approximated by SLSE because they are
binary variables like X4. If we want to plot Y against X1, the binary variables X2second, X2third and X4 are
fixed to their group averages which, in case of binary variables, represent the proportions of ones in each
group.

For interaction terms or functions of confounders, FUN is applied to the functions of confounders. This is how
we have to proceed to obtain the average prediction in regression models. For example, if we interact X2 and
X4, we obtain:

data(simDat4)
mod <- cslseModel(Y ~ Z | ~ X1 + X2 * X4, data = simDat4)
mod

Causal Semiparametric LSE Model
ok ok ok ok ok oK o ok ok Kok o oK ook ok ok oK oK ok K ok oK

20

Number of treated : 246
Number of nontreated : 254
Selection method: Default

Confounders approximated by SLSE (num. of knots):
treated: X1(4)
nontreated: X1(4)
Confounders not approximated by SLSE:
treated: X2second, X2third, X4, X2second:X4, X2third:X4
nontreated: X2second, X2third, X4, X2second:X4, X2third:X4

In this case, when FUN=mean, X2second:X4 is replaced by the proportion of ones in X2secondxX4 for each
group. It is not replaced by the proportion of ones in X2second times the proportion of ones in X4. The
same applies to functions of confounders. For functions of confounders, which can be defined in the formula
using a built-in function like log or using the identity function I() (e.g. we can interact X1 and X4 by using
I(X1*X4)), FUN is applied to the function (e.g. the average log(X) or the average I(X1*X4)).

To fix a factor to a specific level, we just set its value in the fixedCov. In the following example, we fix X2 to
“first”, so X2second and X2third are set to 0.

fit <- estSLSE(mod)
plot(fit, "X1", fixedCov = list(X2 = "first"))

Note that if a function of confounders (or an interaction) involves the confounder we want to plot the outcome
against, we factorize the confounder out, apply FUN to the remaining of the function and add the confounder
back. For example, if we interact X1 with X4 and FUN=mean, X1:X4 is replaced by X1 times the proportion of
ones in X4 for each group.

2.3 Optimal selection of the knots

We have implemented two methods for selecting the knots: the backward semiparametric LSE (BLSE) and
the forward semiparametric LSE (FLSE) methods. For each method, we have 3 criteria: the p-value threshold
(PVT), the Akaike Information criterion (AIC), and the Bayesian Information criterion (BIC). Note that the
consistency of the causal effect estimators has only been proved for the last two criteria in Giurcanu et al.
(2023). The two selection methods can be summarized as follows:

We first compute one p-value per knot using either the BLSE or FLSE method:
BLSE:
1. We estimate the model with all knots included in the model.

2. For each knot, we test if the slopes of the basis functions adjacent to the knot are the same,
and return the p-value.

FLSE:

1. We estimate the model by including a subset of the knots, one variable at the time. When
we test a knot for one confounder, the number of knots is set to 0 for all other variables.

2. For each knot, we test if the adjacent slopes to the knot are the same, and return the p-value.
The set of knots used for each test depends on the following:

e Variables with 1 knot: we return the p-value of the test of equality of the slopes adjacent
to the knot.

e Variables with 2 knots: we include the two knots and return the p-values of the test of
equality of the slopes adjacent to each knot.

o Variables with p knots (p > 2): We test the equality of the slopes adjacent to knot 3,
for i =1, ..., p, using the sets of knots {1,2}, {1,2,3}, {2,3,4}, ..., {p—2,p— 1,p} and
{p — 1, p} respectively.

Once we have the p-values, we proceed to step 3:

21

3. The knots are selected using one of the following criteria:
e PVT: We remove all knots with a p-value greater than a specified threshold.

e AIC or BIC: We order the p-values in ascending order. Then, starting with a model
with no knots and going from the smallest to the highest p-value, we add the knot
associated with the smallest remaining p-value one by one, estimate the model and
return the information criterion. We select the model with the smallest value of the
information citerion.

Note that the SLSE models for the treatment groups contained in cslseModel objects are
estimated separately. However, the AIC and BIC are computed as if the they were estimated
jointly as in Equation (2). As we will see below, a joint selection does not necessarily correspond
to a selection done group by group.

The knot selection is done using the se1SLSE method. The arguments are:

e model: An object of class cslseModel. The method also exists for slseModel objects. We will discuss
it briefly at the end of this section.

» selType: This is the selection method. We have the choice between “FLSE” and “BLSE” (the default).

« selCrit: This is the criterion used by the selection method. We have the choice between “AIC” (the
default), “BIC” or “PVT”".

o pvalT: This is a function that returns the p-value threshold. It is a function of one argument, the average
number of basis functions per confounder. The default is function(p) 1/log(p) and it is applied to
each group separately. Therefore, the threshold may be different for the treated and non-treated. It is
also possible to set it to a fixed threshold. For example, function(p) 0.20 sets the threshold to 0.2.
Note that when the function returns a value greater than 1, all knots are kept. This argument affects
the result only when selCrit is set to “PVT”".

e vcovType: The type of LSE covariance matrix used to compute the p-values. The options are
“HCO” (the default), “HC1”, “HC2”, “HC3” and “Classical” (for the homoskedastic case). Using a
heteroskedasticity robust covariance matrix is recommended, but there is not need to choose the usually
recommended HC3 for the selection. The reason is that HC3 requires the hat values, which slows down
the process, especially for FLSE, and simulations from Giurcanu et al. (2023) show that the choice of
HC has very little effect on the selection. Note that the model is estimated separately for the treated
and nontreated. Therefore, we assume a different variance of the residuals even when vcovType is set
to “Classical”.

e reSelect: Should we recompute the optimal knots or use the ones already saved in the object. See
below for more details.

The function returns a model of class cslseModel with the optimal selection of knots. For example, we can
compare the starting knots of the following model, with the ones selected by the default arguments.

modell <- cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw)
modell

Causal Semiparametric LSE Model
ook ok sk ko ook ook ok sk ok ko ok ok sk ok ook ok

Number of treated : 297
Number of nontreated : 425
Selection method: Default

Confounders approximated by SLSE (num. of knots):
treated: age(5), re75(3), ed(4)
nontreated: age(6), re75(4), ed(4)
Confounders not approximated by SLSE:
treated: married
nontreated: married

22

model2 <- selSLSE(modell)
model?2

Causal Semiparametric LSE Model
ok ok ok ok ook oK o oK ok Kok oK o oK ok ok oK oK ok Kok KoK

Number of treated : 297
Number of nontreated : 425
Selection method: BLSE-AIC

Confounders approximated by SLSE (num. of knots):
treated: age(2), re75(3), ed(1)
nontreated: age(3), re75(2), ed(2)
Confounders not approximated by SLSE:
treated: married
nontreated: married

For example, the BLSE-AIC method has kept all knots from re75 for the treated and kept two knots for the
nontreated. The print method indicates which method was used to select the knots. It is possible to recover
the p-values of all original knots by setting the argument which to Pvalue.

print (model2, which="Pvalues")

treated

ok ok ok ok kK

Covariates with no knots:
married

Covariates with knots:
age :

16.67% 33.33% 50% 66.67% 83.33%
Knots 19.00000 21.0000 23.0000 26.0000 29.0000
P-Value 0.03702 0.9019 0.1562 0.7867 0.5827

re75 :

50% 66.67% 83.33%
Knots 1117.4390 2657.0570 6.511e+03
P-Value 0.2717 0.1169 8.143e-02

ed :

16.67% 33.33% 50% 83.33%
Knots 9.0000 10.0000 11.0000 12.0000
P-Value 0.7064 0.7125 0.8924 0.2377

nontreated

ok kK KKK oK ok K

Covariates with no knots:
married

Covariates with knots:
age :

14.29Y% 28.57% 42.86% 57.14Y, 71.43% 85.71%
Knots 18.0000 20.00000 22.00000 25.0000 27.0000 31.0000
P-Value 0.3565 0.04433 0.08817 0.4204 0.6747 0.7247

re75 :

42.86Y% 57.147% 71.43% 85.71%
Knots 240.1067 1405.5120 2856.2870 7666.8750
P-Value 0.6175 0.2553 0.4132 0.3843

ed :

14.29%, 42.86), 57.14% 85.71}
Knots 9.0000 10.0000 11.0000 12.0000
P-Value 0.2687 0.9006 0.1372 0.9393

In the following example, we use BLSE as selection method and BIC as criterion. Note that the BIC selects 0
knots for all confounders.

23

model3 <- selSLSE(modell, selType = "BLSE", selCrit = "BIC")
model3

Causal Semiparametric LSE Model
ok ok Kok oK oK o oK ok KoK oK oK ok ok KoK oK ok Kok KoK

Number of treated : 297
Number of nontreated : 425
Selection method: BLSE-BIC

Confounders approximated by SLSE (num. of knots):
treated: None
nontreated: None
Confounders not approximated by SLSE:
treated: age, re75, ed, married
nontreated: age, re75, ed, married

Since the se1SLSE method returns a new model, we can apply the estSLSE to it:
estSLSE(selSLSE(modell, selType = "FLSE", selCrit = "BIC"))

Causal Semiparametric LSE
sk ok ok ok ok ok oK ok ok oK ok ok ok ok ok ok oK

Selection method: FLSE-BIC

treated

Hokokok ok okok

(Intercept) U.age U.re75 U.ed U.married
-388.96789 41.05403 0.02676 484.91610 1417.29125

nontreated

sk okok ok ok ok ok

(Intercept) U.age U.re75 U.ed U.married
4825.8776 -20.1057 0.2982 2.5002 -1094.0844

2.3.1 Selection for slseModel versus cslseModel objects

As mentioned in the previous section, the information criteria for cslseModel objects are computed as if
the SLSE models of the treatment groups were estimated using Equation (2). This approach may lead to a
selection different from what we would obtain by selecting the knots group by group. To see this, consider
the following model and joint selection based on BLSE-AIC:

modell <- cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw)
model2 <- selSLSE(modell, selType="BLSE", selCrit="AIC")
model?2

Causal Semiparametric LSE Model
sk ok sk ok sk sk ok sk ok sk ok sk sk sk ok sk sk sk sk ok ok sk o

Number of treated : 297
Number of nontreated : 425
Selection method: BLSE-AIC

Confounders approximated by SLSE (num. of knots):
treated: age(2), re75(3), ed(1)
nontreated: age(3), re75(2), ed(2)
Confounders not approximated by SLSE:
treated: married
nontreated: married

We could also apply the same selection method, but group by group. In the following, we show how to select
the knots group by group by using the selSLSE method for slseModel objects. Note that the Selection
method is set to BLSE-AIC (Sep.) to indicate that it was done separately.

model3 <- modell

model3$treated <- selSLSE(model3$treated, selType="BLSE", selCrit="AIC")
model3$nontreated <- selSLSE(model3$nontreated, selType="BLSE", selCrit="AIC")
model3

24

Causal Semiparametric LSE Model
sk ok ok ok sk sk sk ok ok sk ok sk sk sk ok ok sk sk sk ok ok sk o

Number of treated : 297
Number of nontreated : 425
Selection method: BLSE-AIC (Sep.)

Confounders approximated by SLSE (num. of knots):
treated: age(3), re75(3), ed(1)
nontreated: None
Confounders not approximated by SLSE:
treated: married
nontreated: age, re75, ed, married

We can see that the selected knots are quite different. For example, the number of knots of age for the
treated is 2 when selected jointly and 3 when selected separately. Also, the number of knots of all confounders
for the nontreated are set to 0 when the selection is done separately. This is very different from the joint
selection. Since the joint selection is the one developed and studied by Giurcanu et al. (2023), it is the one
we recommend.

Note that the PVT approach leads to identical selection whether it is done separately or jointly. The reason
is that both approaches produce identical p-values, and the thresholds depend on the number of knots in
each group.

2.3.2 Selections saved in slseModel objects.

Optimal selection of knots can be time consuming, especially for large sample sizes. To avoid having to
recompute the selection each time we change the selection method and/or the criterion, every new selection
is saved in the slseModel object. Let’s consider the following model:

model <- cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw)
model

Causal Semiparametric LSE Model
sokokok ko sk ko ook ook ok sk ok ko ok ok sk ok ook o

Number of treated : 297
Number of nontreated : 425
Selection method: Default

Confounders approximated by SLSE (num. of knots):
treated: age(5), re75(3), ed(4)
nontreated: age(6), re75(4), ed(4)
Confounders not approximated by SLSE:
treated: married
nontreated: married

Suppose we select the knots using BLSE and AIC. We can replace the object by the new one.
model <- selSLSE(model, selType="BLSE", selCrit="AIC")

The main source of computing time for the selection comes from the number of regressions we need to
estimate. Once estimated, all tests are simple operations, so the proportion of time allocated to testing the
knots is negligible. Once we have the p-values, no additional regressions are needed for the PVT criterion, but
we need one regression for each p-value for the AIC and BIC (plus 2 if we count the model with no knots). It
is therefore worth saving the selection somewhere. This information is saved separately in each slseModel
object under selections.

names (model$treated$selections)

[1] "originalKnots" "BLSE"

names (model$treated$selections)

[1] "originalKnots" "BLSE"

25

We see that the model keeps the original knots, so we loose no information by replacing the model object
with the new one. The other element of the list is BLSE which contains information about the selection. If we
want to compare BLSE with FLSE, we can call the se1SLSE once more and replace model with the new one:

model <- selSLSE(model, selType="FLSE", selCrit="AIC")
names (model$treated$selections)

[1] "originalKnots" "BLSE" "FLSE"

names (model$treated$selections)
[1] "originalKnots" "BLSE" "FLSE"

The new selections are added to the model without deleting the previous ones. The following is what we can
find in the element BLSE (or FLSE) of a given group:
names (model$treated$selections$BLSE)

[1] "pval" "PVT" "Threshold" "JAIC" "JBIC" "JIc"

The pval element is an object of class pvalSLSE. If we print it, we obtain the same output as when we print
the model with the argument which="Pvalues". The element Threshold is the p-value threshold used for
the PVT criterion, JIC is a matrix of BIC and AIC values, ordered from the smallest to the highest p-value,
and the selections are saved in the elements PVT, JAIC and JBIC. The J in front of IC, AIC and BIC means
that the selection is based on the joint estimation of the SLSE models. There is no J in front of PVT because
the selection using this criterion is identical if we proceed jointly or separately. Note that we do not see the
J when we print the object, because it is assumed that AIC and BIC are obtained jointly for cslseModel
objects. If we select the knots of one of the SLSE model separately, we will see the difference when we print
the model. For example, the following replace the SLSE model of the treated with the SLSE model selected
by AIC (separately):

model$treated <- selSLSE(model$treated, "BLSE", "AIC")
model

Causal Semiparametric LSE Model
sk ok ok koK oK o oK ok Kok oK oK ok ok oK oK ok K ok oK

Number of treated : 297

Number of nontreated : 425

Selection method for the treated: BLSE-AIC (Sep.)
Selection method for the nontreated: FLSE-AIC

Confounders approximated by SLSE (num. of knots):
treated: age(3), re75(3), ed(1)
nontreated: age(2), re75(2), ed(2)
Confounders not approximated by SLSE:
treated: married
nontreated: married

The print output indicates that the selection was done jointly for the nontreated (just AIC) and separately
for the treated. Now, the SLSE model for the treated has three more selection elements: IC, AIC and BIC:
names (model$treated$selections$BLSE)

[11 "pval" "PVT" "Threshold" "JAIC" "JBIC" "JIic"
[7] nATC" nBIC" nygn

With all selections saved in the model, how do we know which knots are used? We know it by printing the
model or by printing the following knots attribute:

attr(model$nontreated$knots, "curSel')

$select
[1] "FLSE"

$crit
[1] "JAIC"

It tells us that the current set of knots for that model is BLSE with a joint AIC.

26

The elements PVT, JAIC, JBIC, AIC and BIC are lists of knots selection vectors in the same format as the
argument selKnots of the estSLSE method. For example, the following is the list of selection vectors using
BLSE with AIC for the treated:

model$treated$selections$BLSESIJAIC

$age
[1] 1 3

$re75
[11 123

$ed
[11 4

$married
NULL

For example, we see that the knots 1 and 3 of age are selected by AIC. We could use this selection list to
estimate the model:
estSLSE (model$treated, model$treated$selections$BLSE$IAIC)

Semiparametric LSE
ook ok ok ok ok ok ok ok K K K kK Kk kK
Selection method: Manual selection

(Intercept) U.age_1 U.age_2 U.age_3 U.re75_1 U.re75_2
-2.691e+04 1.675e+03 -4.419e+02 6.016e+01 1.635e+00 -2.184e+00
U.re75_3 U.re75_4 U.ed_1 U.ed_2 U.married

6.541e-01 -4.615e-02 1.643e+02 2.516e+03 1.405e+03

Note that we never explicitly selected the BIC criterion above, but it was added to the model anyway. The
reason is that the cost of computing the selection based on BIC is negligible once we do it for AIC. Since it
is also negligible to add the selection by PVT, if the selCrit argument is set to "AIC" or "BIC", all three
selections are computed simultaneously and stored in the model. It is only when selCrit is set to "PVT"
that the selection is done for this criterion only.

2.3.3 Select a saved selection with update

Now that we understand that all previous selections are saved in slseModel objects, how do we select them?
This is done with the update method. The method is registered for slseModel and cslseModel objects and
works very similarly. The arguments are selType, selCrit and selKnots. The latter is used to select the
knots manually as explained in Section 2.2.2. The first two are as in the selSLSE method. The purpose of
update is to replace the current knots by a selection saved in the model. If the selection we want is not in
the model, update will return an error message. For example, the object model from the previous section has
all selections saved, but the current is a mixture of FLSE-AIC and BLSE-AIC (Sep.).

model

Causal Semiparametric LSE Model
ok ok ok ook oK o oK ok Kok oK ook ok ok oK oK ok K ok oK

Number of treated : 297

Number of nontreated : 425

Selection method for the treated: BLSE-AIC (Sep.)
Selection method for the nontreated: FLSE-AIC

Confounders approximated by SLSE (num. of knots):
treated: age(3), re75(3), ed(1)
nontreated: age(2), re75(2), ed(2)
Confounders not approximated by SLSE:
treated: married
nontreated: married

27

We can update the model to the FLSE with joint AIC selection as follows (AIC means joint AIC for
cslseModel)

model <- update(model, selType="FLSE", selCrit="AIC")
model

Causal Semiparametric LSE Model
ook kok ok okok Kok ok skokkok ok ko Kok Kok ok o

Number of treated : 297
Number of nontreated : 425
Selection method: FLSE-AIC

Confounders approximated by SLSE (num. of knots):
treated: age(3), re75(1), ed(1)
nontreated: age(2), re75(2), ed(2)
Confounders not approximated by SLSE:
treated: married
nontreated: married

This is done without any computation. The update method simply replaces the knots using the appropriate
list of selection vectors. If we want to recover the model with the initial set of knots, we simply set the
argument selType to "None". In the following, we see that the selection method is back to its initial set of
knots:

update (model, selType="None")

Causal Semiparametric LSE Model
stk ok ok ok sk sk sk ok ok sk sk sk ok ok sk sk sk sk ok ok ok ok o

Number of treated : 297
Number of nontreated : 425
Selection method: Default

Confounders approximated by SLSE (num. of knots):
treated: age(5), re75(3), ed(4)
nontreated: age(6), re75(4), ed(4)
Confounders not approximated by SLSE:
treated: married
nontreated: married

As a last application of the update method, the following shows that the joint AIC and the one applied to
each group separately produces different results. Since we just set the model object to FLSE-AIC, the current
treated model in model is based on the joint AIC criterion:

model$treated

Semiparametric LSE Model
sk kb sk ko koksk ok ok ko ko sk ok ok ok

Number of observations: 297
Selection method: FLSE-JAIC

Covariates approximated by SLSE (num. of knots):
age(3), re75(1), ed(1)

Covariates not approximated by SLSE:
married

Since we have the AIC computed separately in the treated model, we can use update for slseModel to
compare the two:
update (model$treated, "BLSE", "AIC")

Semiparametric LSE Model
ok ok sk ok sk ook sk ok sk ok ok ok ok ok sk ok ok

Number of observations: 297
Selection method: BLSE-AIC

28

Covariates approximated by SLSE (num. of knots):
age(3), re75(3), ed(1)

Covariates not approximated by SLSE:
married

The selection for age and ed are the same, but the AIC selects 3 knots for re75 and the JAIC selects only 1
knot.

Note that the selSLSE method computes the selection only if the requested selection is not saved in the
model, unless the argument reSelect is set to TRUE. Therefore, selSLSE is not different from update when
the requested selection is saved in the model.

2.4 The causalSLSE method for cslseFit objects

The method causalSLSE estimates the causal effects from cslseFit objects using the knots included in the
estimated model. The arguments of the method are:

e object: An object of class cslseFit.

e causal: What causal effect measure should the function compute? We have the choice between “ALL”
(the default), “ACE”, “ACT” or “ACN”.

e vcov.: An alternative function used to compute the covariance matrix of the least squares estimates.
This is the ié defined in the Introduction section. By default, vcovHC is used with type="HC3".
Simulations from Giurcanu et al. (2023) show that using vcovHC with type="HC3" produces the most
accurate estimate of the variance of ACE, ACT and ACN in small and large samples.

e ...: This is used to pass arguments to the vcov. function.

In the following example, we estimate the causal effect with the initial knots (without selection).
modell <- cslseModel(re78 ~ treat | ~ age + re75 + ed + married, data=nsw)

fitl <- estSLSE(modell)

ce <- causalSLSE(fit1)

ce

Causal Effect using Semiparametric LSE
stk ok e sk ok sk ko ok sk ks ok o ok sk sk ok o sk sk sk ok o sk sk ok ok o ok

Selection method: Default

ACE = 825.4
ACT = 843.7
ACN = 812.6

The method returns an object of class cslse and its print method only prints the causal effect estimates.
We can extract any causal estimate and its standard error by using the $ operator followed by the type of
causal effect estimate. For example, the following is the ACE:

ce$ACE

est se
825.4222 505.7461

The object also contains the two slseFit objects and the model attributes that specify the name of the
treatment indicator variable and the value of the indicator associated with each group.

For more details about the estimation, which includes standard errors and significance tests, we can use the
summary method:

sce <- summary(ce)
sce

Causal Effect using Semiparametric LSE

ok ok KoK oK oK ok ok o o K K oK oK ok ok o K K K oK oK ok ok o o K K oK oK ok ok o o K oK
Selection method: Default

29

Estimate Std. Error t value Pr(>|tl)

ACE 825.4 505.7 1.632 0.103
ACT 843.7 527.9 1.598 0.110
ACN 812.6 513.7 1.582 0.114

The summary method returns an object of class summary.cslse and the above output is produced by its
print method. If needed, we can extract the above table using $causal. The summary tables for the treated
and nontreated LSE can be extracted using $1se.

The cslse object inherits from the class cslseFit, so we can apply the plot (or the predict) method
directly on this object as shown below:
plot(ce, "re75")

re78 vs re75 using SLSE

o
o
o —
w
5
=
o g
o
S
o
(=g
o
7ol

2.4.1 The extract method

The package also comes with an extract method for objects of class cslse. For example, we can compare
different methods in a single table. In the following example, we compare the SLSE, BLSE-AIC and
FLSE-AIC:

library(texreg)

cl <- causalSLSE(fit1)

fit2 <- estSLSE(selSLSE(modell, selType="BLSE"))

fit3 <- estSLSE(selSLSE(modell, selType="FLSE"))

c2 <- causalSLSE(fit2)

c3 <- causalSLSE(fit3)

texreg(list (SLSEC=c1, BLSE_AIC=c2, FLSE_AIC=c3), table=FALSE, digits=4)

SLSE BLSE FLSE
ACE 825.4222 785.8421 845.4417
(505.7461) (483.5174) (496.1856)
ACT 843.7084 843.3745 855.8981
(527.8792) (516.7354) (513.6188)
ACN 812.6434 745.6371 838.1346
(513.6616) (478.0473) (501.8498)
Num. knots (Nontreated) 14 7 6
Num. knots (Treated) 12 6 5
Num. confounders 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R2 0.0925 0.0855 0.0839
Adj. R? 0.0462 0.0567 0.0578

***p < 0.001; **p < 0.01; *p < 0.05

The arguments of the extract methods, which control what is printed and can be modified through the

30

texreg function, are:

¢ include.nobs: Include the number of observations. The default is TRUE.

¢ include.nknots: Include the number of knots. The default is TRUE.

« include.rsquared: Include the R?. The default is TRUE.

« include.adjrs: Include the adjusted R2. The default is TRUE.

« separated.rsquared Should we return one R? per slseModel? By default it is set to FALSE and one
R? is computed for the joint estimation of Equation (3). This argument applies also to the adjusted R2.

o which: Which causal effects should be printed? The options are “ALL” (the default), “ACE”, “ACT”,
“ACN”, “ACE-ACT”, “ACE-ACN” or “ACT-ACN”.

Here is one example on how to change some arguments:

texreg(list (SLSE=cl, BLSE=c2, FLSE=c3), table=FALSE, digits=3,

which="ACE-ACT", include.adjrs=FALSE, separated.rsquared=TRUE)

SLSE BLSE FLSE
ACE 825.422 785.842 845.442
(505.746) (483.517) (496.186)
ACT 843.708 843.374 855.898
(527.879) (516.735) (513.619)
Num. knots (Nontreated) 14 7 6
Num. knots (Treated) 12 6 5
Num. confounders 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R2 (nontreated) 0.102 0.098 0.097
R? (treated) 0.074 0.064 0.063

***p < 0.001; **p < 0.01; *p < 0.05

2.5 The causalSLSE method for cslseModel objects

When applied directly to cslseModel objects, the causalSLSE method offers the possibility to select the
knots and estimate the causal effects all at once. The method also returns an object of class cslse. The
arguments are the same as for the method for cslseFit objects, plus the necessary arguments for the knots
selection. The following are the arguments not already defined for objects of class cslseFit. The details of
these arguments are presented in Section 2.3.

e object: An object of class cslseModel.

o selType: This is the selection method. We have the choice between “SLSE” (the default), “FLSE” and
“BLSE”. The SLSE method performs no selection, so all knots from the model are kept.

o selCrit: This is the criterion used by the selection method when selType is set to “FLSE” or “BLSE".
The default is “AIC”.

e pvalT: This is a function that returns the p-value threshold. We explained this argument when we
presented the selSLSE method.

For example, we can generate the previous table as follows:

cl <- causalSLSE(modell, selType="SLSE")
c2 <- causalSLSE(modell, selType="BLSE")
c3 <- causalSLSE(modell, selType="FLSE")
texreg(list (SLSE=c1, BLSE=c2, FLSE=c3), table=FALSE, digits=4)

31

SLSE BLSE FLSE

ACE 825.4222 785.8421 845.4417
(505.7461) (483.5174) (496.1856)
ACT 843.7084 843.3745 855.8981
(527.8792) (516.7354) (513.6188)
ACN 812.6434 745.6371 838.1346
(513.6616) (478.0473) (501.8498)
Num. knots (Nontreated) 14 7 6
Num. knots (Treated) 12 6 5
Num. confounders 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R? 0.0925 0.0855 0.0839
Adj. R? 0.0462 0.0567 0.0578

***p < 0.001; **p < 0.01; *p < 0.05

Note that this causalSLSE method calls selSLSE for the knot selection. Therefore, the selection is done
without any computation if the selection is already saved in the model object. It would therefore be inefficient
to compare FLSE with AIC, BIC and PVT using the following, because it would involve recomputing all
FLSE selections 3 times:

cl <- causalSLSE(modell, selType="FLSE", selCrit="AIC")
c2 <- causalSLSE(modell, selType="FLSE", selCrit="BIC")
c3 <- causalSLSE(modell, selType="FLSE", selCrit="PVT")

It is better to add all FLSE selections in the model first and then call the causalSLSE method 3 times as
follows:

modell <- selSLSE(modell, selType="FLSE")

cl <- causalSLSE(modell, selType="FLSE", selCrit="AIC")

c2 <- causalSLSE(modell, selType="FLSE", selCrit="BIC")

c3 <- causalSLSE(modell, selType="FLSE", selCrit="PVT")

2.6 The causalSLSE method for formula objects

This last method, offers an alternative way of estimating the causal effects. It allows the estimation in one
step without having to first create a model. The arguments are the same as for the cslseModel function and
the causalSLSE method for cslseModel objects. It creates the model, selects the knots and estimates the
causal effects in one step. For example, we can create the previous table as follows:
cl <- causalSLSE(re78 ~ treat | ~ age + re75 + ed + married, data=nsw,

selType="SLSE")
c2 <- causalSLSE(re78 ~ treat | ~ age + re75 + ed + married, data=nsw,

selType="BLSE")
c3 <- causalSLSE(re78 ~ treat | ~ age + re75 + ed + married, data=nsw,

selType="FLSE")
texreg(list (SLSE=cl, BLSE=c2, FLSE=c3), table=FALSE, digits=4)

SLSE BLSE FLSE
ACE 845.4417 785.8421 845.4417
(496.1856) (483.5174) (496.1856)
ACT 855.8981 843.3745 855.8981
(513.6188) (516.7354) (513.6188)
ACN 838.1346 745.6371 838.1346
(501.8498) (478.0473) (501.8498)
Num. knots (Nontreated) 6 7 6
Num. knots (Treated) 5 6 5
Num. confounders 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R? 0.0839 0.0855 0.0839
Adj. R? 0.0578 0.0567 0.0578

***p < 0.001; **p < 0.01; *p < 0.05

Note that this method calls cslseModel, selSLSE, estSLSE and the method causalSLSE for cslseFit
objects sequentially. It is easier to simply work with this method, but manually going through all steps may
be beneficial to better understand the procedure. Also, it is more convenient to work with a model when

32

we want to compare the different selection methods, or if we want to compare estimations with different
types of standard errors. In particular, this approach does not offer the more efficient option of computing all
selections once and save them in the model as explained at the end of the previous section.

3 Examples

3.1 A simulated data set from Model 1

In the package, the data set datSim1 is generated using the following data generating process with a sample
size of 300.

Y(0) = 14+X+X?+€(0)
Y(1) = 1-2X+¢€1)
Z = Bernoulli[A(1 + X)]
Y = Y()Z+Y(0)(1-Z)

where Y'(0) and Y (1) are the potential outcomes, X, €(0) and €(1) are independent standard normal and A(x)
is the CDF of the standard logistic distribution. The causal effects ACE, ACT and ACN are approximately
equal to -1, -1.6903 and 0.5867 (estimated using a sample size of 107). We can start by building the starting
model:

data(simDat1)

mod <- cslseModel(Y ~ Z | ~ X, data = simDatl)

mod <- selSLSE(mod, "BLSE") ## Let's save them all first
mod <- selSLSE(mod, "FLSE")

Then we can compare three different methods:

cl <- causalSLSE(mod, selType = "SLSE")

c2 <- causalSLSE(mod, selType "BLSE", selCrit = "BIC")

c3 <- causalSLSE(mod, selType "FLSE", selCrit = "BIC")

texreg(list (SLSE = c1, BLSE = c2, FLSE = c3), table = FALSE, digits = 4)

SLSE BLSE FLSE
ACE —1.5067*** —1.4950*** —1.4950***
(0.2706) (0.2696) (0.2696)
ACT —1.9889*** —1.9889*** —1.9889***
(0.3138) (0.3137) (0.3137)
ACN —0.1804 —0.1369 —0.1369
(0.3174) (0.3260) (0.3260)
Num. knots (Nontreated) 2 2 2
Num. knots (Treated) 1 0 0
Num. confounders 1 1 1
Num. obs. (Nontreated) 80 80 80
Num. obs. (Treated) 220 220 220
R? 0.7466 0.7431 0.7431
Adj. R? 0.7414 0.7388 0.7388

***p < 0.001; **p < 0.01; *p < 0.05

We see that both selection methods choose to assign 0 knots for the treated group, which is not surprising
since the true fi(z) is linear. We can compare the different fits.
list(common = list(main = "Y vs X using BLSE-BIC"))

$common

$common$main

[1]1 "Y vs X using BLSE-BIC"

plot(cl, "X")

curve(l - 2 * x, -3, 3, col = "darkgreen", 1ty = 4, lwd = 3, add = TRUE)
curve(l + x + x°2, -3, 3, col = "darkorange", 1ty = 4, lwd = 3, add = TRUE)
legend("bottomleft", c("True-treated", "True-nontreated"),

33

col=c("darkgreen", "darkorange"), lty = 4, lwd = 3, bty = 'n')
plot(c2, "X", graphPar = list(common = list(main = "Y vs X using BLSE-BIC")))
curve(l - 2 * x, -3, 3, col="darkgreen", lty = 4, lwd = 3, add = TRUE)
curve(l + x + x°2, -3, 3, col = "darkorange", lty = 4, lwd = 3, add = TRUE)
legend("bottomleft", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 4, lwd = 3, bty = 'n')
plot(c3, "X", graphPar = list(common = list(main = "Y vs X using FLSE-BIC")))
curve(l - 2 * x, -3, 3, col="darkgreen", lty = 4, lwd = 3, add = TRUE)
curve(l + x + x°2, -3, 3, col = "darkorange", 1ty = 4, lwd = 3, add = TRUE)
legend("bottomleft", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 4, lwd = 3, bty = 'n')

Y vs X using SLSE Y vs X using BLSE-BIC
PA
© - Treated © / Treated
< — Nontreated < 4 — Nontreated
N o~ -
> - > .
o ~ -~ o - ~.. <
o R =
! © \\\, - c\II N S~ N
7| + = True-treated SUsS. _| + = True-treated “<‘

© | - = Tue-nontreated b + = True-nontreated hES

T T T T T T T K T T T T T T T

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

X X
Y vs X using FLSE-BIC
© - Treated
— Nontreated
< -
~ -
> .
o ~
o Y. -
1 “~
| = = True-treated t.. -
+ = True-nontreated s

©
[T T T T T T T

-3 -2 -1 0 1 2 3

X

We see that the piecewise polynomials are very close to the true fo(z) and fi(z) for SLSE, BLSE and FLSE.
We can see from the folllowing graph how the lines are fit through the observations by group.
plot(cl, "X", addPoints=TRUE)

Y vs X using SLSE

o -0 Treated
o Nontreated
> O §
~ (e}
o §\(é © O
? $°°,
(o]
T T T T T T T
-3 -2 -1 0 1 2 3

34

3.2 A simulated data set from Model 2

The dataset datSim2 is a change point regression model (with unknown location of change points) defined as
follows:

Y0 = Q+X)I(X<-1)+(-1-X)I[(X >—-1)+¢€(0)
Y(1) = (1-2X)I(X <0)+(1+2X)I(X >0)+¢€(1)

Z = Bernoulli[A(1 4+ X)]

Y = Y1)Z+Y(0)(1-2)

where Y'(0) and Y (1) are the potential outcomes, I(A) is the indicator function equal to 1 if A is true, and X,
€(0) and €(1) are independent standard normal. The causal effects ACE, ACT and ACN are approximately
equal to 3.763, 3.858 and 3.545 (estimated with a sample size of 107). We can compare the SLSE, BLSE-AIC
and BLSE-BIC.

data(simDat2)

mod <- cslseModel(Y~Z | ~X, data=simDat2)
mod <- selSLSE(mod, "BLSE") ## We just add BLSE because we do not use FLSE

cl <- causalSLSE(mod, selType = "SLSE")

c2 <- causalSLSE(mod, selType = "BLSE", selCrit = "BIC")

c3 <- causalSLSE(mod, selType = "BLSE", selCrit = "AIC")

texreg(list(SLSE = c1, BLSE.BIC = c2, BLSE.AIC = c3), table = FALSE, digits = 4)

SLSE BLSE.BIC BLSE.AIC

ACE 3.9268*** 3.9268%** 3.9268***
(0.1765) (0.1765) (0.1765)
ACT 3.9566"** 3.9566*** 3.9566%**
(0.1992) (0.1992) (0.1992)
ACN 3.8560%** 3.8560*** 3.8560***
(0.2263) (0.2263) (0.2263)
Num. knots (Nontreated) 1 1 1
Num. knots (Treated) 3 3 3
Num. confounders 1 1 1
Num. obs. (Nontreated) 89 89 89
Num. obs. (Treated) 211 211 211
R? 0.7827 0.7827 0.7827
Adj. R? 0.7775 0.7775 0.7775

< 0.001; **p < 0.01; *p < 0.05

The following shows the fit of BLSE-AIC with the true fi(x) and fo(z), and the observations.

arg <- list(common = list(main = "Y vs X using BLSE-AIC"),
legend = list(x = "right", cex = 0.8))
plot(c2, "X", graphPar = arg)
curve((1 -2 * x) * (x <= 0) + (1 + 2 * x) * (x > 0), -3, 3,
col = "darkgreen", 1ty = 3, lwd = 3, add = TRUE)
curve((1 + x) * (x <= -1) + (-1 - x) * (x > -1),
-3, 3, col = "darkorange", 1ty = 3, lwd = 3, add = TRUE)
legend("left", c("True-treated", "True-nontreated"),
col = c("darkgreen", "darkorange"), 1ty = 3, lwd = 3, bty = 'n', cex = .8)
arg$legend$x <- "topleft"
plot(c2, "X", addPoints = TRUE, graphPar = arg)

35

Y vs X using BLSE-AIC Y vs X using BLSE-AIC

© - Z
TN ./‘/ -o- Treated o ©
> © -
. '\'\ L —— Nontreateqo\ o ° o Oo 6 0. - 60
<~ IR ~ ‘(%\o@cﬁ o o % “00
a ‘- faB® 00 o uBeg, 0O
PN - o ~RO ® @ (o) 3 od
N :
o T ‘,‘ oO 29 (;‘;%@O A
> True—treated RSN --- Treated > o o S (g ol o
True-nontreated o —— Nontreated DD 0 @S =) %gg%
o
42
o i
o
1

3.3 A simulated data set from Model 3

The data set datSim3 is generated from model with multiple confounders defined as follows:

Y(0) = [1+X1+ X +[(1+Xo)I(X2 < —1)+ (=1 — Xo)I[(Xy > —1)] + €(0)
Y(1) = [1-2X1]+[(1 —2X2)I(Xo <0)+ (14 2X5)I(X5 > 0)] + (1)

Z = BernoullilA(1 4+ X7 + X5)]

Y = Y()Z+Y(0)(1-2),

where Y (0) and Y (1) are the potential outcomes, X1, X3, €(0) and ¢(1) are independent standard normal.
The causal effects ACE, ACT and ACN are approximately equal to 2.762, 2.204 and 3.922 (estimated with a
sample size of 107). We can compare the SLSE, FLSE with AIC and FLSE with BIC.

data(simDat3)
mod <- cslseModel(Y ~ Z | ~ X1 + X2, data = simDat3)
mod <- selSLSE(mod, "FLSE") ## We just add FLSE because we do not use BLSE

cl <- causalSLSE(mod, selType = "SLSE")
c2 <- causalSLSE(mod, selType = "FLSE", selCrit = "BIC")
c3 <- causalSLSE(mod, selType = "FLSE", selCrit = "AIC")
texreg(list (SLSE = c1, FLSE.BIC = c2, FLSE.AIC = c3), table = FALSE, digits = 4)
SLSE FLSE.BIC FLSE.AIC
ACE 2.4685*** 2.4810*** 2.4685%**
(0.2727) (0.2671) (0.2727)
ACT 2.0634*** 2.0554*** 2.0634***
(0.3442) (0.3354) (0.3442)
ACN 3.2319*** 3.2832*** 3.2319%**
(0.3465) (0.3454) (0.3465)
Num. knots (Nontreated) 8 4 8
Num. knots (Treated) 6 2 6
Num. confounders 2 2 2
Num. obs. (Nontreated) 104 104 104
Num. obs. (Treated) 196 196 196
R? 0.8743 0.8662 0.8743
Adj. R? 0.8658 0.8611 0.8658

***p < 0.001; **p < 0.01; *p < 0.05

To illustrate the method, since we have two confounders, we need to plot the outcome against one confounder
holding the other fixed. The default is to fix it to its sample mean. For the true curve, we fix it to its
population mean, which is 0. We first look at the outcome against X;. By fixing X5 to 0, the true curve
is X7 + X? for the untreated and 2 — 2X for the treated. The following graphs show how the FLSE-BIC
method fits the curves.

36

arg <- list(common = list(main = "Y vs X1 using FLSE-AIC"),

legend = list(x = "right", cex = 0.8))
plot(c2, "X1", graphPar = arg)
curve(x + x°2, -3, 3, col = "darkgreen", 1ty = 3, lwd = 3, add = TRUE)
curve(2 - 2 * x, -3, 3, col = "darkorange", 1ty = 3, lwd = 3, add = TRUE)
legend("topleft", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)
arg$legend$x <- "topleft"
plot(c2, "X1", addPoints = TRUE, graphPar = arg)
Y vs X1 using FLSE-AIC Y vs X1 using FLSE-AIC
True-treated -o- Treated g
True-nontreated —&— Nontreated
o]
- o . , - Treated
> © — Nontreated
o -
~.
I I I I I I [
-3 -2 -1 0 1 2 3
X1 X1

If we fix X to 0, the true curve is 1+ [(1 + X3)[(X2 < —1) + (=1 — X3)I(X3 > —1)] for the nontreated and
14+ (1 —2X2)I(X2 <0) 4 (1+2X5)I(X2 > 0)] for the treated. The following graphs illustrates how these
curves are approximated by FLSE-AIC.
arg <- list(common = list(main = "Y vs X2 using FLSE-AIC"),
legend = list(x = "right", cex = 0.8))

plot(c2, "X2", graphPar = arg)
curve(1 + (1 - 2 * x) * (x <=0) + (1 + 2 * x) * (x >0), -3, 3,

col = "darkgreen", 1ty = 3, lwd = 3, add = TRUE)
curve(l1 + (1 + x) * (x <= -1) + (-1 - x) * (x > -1),

-3, 3, col = "darkorange", 1ty = 3, lwd = 3, add = TRUE)
legend("left", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), 1ty = 3, lwd = 3, bty = 'n', cex = .8)
arg$legend$x <- "topleft"
plot(c2, "X2", addPoints = TRUE, graphPar = arg)

Y vs X2 using FLSE-AIC Y vs X2 using FLSE-AIC
e -o- Treated =
© . e —&— Nontreated
Ss N Pid o |
= \. . o, -2 - T
< 4 Tt 'Rd
N .2 -
> « + True-treated AR e --- Treated w0 - ©
+ + True-nontreated e, e — Nontreated
S S
o 4
o 4
o | o
T T T T T T ! T T T T T
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
X2 X2

3.4 A simulated data set with product terms

The data set datSimb5 is generated using the following data generating process with a sample size of 300.

37

Y(0) = [IT+X14+ X+ [(1+X)I(Xy < —1)+ (=1 - X2)[(Xy > —1)]
+H[1+ X1 X5 + (X1 X2)?] +€(0)

V(1) = [1-2X3]+[(1 - 2X5)I(X3 <0) + (14 2X5)1(X5 > 0)]
+[1—2X; Xo] +€(1)
Z = Bernoulli[A(1 + X1 + X + X1 X5)]
Y = Y()Z+Y(O)(1-2),

where Y(0) and Y'(1) are the potential outcomes, and X7, X, €(0) and ¢(1) are independent standard normal.
The causal effects ACE, ACT and ACN are approximately equal to 1.763, 0.998 and 3.194 (estimated with a
sample size of 107). We can compare the SLSE, FLSE-AIC and FLSE-BIC.

data(simDat5)
mod <- cslseModel(Y ~ Z | ~ X1 * X2, data = simDat5)
mod <- selSLSE(mod, "FLSE") ## We just add FLSE because we do not use BLSE

cl <- causalSLSE(mod, selType = "SLSE")

c2 <- causalSLSE(mod, selType = "FLSE", selCrit = "BIC")

c3 <- causalSLSE(mod, selType = "FLSE", selCrit = "AIC")

texreg(list (SLSE = ci, FLSE.BIC = c2, FLSE.AIC = c3), table = FALSE, digits = 4)

SLSE FLSE.BIC FLSE.AIC

ACE 1.7951*** 1.7142%** 1.7951%**
(0.3812) (0.3815) (0.3812)
ACT 1.2321* 1.1083* 1.2321*
(0.4950) (0.4956) (0.4950)
ACN 2.8560*** 2.8560*** 2.8560***
(0.4479) (0.4478) (0.4479)
Num. knots (Nontreated) 9 7 9
Num. knots (Treated) 6 6 6
Num. confounders 3 3 3
Num. obs. (Nontreated) 104 104 104
Num. obs. (Treated) 196 196 196
R2 0.8928 0.8898 0.8928
Adj. R? 0.8843 0.8819 0.8843

***p < 0.001; **p < 0.01; *p < 0.05

In the case of multiple confounders with interactions, the shape of the fitted outcome with respect to one
confounder depends on the value of the other confounders. Without interaction, changing the value of the
other confounders only shifts the fitted line without changing its shape. The following graphs compare the
estimated relationship between Y and X; for X5 equal to the group means (left graph) and 1 (right graph).
Using a sample of 107, we obtain that E(X»|Z = 1) and E(X3|Z = 0) are approximately equal to 0.1982 and
-0,3698, respectively. Therefore, the true curves are (1.3698 + 0.6302x + 1.1368z2) for the nontreated and
(3.3964 — 2.3964x) for the treated. If X5 = 1, the true curves become 2z + 222 for the treated and (5 — 4x)
for the nontreated.
x20 <- mean(subset(simDat5, Z == 0)$X2)
x21 <- mean(subset(simDat5, Z == 1)$X2)
arg <- 1list(common = list(main = "Y vs X1 (X2 = sample mean for each group)"),

legend = list(x = "right", cex = 0.8))
plot(c2, "X1", fixedCov = list(nontreated = list(X2 = x20), treated = list(X2 = x21)),

graphPar = arg)
curve(1.3698 + 0.6302 * x + 1.1368 * x°2, -3, 3,
col = "darkgreen", 1ty = 3, lwd 3, add = TRUE)
curve(3.3964 - 2.3964 * x, -3, 3, col "darkorange", 1ty = 3, lwd = 3, add = TRUE)
legend("top", c("True-treated", "True-nontreated"),
col=c("darkorange", "darkgreen"), lty = 3, lwd = 3, bty = 'n', cex = .8)

arg <- 1list(common = list(main = "Y vS X1 (X2 = 1 for each group)"),

legend = list(x = "right", cex = 0.8))
plot(c2, "X1", fixedCov = list(X2 = 1), graphPar = arg)
curve(2 * x + 2 * x°2, -3, 3, col = "darkgreen", 1ty = 3, lwd = 3, add = TRUE)
curve(6 - 4 * x, -3, 3, col = "darkorange", 1ty = 3, lwd = 3, add = TRUE)

38

legend("top", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)
Y vs X1 (X2 = sample mean for each group) Y vS X1 (X2 = 1 for each group)
7o)
S True-treated . « « True-treated
0 — True—nontreated : True-nontreated
o _|
© -
< -
> - Treated © - Treated
o - — Nontreated — Nontreated
_ T~ - o s
[Ye oS -~
el © -
T - b -
[I I I I I [I I I I I
-2 -1 0 1 2 3 -2 -1 0 1 2 3
X1 X1

The following graphs illustrate the relationship between Y and X, for a given X;. When X; is equal to
its population group means (they are equal to the population means of X5), the true curves are [1.6036 —
0.3964z)(x < 0)+ (1+22)(x > 0)] for the treated and [(1.767 — 0.3698x +0.1368z2) + (1+) (z < —1)+ (=1 —
x)(z > —1)] for the nontreated. If X; = 1, the true curves become [—2z + (1 — 2z)(z < 0) 4+ (1 + 2z)(z > 0)]
for the treated and [(4 + z + 22) + (1 + x)(z < —1) 4+ (=1 — x)(z > —1)] for the nontreated.
x10 <- mean(subset(simDat5, Z == 0)$X1)
x11 <- mean(subset(simDat5, Z == 1)$X1)
arg <- 1list(common = list(main = "Y vs X2 (X1 = sample mean for each group)"),
legend = list(x = "right", cex = 0.8))
plot(c2, "X2", fixedCov = list(nontreated = list(X1 = x10), treated = list(X1 = x11)),
graphPar = arg)

curve(1.603900 - .3964 * x + (1 - 2 * x) * (x <= 0) + (1 + 2 * x) * (x > 0), -3, 3,

col = "darkgreen", 1ty = 3, lwd = 3, add = TRUE)
curve(1.767 - 0.3698 * x + 0.1368 * x"2 + (1 + x) * (x <= -1) + (-1 - x) * (x > -1),

-3, 3, col = "darkorange", 1ty = 3, lwd = 3, add = TRUE)
legend("top", c("True-treated", "True-nontreated"),

col = c("darkorange", "darkgreen"), 1ty = 3, lwd = 3, bty = 'n', cex = .8)
arg$common$main <- "Y vS X2 (X1 = 1 for each group)"
plot(c2, "X2", fixedCov = list(X1 = 1), graphPar = arg)
curve(-2 * x + (1 - 2 * x) * (x <=0) + (1 +2 *x) * (x> 0), -3, 3,
col = "darkgreen", 1ty = 3, lwd = 3, add = TRUE)
curve(4 + (1 + x) * (x <= -1) + (-1 - x) * (x > -1) + x + x72,
-3, 3, col = "darkorange", 1ty = 3, lwd = 3, add = TRUE)
legend("top", c("True-treated", "True-nontreated"),
col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)
Y vs X2 (X1 = sample mean for each group) Y vS X2 (X1 = 1 for each group)
® . True-treated he True-treated
e « « True-nontreated e True-nontreated
© - > \'\ L . ©
S e '\. . e
<+ - N _ -

- Treated - Treated

[SURES —— Nontreated — Nontreated
< -
o
Y - ~] ‘
N4l ST, T T
T I I I I I I T I I I I I I
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X2 X2

39

4 Summary of methods and objects

The following is a list of all objects from the package. For each object, we explain how it is constructed and
give a list of the registered methods. For more details about the arguments of the different methods, see the
help files. Note, however, that no help files exist for non-exported methods and the latter must be called
using causalSLSE: :: before the method names.

o slseKnots: The object is created by the function slseKnots and the only exported registered methods
are print and update.

e slseModel and cslseModel: The objects are respectively created by the functions slseModel and
cslseModel. The exported registered methods are print, estSLSE (estimate the regression model),
selSLSE (optimal selection of knots), update (select knots from saved selections) and causalSLSE (to
estimate the causal effects). There are two non-exported methods: pvalSLSE (used to compute the
p-values) and model.matrix (to extract the matrix of confounders).

« slseFit and cslseFit: The objects are created by the method estSLSE (the former when applied to
slseModel objects and the latter when applied to cslseModel objects) and the exported registered
methods are print, causalSLSE (to compute the causal effects), predict (to predict the outcome),
plot (to plot the outcome as a function of one confounder) and summary (to give more details about
the least squares estimation). There is one non-exported method, as.model, which extracts the model
object from the slseFit or cslseFit object.

o slseFit: One registered method that only applies to this class is extract. It is needed to generate
LaTeX table with texreg.

o cslseFit: One registered method that only applies to this class is as.list. It converts the objects into
a list of slseFit objects.

e summary.slseFit and summary.cslseFit: The objects are created by the summary method for
slseFit and cslseFit objects. The only exported registered method is print.

e cslse: The object is created by any causalSLSE method. It inherits from cslseFit objects. The
methods that are common through this inheritance are plot and predict. The exported registered
methods specific to cslse objects are print, summary (to give more details about the causal effect
estimation) and extract (a method needed for texreg). There is one non-exported method, as.model,
which extracts the model object.

Note that the method causalSLSE is also registered for objects of class formula.

References

Giurcanu, M., M. Capanu, P. Chaussé, and G. Luta. 2023. “Efficient Semiparametric Inference for Causal
Effects” Working Paper.

Lalonde, R. 1986. “Evaluating the Econometric Evaluations of Training Programs.” American Economic
Review 76: 604-20.

Leifeld, Philip. 2013. “texreg: Conversion of Statistical Model Output in R to LaTeX and HTML Tables.”
Journal of Statistical Software 55 (8): 1-24. http://dx.doi.org/10.18637/jss.v055.108.

Zeileis, Achim. 2006. “Object-Oriented Computation of Sandwich Estimators.” Journal of Statistical Software
16 (9): 1-16. https://doi.org/10.18637/jss.v016.109.

40

http://dx.doi.org/10.18637/jss.v055.i08
https://doi.org/10.18637/jss.v016.i09

	Introduction
	The causalSLSE package
	The Semiparametric LSE model
	The starting knots
	Creating a SLSE model
	Selecting the knots manually
	Methods for slseModel objects

	The causal-SLSE model (cslseModel)
	Setting the knots manually
	Estimating the model
	The predict method
	The plot method
	Factors, interactions and functions of confounders

	Optimal selection of the knots
	Selection for slseModel versus cslseModel objects
	Selections saved in slseModel objects.
	Select a saved selection with update

	The causalSLSE method for cslseFit objects
	The extract method

	The causalSLSE method for cslseModel objects
	The causalSLSE method for formula objects

	Examples
	A simulated data set from Model 1
	A simulated data set from Model 2
	A simulated data set from Model 3
	A simulated data set with product terms

	Summary of methods and objects
	References

