
Package ‘causalOT’
February 18, 2024

Type Package

Title Optimal Transport Weights for Causal Inference

Version 1.0.2

Date 2024-02-17

Author Eric Dunipace [aut, cre] (<https://orcid.org/0000-0001-8909-213X>)

Maintainer Eric Dunipace <edunipace@mail.harvard.edu>

Description Uses optimal transport distances to find probabilistic
matching estimators for causal inference.
These methods are described in Dunipace, Eric (2021) <arXiv:2109.01991>.
The package will build the weights, estimate treatment effects, and
calculate confidence intervals via the methods described in the paper.
The package also supports several other methods as described in the help
files.

License GPL (== 3.0)

Imports CBPS, ggplot2, lbfgsb3c, loo, Matrix (>= 1.5-0), matrixStats,
methods, osqp, R6 (>= 2.4.1), Rcpp (>= 1.0.3), rlang, sandwich,
torch, utils

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
torch

Suggests data.table (>= 1.12.8), testthat (>= 2.1.0), knitr,
reticulate, rkeops (>= 2.2.2), rmarkdown, V8, withr

Additional_repositories https://ericdunipace.github.io/drat/

Biarch true

Depends R (>= 3.5.0)

Encoding UTF-8

RoxygenNote 7.3.1

LazyData true

VignetteBuilder knitr

1

https://orcid.org/0000-0001-8909-213X
https://arxiv.org/abs/2109.01991
https://ericdunipace.github.io/drat/

2 R topics documented:

Collate 'DataSimClass.R' 'dataHolder.R' 'weightsClass.R' 'ESS.R'
'OT.R' 'PSIS.R' 'RcppExports.R' 'balanceFunctions.R'
'barycentricProjection.R' 'calc_weight.R' 'causalOT-package.R'
'cost_functions.R' 'scmClass.R' 'gridSearch.R' 'cotClass.R'
'cotOOP.R' 'cot_opts.R' 'likelihoodClass.R' 'mean_balance.R'
'summary.R' 'supportedMethods.R' 'treatment_effect.R' 'utils.R'
'zzz.R'

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-02-18 22:50:08 UTC

R topics documented:

barycentric_projection . 3
calc_weight . 5
causalWeights-class . 7
coef.causalEffect . 8
cotOptions . 9
CRASH3 . 12
dataHolder . 14
DataSim . 15
df2dataHolder . 17
entBWOptions . 18
ESS . 19
estimate_effect . 20
Hainmueller . 21
LaLonde . 23
mean_balance . 26
Measure . 26
OTProblem . 29
ot_distance . 33
plot.causalWeights . 36
pph . 38
predict.bp . 39
print.dataHolder . 40
PSIS . 41
sbwOptions . 43
scmOptions . 44
summary.causalWeights . 44
supported_methods . 46
vcov.causalEffect . 46

Index 48

barycentric_projection 3

barycentric_projection

Barycentric Projection outcome estimation

Description

Barycentric Projection outcome estimation

Usage

barycentric_projection(
formula,
data,
weights,
separate.samples.on = "z",
penalty = NULL,
cost_function = NULL,
p = 2,
debias = FALSE,
cost.online = "auto",
diameter = NULL,
niter = 1000L,
tol = 1e-07,
...

)

Arguments

formula A formula object specifying the outcome and covariates.

data A data.frame of the data to use in the model.

weights Either a vector of weights, one for each observations, or an object of class
causalWeights.

separate.samples.on

The variable in the data denoting the treatment indicator. How to separate sam-
ples for the optimal transport calculation

penalty The penalty parameter to use in the optimal transport calculation. By default it
is 1/ log(n).

cost_function A user supplied cost function. If supplied, must take arguments x1, x2, and p.

p The power to raise the cost function. Default is 2.0. For user supplied cost
functions, the cost will not be raised by this power unless the user so specifies.

debias Should debiased barycentric projections be used? See details.

cost.online Should an online cost algorithm be used? Default is "auto", which selects an on-
line cost algorithm when the sample size in each group specified by separate.samples.on,
n0 and n1, is such that n0 ·n1 ≥ 50002 Must be one of "auto", "online", or "ten-
sorized". The last of these is the offline option.

4 barycentric_projection

diameter The diameter of the covariate space, if known.

niter The maximum number of iterations to run the optimal transport problems

tol The tolerance for convergence of the optimal transport problems

... Not used at this time.

Details

The barycentric projection uses the dual potentials from the optimal transport distance between the
two samples to calculate projections from one sample into another. For example, in the sample of
controls, we may wish to know their outcome had they been treated. In general, we then seek to
minimize

argminη
∑
ij

cost(ηi, yj)πij

where πij is the primal solution from the optimal transport problem.

These values can also be de-biased using the solutions from running an optimal transport problem
of one sample against itself. Details are listed in Pooladian et al. (2022) https://arxiv.org/abs/
2202.08919.

Value

An object of class "bp" which is a list with slots:

• potentials The dual potentials from calculating the optimal transport distance

• penalty The value of the penalty parameter used in calculating the optimal transport distance

• cost_function The cost function used to calculate the distances between units.

• cost_alg A character vector denoting if an L1 distance, a squared euclidean distance, or other
distance metric was used.

• p The power to which the cost matrix was raised if not using a user supplied cost function.

• debias Whether barycentric projections should be debiased.

• tensorized TRUE/FALSE denoting wether to use offline cost matrices.

• data An object of class dataHolder with the data used to calculate the optimal transport dis-
tance.

• y_a The outcome vector in the first sample.

• y_b The outcome vector in the second sample.

• x_a The covariate matrix in the first sample.

• x_b The covariate matrix in the second sample.

• a The empirical measure in the first sample.

• b The empirical measure in the second sample.

• terms The terms object from the formula.

https://arxiv.org/abs/2202.08919
https://arxiv.org/abs/2202.08919

calc_weight 5

Examples

if(torch::torch_is_installed()) {
set.seed(23483)
n <- 2^5
pp <- 6
overlap <- "low"
design <- "A"
estimate <- "ATT"
power <- 2
data <- causalOT::Hainmueller$new(n = n, p = pp,
design = design, overlap = overlap)

data$gen_data()

weights <- causalOT::calc_weight(x = data,
z = NULL, y = NULL,
estimand = estimate,
method = "NNM")

df <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x())

fit <- causalOT::barycentric_projection(y ~ ., data = df,
weight = weights,
separate.samples.on = "z",
niter = 2)

inherits(fit, "bp")
}

calc_weight Estimate causal weights

Description

Estimate causal weights

Usage

calc_weight(
x,
z,
estimand = c("ATC", "ATT", "ATE"),
method = supported_methods(),
options = NULL,
weights = NULL,
...

)

6 calc_weight

Arguments

x A numeric matrix of covariates. You can also pass an object of class dataHolder
or DataSim, which will make argument z not necessary,

z A binary treatment indicator.

estimand The estimand of interest. One of "ATT","ATC", or "ATE".

method The method to estimate the causal weights. Must be one of the methods returned
by supported_methods().

options The options for the solver. Specific options depend on the solver you will be
using and you can use the solver specific options functions as detailed below..

weights The sample weights. Should be NULL or have a weight for each observation in
the data. Normalized to sum to one.

... Not used at this time.

Details

We detail some of the particulars of the function arguments below.

Causal Optimal Transport (COT):
This is the.main method of the package. This method relies on various solvers depending on the
particular options chosen. Please see cotOptions() for more details.

Energy Balancing Weights (EnergyBW):
This is equivalent to COT with an infinite penalty parameter, options(lambda = Inf). Uses the
same solver and options as COT, cotOptions().

Nearest Neighbor Matching with replacement (NNM):
This is equivalent to COT with a penalty parameter = 0, options(lambda = 0). Uses the same
solver and options as COT, cotOptions().

Synthetic Control Method (SCM):
The SCM method is equivalent to an OT problem from a different angle. See scmOptions().

Entropy Balancing Weights (EntropyBW):
This method balances chosen functions of the covariates specified in the data argument, x. See
entBWOptions() for more details. Hainmueller (2012).

Stable Balancing Weights (SBW):
Entropy Balancing Weights with a different penalty parameter, proposed by Zuizarreta (2012).
See sbwOptions() for more details

Covariate Balancing Propensity Score (CBPS):
The CBPS method of Imai and Ratkovic. Options argument is passed to the function CBPS().

Logistic Regression or Probit Regression:
The main methods historically for implementing inverse probability weights. Options are passed
directly to the glm function from R.

causalWeights-class 7

Value

An object of class causalWeights

See Also

estimate_effect()

Examples

set.seed(23483)
n <- 2^5
p <- 6
get data
data <- Hainmueller$new(n = n, p = p)
data$gen_data()
x <- data$get_x()
z <- data$get_z()

if (torch::torch_is_installed()) {
estimate weights
weights <- calc_weight(x = x,

z = z,
estimand = "ATE",
method = "COT",
options = list(lambda = 0))

#we can also use the dataSim object directly
weightsDS <- calc_weight(x = data,

z = NULL,
estimand = "ATE",
method = "COT",
options = list(lambda = 0))

all.equal(weights@w0, weightsDS@w0)
all.equal(weights@w1, weightsDS@w1)
}

causalWeights-class causalWeights class

Description

causalWeights class

Details

This object is returned by the calc_weight function in this package. The slots can be accessed as
any S4 object. There is no publicly accessible constructor function.

8 coef.causalEffect

Slots

w0 A slot with the weights for the control group with n0 entries. Weights sum to 1.

w1 The weights for the treated group with n1 entries. Weights sum to 1.

estimand A character denoting the estimand targeted by the weights. One of "ATT","ATC", or
"ATE".

info A slot to store a variety of info for inference. Currently under development.

method A character denoting the method used to estimate the weights.

penalty A list or the selected penalty parameters, if relevant.

data The dataHolder object containing the original data.

call The call used to construct the weights.

coef.causalEffect Extract treatment effect estimate

Description

Extract treatment effect estimate

Usage

S3 method for class 'causalEffect'
coef(object, ...)

Arguments

object An object of class causalEffect

... Not used

Value

A number corresponding to the estimated treatment effect

Examples

set-up data
set.seed(1234)
data <- Hainmueller$new()
data$gen_data()

calculate quantities
weight <- calc_weight(data, method = "Logistic", estimand = "ATE")
tx_eff <- estimate_effect(causalWeights = weight)

all.equal(coef(tx_eff), c(estimate = tx_eff@estimate))

cotOptions 9

cotOptions Options available for the COT method

Description

Options available for the COT method

Usage

cotOptions(
lambda = NULL,
delta = NULL,
opt.direction = c("dual", "primal"),
debias = TRUE,
p = 2,
cost.function = NULL,
cost.online = "auto",
diameter = NULL,
balance.formula = NULL,
quick.balance.function = TRUE,
grid.length = 7L,
torch.optimizer = torch::optim_rmsprop,
torch.scheduler = torch::lr_multiplicative,
niter = 2000,
nboot = 100L,
lambda.bootstrap = 0.05,
tol = 1e-04,
device = NULL,
dtype = NULL,
...

)

Arguments

lambda The penalty parameter for the entropy penalized optimal transport. Default is
NULL. Can be a single number or a set of numbers to try.

delta The bound for balancing functions if they are being used. Only available for
biased entropy penalized optimal transport. Can be a single number or a set of
numbers to try.

opt.direction Should the optimizer solve the primal or dual problems. Should be one of "dual"
or "primal" with a default of "dual" since it is typically faster.

debias Should debiased optimal transport be used? TRUE or FALSE.

p The power of the cost function to use for the cost.

cost.function A function to calculate the pairwise costs. Should take arguments x1, x2, and p.
Default is NULL.

10 cotOptions

cost.online Should an online cost algorithm be used? One of "auto", "online", or "ten-
sorized". "tensorized" is the offline option.

diameter The diameter of the covariate space, if known. Default is NULL.
balance.formula

Formula for the balancing functions.
quick.balance.function

TRUE or FALSE denoting whether balance function constraints should be se-
lected via a linear program (TRUE) or just checked for feasibility (FALSE).
Default is TRUE.

grid.length The number of penalty parameters to explore in a grid search if none are pro-
vided in arguments lambda or delta.

torch.optimizer

The torch optimizer to use for methods using debiased entropy penalized op-
timal transport. If debiased is FALSE or opt.direction is "primal", will
default to torch::optim_lbfgs(). Otherwise torch::optim_rmsprop() is
used.

torch.scheduler

The scheduler for the optimizer. Defaults to torch::lr_multiplicative().

niter The number of iterations to run the solver

nboot The number of iterations for the bootstrap to select the final penalty parameters.
lambda.bootstrap

The penalty parameter to use for the bootstrap hyperparameter selection of lambda.

tol The tolerance for convergence

device An object of class torch_device denoting which device the data will be located
on. Default is NULL which will try to use a gpu if available.

dtype An object of class torch_dtype that determines data type of the data, i.e. dou-
ble, float, integer. Default is NULL which will try to select for you.

... Arguments passed to the solvers. See details

Value

A list of class cotOptions with the following slots

• lambdaThe penalty parameter for the optimal transport distance

• deltaThe constraint for the balancing functions

• opt.direction Whether to solve the primal or dual optimization problems

• debiasTRUE or FALSE if debiased optimal transport distances are used

• balance.formula The formula giving how to generate the balancing functions.

• quick.balance.function TRUE or FALSE whether quick balance functions will be run.

• grid.length The number of parameters to check in a grid search of best parameters

• p The power of the cost function

• cost.online Whether online costs are used

• cost.function The user supplied cost function if supplied.

cotOptions 11

• diameter The diameter of the covariate space.

• torch.optimizer The torch optimizer used for Sinkhorn Divergences

• torch.scheduler The scheduler for the torch optimizer

• solver.options The arguments to be passeed to the torch.optimizer

• scheduler.options The arguments to be passeed to the torch.scheduler

• osqp.options Arguments passed to the osqp function if quick balance functions are used.

• niter The number of iterations to run the solver

• nboot The number of bootstrap samples

• lambda.bootstrap The penalty parameter to use for the bootstrap hyperparameter selection.

• tol The tolerance for convergence.

• device An object of class torch_device.

• dtype An object of class torch_dtype.

Solvers and distances

The function is setup to direct the COT optimizer to run two basic methods: debiased entropy pe-
nalized optimal transport (Sinkhorn Divergences) or entropy penalized optimal transport (Sinkhorn
Distances).

Sinkhorn Distances:
The optimal transport problem solved is minwOTλ(w, b) where

OTλ(w, b) =
∑
ij

C(xi, xj)Pij + λ
∑
ij

Pij log(Pij),

such that the rows of the matrix Pij sum to w and the columns sum to b. In this case C(,) is the
cost between units i and j.

Sinkhorn Divergences:
The Sinkhorn Divergence solves

minwOTλ(w, b)− 0.5OTλ(w,w)− 0.5 ∗OTλ(b, b).

The solver for this function uses the torch package in R and by default will use the optim_rmsprop
solver. Your desired torch optimizer can be passed via torch.optimizer with a scheduler
passed via torch.scheduler. GPU support is available as detailed in the torch package. Addi-
tional arguments in ... are passed as extra arguments to the torch optimizer and schedulers as
appropriate.

Function balancing

There may be certain functions of the covariates that we wish to balance within some tolerance, δ.
For these functions B, we will desire∑

i:Zi=0 wiB(xi)−
∑
j:Zj=1B(xj)/n1

σ
≤ δ

, where in this case we are targeting balance with the treatment group for the ATT. σ is the pooled
standard deviation prior to balancing.

12 CRASH3

Cost functions

The cost function specifies pairwise distances. If argument cost.function is NULL, the function
will default to using Lpp distances with a default p = 2 supplied by the argument p. So for p = 2, the
cost between units xi and xj will be

C(xi, xj) =
1

2
‖xi − xj‖22.

If cost.function is provided, it should be a function that takes arguments x1, x2, and p: function(x1,
x2, p){...}.

Examples

if (torch::torch_is_installed()) {
opts1 <- cotOptions(lambda = 1e3, torch.optimizer = torch::optim_rmsprop)
opts2 <- cotOptions(lambda = NULL)
opts3 <- cotOptions(lambda = seq(0.1, 100, length.out = 7))
}

CRASH3 CRASH3 data example

Description

CRASH3 data example

CRASH3 data example

Details

Returns the CRASH3 data. Note that gen_data() will initialize the fixed data for x and y, but z is
generated from Binom(0.5).

Value

An R6 object of class DataSim

Super class

causalOT::DataSim -> CRASH3

Public fields

site_id The site of the observation in terms of the original RCT.

CRASH3 13

Methods

Public methods:
• CRASH3$gen_data()

• CRASH3$gen_x()

• CRASH3$gen_y()

• CRASH3$gen_z()

• CRASH3$new()

• CRASH3$clone()

Method gen_data(): The site ID for the observations
Draws new treatment indicators. x and y data are fixed.

Usage:
CRASH3$gen_data()

Method gen_x(): Sets up the covariate data. This data is fixed.
Usage:
CRASH3$gen_x()

Method gen_y(): Sets up the outcome data. This data is fixed.
Usage:
CRASH3$gen_y()

Method gen_z(): Sets up the treatment indicator. Drawn as Z ~ Binom(0.5)
Usage:
CRASH3$gen_z()

Method new(): Initializes the CRASH3 object.
Usage:
CRASH3$new(n = NULL, p = NULL, param = list(), design = NA_character_, ...)

Arguments:
n Not used. Maintained for symmetry with other DataSim objects.
p Not used. Maintained for symmetry with other DataSim objects.
param Not used. Maintained for symmetry with other DataSim objects.
design Not used
... Not used.
Examples:
crash <- CRASH3$new()
crash$gen_data()
crash$get_n()
crash$site_id

Method clone(): The objects of this class are cloneable with this method.
Usage:
CRASH3$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

14 dataHolder

Examples

--
Method `CRASH3$new`
--

crash <- CRASH3$new()
crash$gen_data()
crash$get_n()
crash$site_id

dataHolder dataHolder

Description

dataHolder

Usage

dataHolder(x, z, y = NA_real_, weights = NA_real_)

Arguments

x the covariate data. Can be a matrix, an object of class dataHolder or a DataSim
object. The latter two object types won’t need arguments z or y.

z the treatment indicator

y the outcome data

weights the empirical distribution of the sample

Details

Creates an object used internally by the causalOT package for data management.

Value

Returns an object of class dataHolder with slots

• x matrix. A matrix of confounders.

• z integer. The treatment indicator, zi ∈ {0, 1}.
• y numeric. The outcome data.

• n0 integer. The number of observations where z==0

• n1 integer. The number of observations where z==1

• weights numeric. The empirical distribution of the full sample.

DataSim 15

Examples

x <- matrix(0, 100, 10)
z <- stats::rbinom(100, 1, 0.5)

don't need to provide outcome
function will assume each observation gets equal mass
dataHolder(x = x, z = z)

DataSim R6 Data Generating Parent Class

Description

R6 Data Generating Parent Class

R6 Data Generating Parent Class

Details

Can be used to make your own data simulation class. Should have the same slots listed in this class
at a minimum, but you can add your own, of course. An easy way to do this is to make your class
inherit from this one. See the example.

Value

An R6 object

Methods

Public methods:
• DataSim$get_x()

• DataSim$get_y()

• DataSim$get_z()

• DataSim$get_n()

• DataSim$get_x1()

• DataSim$get_x0()

• DataSim$get_p()

• DataSim$get_tau()

• DataSim$gen_data()

• DataSim$clone()

Method get_x(): Gets the covariate data

Usage:
DataSim$get_x()

Method get_y(): Gets the outcome vector

16 DataSim

Usage:
DataSim$get_y()

Method get_z(): Gets the treatment indicator

Usage:
DataSim$get_z()

Method get_n(): Gets the number of observations

Usage:
DataSim$get_n()

Method get_x1(): Gets the covariate data for the treated individuals

Usage:
DataSim$get_x1()

Method get_x0(): Gets the covaraiate data for the control individuals

Usage:
DataSim$get_x0()

Method get_p(): Gets the dimensionality covariate data

Usage:
DataSim$get_p()

Method get_tau(): Gets the individual treatment effects

Usage:
DataSim$get_tau()

Method gen_data(): Generates the data. Default is an empty function

Usage:
DataSim$gen_data()

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataSim$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

MyClass <- R6::R6Class("MyClass",
inherit = DataSim,
public = list(),
private = list())

df2dataHolder 17

df2dataHolder df2dataHolder

Description

Function to turn a data.frame into a dataHolder object.

Usage

df2dataHolder(
treatment.formula,
outcome.formula = NA_character_,
data,
weights = NA_real_

)

Arguments

treatment.formula

a formula specifying the treatment indicator and covariates. Required.

outcome.formula

an optional formula specifying the outcome function.

data a data.frame with the data

weights optional vector of sampling weights for the data

Details

This will take the formulas specified and transform that data.frame into a dataHolder object that is
used internally by the causalOT package. Take care if you do not specify an outcome formula that
you do not include the outcome in the data.frame. If you are not careful, the function may include
the outcome as a covariate, which is not kosher in causal inference during the design phase.

If both outcome.formula and treatment.formula are specified, it will assume you are in the design
phase, and create a combined covariate matrix to balance on the assumed treatment and outcome
models.

If you are in the outcome phase of estimation, you can just provide a dummy formula for the
treatment.formula like "z ~ 0" just so the function can identify the treatment indicator appropriately
in the data creation phase.

Value

Returns an object of class dataHolder()

18 entBWOptions

Examples

set.seed(20348)
n <- 15
d <- 3
x <- matrix(stats::rnorm(n*d), n, d)
z <- rbinom(n, 1, prob = 0.5)
y <- rnorm(n)
weights <- rep(1/n,n)
df <- data.frame(x, z, y)
dh <- df2dataHolder(

treatment.formula = "z ~ .",
outcome.formula = "y ~ ." ,
data = df,
weights = weights)

entBWOptions Options for the Entropy Balancing Weights

Description

Options for the Entropy Balancing Weights

Usage

entBWOptions(delta = NULL, grid.length = 20L, nboot = 1000L, ...)

Arguments

delta A number or vector of tolerances for the balancing functions. Default is NULL
which will use a grid search

grid.length The number of values to try in the grid search

nboot The number of bootstrap samples to run during the grid search.

... Arguments passed on to lbfgsb3c()

Value

A list of class entBWOptions with slots

• delta Delta values to try

• grid.length The number of parameters to try

• nboot Number of bootstrap samples

• solver.options A list of options passed to ‘lbfgsb3c()

ESS 19

Function balancing

This method will balance functions of the covariates within some tolerance, δ. For these functions
B, we will desire ∑

i:Zi=0 wiB(xi)−
∑
j:Zj=1B(xj)/n1

σ
≤ δ

, where in this case we are targeting balance with the treatment group for the ATT. σ is the pooled
standard deviation prior to balancing.

Examples

opts <- entBWOptions(delta = 0.1)

ESS Effective Sample Size

Description

Effective Sample Size

Usage

ESS(x)

S4 method for signature 'numeric'
ESS(x)

S4 method for signature 'causalWeights'
ESS(x)

Arguments

x Either a vector of weights summing to 1 or an object of class causalWeights

Details

Calculates the effective sample size as described by Kish (1965). However, this calculation has
some problems and the PSIS() function should be used instead.

Value

Either a number denoting the effective sample size or if x is of class causalWeights, then returns a
list of both values in the treatment and control groups.

Methods (by class)

• ESS(numeric): default ESS method for numeric vectors

• ESS(causalWeights): ESS method for objects of class causalWeights

20 estimate_effect

See Also

PSIS()

Examples

x <- rep(1/100,100)
ESS(x)

estimate_effect Estimate treatment effects

Description

Estimate treatment effects

Usage

estimate_effect(
causalWeights,
x = NULL,
y = NULL,
model.function,
estimate.separately = TRUE,
augment.estimate = FALSE,
normalize.weights = TRUE,
...

)

Arguments

causalWeights An object of class causalWeights

x A dataHolder, matrix, data.frame, or object of class DataSim. See calc_weight
for more details how to input the data. If NULL, will use the info in the causalWeights
argument.

y The outcome vector.

model.function The modeling function to use, if desired. Must take arguments "formula", "data",
and "weights". Other arguments passed via ..., the dots.

estimate.separately

Should the outcome model be estimated separately in each treatment group?
TRUE or FALSE.

augment.estimate

Should an augmented, doubly robust estimator be used?
normalize.weights

Should the weights in the causalWeights argument be normalized to sum to
one prior to effect estimation?

... Pass additional arguments to the outcome modeling functions.

Hainmueller 21

Value

an object of class causalEffect

Examples

if (torch::torch_is_installed()){
set-up data
data <- Hainmueller$new()
data$gen_data()

calculate quantities
weight <- calc_weight(data, method = "COT",

estimand = "ATT",
options = list(lambda = 0))

tx_eff <- estimate_effect(causalWeights = weight)

get estimate
print(tx_eff@estimate)
all.equal(coef(tx_eff), c(estimate = tx_eff@estimate))
}

Hainmueller Hainmueller data example

Description

Hainmueller data example

Hainmueller data example

Details

Generates the data as described in Hainmueller (2012).

Value

An R6 object of class DataSim

Super class

causalOT::DataSim -> Hainmueller

Methods

Public methods:
• Hainmueller$gen_data()

• Hainmueller$gen_x()

• Hainmueller$gen_y()

22 Hainmueller

• Hainmueller$gen_z()

• Hainmueller$new()

• Hainmueller$get_design()

• Hainmueller$get_pscore()

• Hainmueller$clone()

Method gen_data(): Generates the data

Usage:
Hainmueller$gen_data()

Method gen_x(): Generates the covaraiate data

Usage:
Hainmueller$gen_x()

Method gen_y(): Generates the outcome data

Usage:
Hainmueller$gen_y()

Method gen_z(): Generates the treatment indicator

Usage:
Hainmueller$gen_z()

Method new(): Generates the the Hainmueller R6 class

Usage:
Hainmueller$new(
n = 100,
p = 6,
param = list(),
design = "A",
overlap = "low",
...

)

Arguments:

n The number of observations
p The dimensions of the covariates. Fixed to 6.
param The data generating parameters fed as a list.
design One of "A" or "B". See details.
overlap One of "high", "low", or "medium". See details.
... Extra arguments. Currently unused.

Details:
Design:
Design "A" is the setting where the outcome is generated from a linear model, Y (0) = Y (1) =
X1 +X2 +X3 −X4 +X5 +X6 + η and design "B" is where the outcome is generated from
the non-linear model Y (0) = Y (1) = (X1 +X2 +X5)

2 + η.

LaLonde 23

Overlap:
The treatment indicator is generated fromZ = 1(X1+2X2−2X3−X4−0.5X5+X6+ν > 0),
where ν depends on the overlap selected. If overlap is "high", then ν ∼ N(0, 100). If overlap
is "low", then ν ∼ N(0, 30). Finally, if overlap is "medium", then ν is drawn from a χ2 with
5 degrees of freedom that is scaled and centered to have mean 0.5 and variance 67.6.

Returns: An object of class DataSim.

Examples:

data <- Hainmueller$new(n = 100, p = 6, design = "A", overlap = "low")
data$gen_data()
print(data$get_x()[1:2,])

Method get_design(): Returns the chosen design parameters

Usage:
Hainmueller$get_design()

Method get_pscore(): Returns the true propensity score

Usage:
Hainmueller$get_pscore()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Hainmueller$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Hainmueller$new`
--

data <- Hainmueller$new(n = 100, p = 6, design = "A", overlap = "low")
data$gen_data()
print(data$get_x()[1:2,])

LaLonde LaLonde data example

Description

LaLonde data example

LaLonde data example

24 LaLonde

Details

Returns the LaLonde data as used by Dehjia and Wahba. Note the data is fixed and gen_data()
will just initialize the fixed data.

Value

An R6 object of class DataSim

Super class

causalOT::DataSim -> LaLonde

Methods

Public methods:
• LaLonde$gen_data()

• LaLonde$get_tau()

• LaLonde$gen_x()

• LaLonde$gen_y()

• LaLonde$gen_z()

• LaLonde$new()

• LaLonde$get_design()

• LaLonde$clone()

Method gen_data(): Sets up the data

Usage:
LaLonde$gen_data()

Method get_tau(): Returns the experimental treatment effect, $1794

Usage:
LaLonde$get_tau()

Method gen_x(): Sets up the covariate data

Usage:
LaLonde$gen_x()

Method gen_y(): Sets up the outcome data

Usage:
LaLonde$gen_y()

Method gen_z(): Sets up the treatment indicator

Usage:
LaLonde$gen_z()

Method new(): Initializes the LaLonde object.

Usage:

LaLonde 25

LaLonde$new(n = NULL, p = NULL, param = list(), design = "NSW", ...)

Arguments:

n Not used. Maintained for symmetry with other DataSim objects.
p Not used. Maintained for symmetry with other DataSim objects.
param Not used. Maintained for symmetry with other DataSim objects.
design One of "NSW" or "Full". "NSW" uses the original experimental data from the job

training program while option "Full" uses the treated individuals from LaLonde’s study and
compares them to individuals from the Current Population Survey as controls.

... Not used.

Examples:

nsw <- LaLonde$new(design = "NSW")
nsw$gen_data()
nsw$get_n()

obs.study <- LaLonde$new(design = "Full")
obs.study$gen_data()
obs.study$get_n()

Method get_design(): Returns the chosen design parameters

Usage:
LaLonde$get_design()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LaLonde$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `LaLonde$new`
--

nsw <- LaLonde$new(design = "NSW")
nsw$gen_data()
nsw$get_n()

obs.study <- LaLonde$new(design = "Full")
obs.study$gen_data()
obs.study$get_n()

26 Measure

mean_balance Standardized absolute mean difference calculations

Description

This function will calculate the difference in means between treatment groups standardized by the
pooled standard-deviation of the respective covariates.

Usage

mean_balance(x = NULL, z = NULL, weights = NULL, ...)

Arguments

x Either a matrix, an object of class dataHolder, or an object of class DataSim

z A integer vector denoting the treatments of each observations. Can be null if x
is a DataSim object or already of class dataHolder.

weights An object of class causalWeights.

... Not used at this time.

Value

A vector of mean balances

Examples

n <- 100
p <- 6
x <- matrix(stats::rnorm(n * p), n, p)
z <- stats::rbinom(n, 1, 0.5)
weights <- calc_weight(x = x, z = z, estimand = "ATT", method = "Logistic")
mb <- mean_balance(x = x, z = z, weights = weights)
print(mb)

Measure An R6 Class for setting up measures

Description

An R6 Class for setting up measures

Measure 27

Usage

Measure(
x,
weights = NULL,
probability.measure = TRUE,
adapt = c("none", "weights", "x"),
balance.functions = NA_real_,
target.values = NA_real_,
dtype = NULL,
device = NULL

)

Arguments

x The data points

weights The empirical measure. If NULL, assigns equal weight to each observation
probability.measure

Is the empirical measure a probability measure? Default is TRUE.

adapt Should we try to adapt the data ("x"), the weights ("weights"), or neither ("none").
Default is "none".

balance.functions

A matrix of functions of the covariates to target for mean balance. If NULL and
target.values are provided, will use the data in x.

target.values The targets for the balance functions. Should be the same length as columns in
balance.functions.

dtype The torch_tensor dtype or NULL.

device The device to have the data on. Should be result of torch::torch_device()
or NULL.

Value

Returns a Measure object

Public fields

balance_functions the functions of the data that we want to adjust towards the targets

balance_target the values the balance_functions are targeting

adapt What aspect of the data will be adapted. One of "none","weights", or "x".

device the torch::torch_device of the data.

dtype the torch::torch_dtype of the data.

n the rows of the covariates, x.

d the columns of the covariates, x.

probability_measure is the measure a probability measure?

28 Measure

Active bindings

grad gets or sets gradient

init_weights returns the initial value of the weights

init_data returns the initial value of the data

requires_grad checks or turns on/off gradient

weights gets or sets weights

x Gets or sets the data

Methods

Public methods:
• Measure$detach()

• Measure$get_weight_parameters()

• Measure$clone()

Method detach(): generates a deep clone of the object without gradients.

Usage:
Measure$detach()

Method get_weight_parameters(): Makes a copy of the weights parameters.

Usage:
Measure$get_weight_parameters()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Measure$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

if(torch::torch_is_installed()) {
m <- Measure(x = matrix(0, 10, 2), adapt = "none")
print(m)
m$x
m$x <- matrix(1,10,2) # must have same dimensions
m$x
m$weights
m$weights <- 1:10/sum(1:10)
m$weights

with gradients
m <- Measure(x = matrix(0, 10, 2), adapt = "weights")
m$requires_grad # TRUE
m$requires_grad <- "none" # turns off
m$requires_grad # FALSE

OTProblem 29

m$requires_grad <- "x"
m$requires_grad # TRUE
m <- Measure(matrix(0, 10, 2), adapt = "none")
m$grad # NULL
m <- Measure(matrix(0, 10, 2), adapt = "weights")
loss <- sum(m$weights * 1:10)
loss$backward()
m$grad
note the weights gradient is on the log softmax scale
#and the first parameter is fixed for identifiability
m$grad <- rep(1,9)
m$grad
}

OTProblem Object Oriented OT Problem

Description

Object Oriented OT Problem

Usage

OTProblem(measure_1, measure_2, ...)

Arguments

measure_1 An object of class Measure

measure_2 An object of class Measure

... Not used at this time

Value

An R6 object of class "OTProblem"

Public fields

device the torch::torch_device() of the data.

dtype the torch::torch_dtype of the data.

selected_delta the delta value selected after choose_hyperparameters

selected_lambda the lambda value selected after choose_hyperparameters

Active bindings

loss prints the current value of the objective. Only availble after the OTProblem$solve() method
has been run

penalty Returns a list of the lambda and delta penalities that will be iterated through. To set these
values, use the OTProblem$setup_arguments() function.

30 OTProblem

Methods

Public methods:
• OTProblem$add()

• OTProblem$subtract()

• OTProblem$multiply()

• OTProblem$divide()

• OTProblem$setup_arguments()

• OTProblem$solve()

• OTProblem$choose_hyperparameters()

• OTProblem$info()

• OTProblem$clone()

Method add(): adds o2 to the OTProblem

Usage:
OTProblem$add(o2)

Arguments:
o2 A number or object of class OTProblem

Method subtract(): subtracts o2 from OTProblem

Usage:
OTProblem$subtract(o2)

Arguments:
o2 A number or object of class OTProblem

Method multiply(): multiplies OTProblem by o2

Usage:
OTProblem$multiply(o2)

Arguments:
o2 A number or an object of class OTProblem

Method divide(): divides OTProblem by o2

Usage:
OTProblem$divide(o2)

Arguments:
o2 A number or object of class OTProblem

Method setup_arguments():
Usage:
OTProblem$setup_arguments(

lambda,
delta,
grid.length = 7L,
cost.function = NULL,

OTProblem 31

p = 2,
cost.online = "auto",
debias = TRUE,
diameter = NULL,
ot_niter = 1000L,
ot_tol = 0.001

)

Arguments:

lambda The penalty parameters to try for the OT problems. If not provided, function will select
some

delta The constraint paramters to try for the balance function problems, if any
grid.length The number of hyperparameters to try if not provided
cost.function The cost function for the data. Can be any function that takes arguments x1,

x2, p. Defaults to the Euclidean distance
p The power to raise the cost matrix by. Default is 2
cost.online Should online costs be used? Default is "auto" but "tensorized" stores the cost

matrix in memory while "online" will calculate it on the fly.
debias Should debiased OT problems be used? Defaults to TRUE
diameter Diameter of the cost function.
ot_niter Number of iterations to run the OT problems
ot_tol The tolerance for convergence of the OT problems

Returns: NULL

Examples:

ot$setup_arguments(lambda = c(1000,10))

Method solve(): Solve the OTProblem at each parameter value. Must run setup_arguments
first.

Usage:
OTProblem$solve(

niter = 1000L,
tol = 1e-05,
optimizer = c("torch", "frank-wolfe"),
torch_optim = torch::optim_lbfgs,
torch_scheduler = torch::lr_reduce_on_plateau,
torch_args = NULL,
osqp_args = NULL,
quick.balance.function = TRUE

)

Arguments:

niter The nubmer of iterations to run solver at each combination of hyperparameter values
tol The tolerance for convergence
optimizer The optimizer to use. One of "torch" or "frank-wolfe"
torch_optim The torch_optimizer to use. Default is torch::optim_lbfgs

32 OTProblem

torch_scheduler The torch::lr_scheduler to use. Default is torch::lr_reduce_on_plateau
torch_args Arguments passed to the torch optimizer and scheduler
osqp_args Arguments passed to osqp::osqpSettings() if appropriate
quick.balance.function Should osqp::osqp() be used to select balance function constraints

(delta) or not. Default true.
Examples:
ot$solve(niter = 1, torch_optim = torch::optim_rmsprop)

Method choose_hyperparameters(): Selects the hyperparameter values through a bootstrap
algorithm

Usage:
OTProblem$choose_hyperparameters(

n_boot_lambda = 100L,
n_boot_delta = 1000L,
lambda_bootstrap = Inf

)

Arguments:
n_boot_lambda The number of bootstrap iterations to run when selecting lambda
n_boot_delta The number of bootstrap iterations to run when selecting delta
lambda_bootstrap The penalty parameter to use when selecting lambda. Higher numbers run

faster.
Examples:
ot$choose_hyperparameters(n_boot_lambda = 10,

n_boot_delta = 10,
lambda_bootstrap = Inf)

Method info(): Provides diagnostics after solve and choose_hyperparameter methods have
been run.

Usage:
OTProblem$info()

Returns: a list with slots
• loss the final loss values
• iterations The number of iterations run for each combination of parameters
• balance.function.differences The final differences in the balance functions
• hyperparam.metrics A list of the bootstrap evalustion for delta and lambda values

Examples:
ot$info()

Method clone(): The objects of this class are cloneable with this method.
Usage:
OTProblem$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ot_distance 33

Examples

--
Method `OTProblem(measure_1, measure_2)`
--

if (torch::torch_is_installed()) {
setup measures
x <- matrix(1, 100, 10)
m1 <- Measure(x = x)

y <- matrix(2, 100, 10)
m2 <- Measure(x = y, adapt = "weights")

z <- matrix(3,102, 10)
m3 <- Measure(x = z)

setup OT problems
ot1 <- OTProblem(m1, m2)
ot2 <- OTProblem(m3, m2)
ot <- 0.5 * ot1 + 0.5 * ot2
print(ot)

--
Method `OTProblem$setup_arguments`
--

ot$setup_arguments(lambda = 1000)

--
Method `OTProblem$solve`
--

ot$solve(niter = 1, torch_optim = torch::optim_rmsprop)

--
Method `OTProblem$choose_hyperparameters`
--

ot$choose_hyperparameters(n_boot_lambda = 1,
n_boot_delta = 1,
lambda_bootstrap = Inf)

--
Method `OTProblem$info`
--

ot$info()
}

ot_distance Optimal Transport Distance

34 ot_distance

Description

Optimal Transport Distance

Usage

ot_distance(
x1,
x2 = NULL,
a = NULL,
b = NULL,
penalty,
p = 2,
cost = NULL,
debias = TRUE,
online.cost = "auto",
diameter = NULL,
niter = 1000,
tol = 1e-07

)

S3 method for class 'causalWeights'
ot_distance(
x1,
x2 = NULL,
a = NULL,
b = NULL,
penalty,
p = 2,
cost = NULL,
debias = TRUE,
online.cost = "auto",
diameter = NULL,
niter = 1000,
tol = 1e-07

)

S3 method for class 'matrix'
ot_distance(
x1,
x2,
a = NULL,
b = NULL,
penalty,
p = 2,
cost = NULL,
debias = TRUE,
online.cost = "auto",
diameter = NULL,

ot_distance 35

niter = 1000,
tol = 1e-07

)

S3 method for class 'array'
ot_distance(
x1,
x2,
a = NULL,
b = NULL,
penalty,
p = 2,
cost = NULL,
debias = TRUE,
online.cost = "auto",
diameter = NULL,
niter = 1000,
tol = 1e-07

)

S3 method for class 'torch_tensor'
ot_distance(
x1,
x2,
a = NULL,
b = NULL,
penalty,
p = 2,
cost = NULL,
debias = TRUE,
online.cost = "auto",
diameter = NULL,
niter = 1000,
tol = 1e-07

)

Arguments

x1 Either an object of class causalWeights or a matrix of the covariates in the first
sample

x2 NULL or a matrix of the covariates in the second sample.

a Empirical measure of the first sample. If NULL, assumes each observation gets
equal mass. Ignored for objects of class causalWeights.

b Empirical measure of the second sample. If NULL, assumes each observation
gets equal mass. Ignored for objects of class causalWeights.

penalty The penalty of the optimal transport distance to use. If missing or NULL,
the function will try to guess a suitable value depending if debias is TRUE or
FALSE.

36 plot.causalWeights

p Lp distance metric power

cost Supply your own cost function. Should take arguments x1, x2, and p.

debias TRUE or FALSE. Should the debiased optimal transport distances be used.

online.cost How to calculate the distance matrix. One of "auto", "tensorized", or "online".

diameter The diameter of the metric space, if known. Default is NULL.

niter The maximum number of iterations for the Sinkhorn updates

tol The tolerance for convergence

Value

For objects of class matrix, numeric value giving the optimal transport distance. For objects of class
causalWeights, results are returned as a list for before (’pre’) and after adjustment (’post’).

Methods (by class)

• ot_distance(causalWeights): method for causalWeights class

• ot_distance(matrix): method for matrices

• ot_distance(array): method for arrays

• ot_distance(torch_tensor): method for torch_tensors

Examples

if (torch::torch_is_installed()) {
x <- matrix(stats::rnorm(10*5), 10, 5)
z <- stats::rbinom(10, 1, 0.5)
weights <- calc_weight(x = x, z = z, method = "Logistic", estimand = "ATT")
ot1 <- ot_distance(x1 = weights, penalty = 100,
p = 2, debias = TRUE, online.cost = "auto",
diameter = NULL)
ot2<- ot_distance(x1 = x[z==0,], x2 = x[z == 1,],
a= weights@w0/sum(weights@w0), b = weights@w1,
penalty = 100, p = 2, debias = TRUE, online.cost = "auto", diameter = NULL)

all.equal(ot1$post, ot2)
}

plot.causalWeights plot.causalWeights

Description

plot.causalWeights

plot.causalWeights 37

Usage

S3 method for class 'causalWeights'
plot(
x,
r_eff = NULL,
penalty,
p = 2,
cost = NULL,
debias = TRUE,
online.cost = "auto",
diameter = NULL,
niter = 1000,
tol = 1e-07,
...

)

Arguments

x A causalWeights object

r_eff The reff to use for the PSIS_diag() function.

penalty The penalty of the optimal transport distance to use. If missing or NULL,
the function will try to guess a suitable value depending if debias is TRUE or
FALSE.

p Lp distance metric power

cost Supply your own cost function. Should take arguments x1, x2, and p.

debias TRUE or FALSE. Should the debiased optimal transport distances be used.

online.cost How to calculate the distance matrix. One of "auto", "tensorized", or "online".

diameter The diameter of the metric space, if known. Default is NULL.

niter The maximum number of iterations for the Sinkhorn updates

tol The tolerance for convergence

... Not used at this time

Details

The plot method first calls summary.causalWeights on the causalWeights object. Then plots the
diagnostics from that summary object.

Value

The plot method returns an invisible object of class summary_causalWeights.

See Also

summary.causalWeights()

38 pph

pph An external control trial of treatments for post-partum hemorrhage

Description

A dataset evaluating treatments for post-partum hemorrhage. The data contain treatment groups
receiving misoprostol vs potential controls from other locations that received only oxytocin. The
data is stored as a numeric matrix.

Usage

data(pph)

Format

A matrix with 802 rows and 17 variables

Details

The variables are as follows:

• cum_blood_20m. The outcome variable denoting cumulative blood loss in mL 20 minutes
after the diagnosis of post-partum hemorrhage (650 – 2000).

• tx. The treatment indicator of whether an individual received misoprostol (1) or oxytocin (0).

• age. the mother’s age in years (15 – 43).

• no_educ. whether a woman had no education (1) or some education (0).

• num_livebirth. the number of previous live births.

• cur_married. whether a mother is currently married (1 = yes, 0 = no).

• gest_age. the gestational age of the fetus in weeks (35 – 43).

• prev_pphyes. whether the woman has had a previous post-partum hemorrahge.

• hb_test. the woman’s hemoglobin in mg/dL (7 – 15).

• induced_laboryes. whether labor was induced (1 = yes, 0 = no).

• augmented_laboryes. whether labor was augmented (1 = yes, 0 = no).

• early_cordclampyes. whether the umbilical cord was clamped early (1 = yes, 0 = no).

• control_cordtractionyes. whether cord traction was controlled (1 = yes, 0 = no).

• uterine_massageyes. whether a uterine massage was given (1 = yes, 0 = no).

• placenta. whether placenta was delivered before treatment given (1 = yes, 0 = no).

• bloodlossattx. amount of blood lost when treatment given (500 mL – 1800 mL)

• sitecode. Which site is the individual from? (1 = Cairo, Egypt, 2 = Turkey, 3 = Hocmon,
Vietnam, 4 = Cuchi, Vietnam, and 5 Burkina Faso).

predict.bp 39

Source

Data from the following Harvard Dataverse:

• Winikoff, Beverly, 2019, "Two randomized controlled trials of misoprostol for the treatment
of postpartum hemorrhage", https://doi.org/10.7910/DVN/ETHH4N, Harvard Dataverse, V1.

The data was originally analyzed in

• Blum, J. et al. Treatment of post-partum haemorrhage with sublingual misoprostol versus oxy-
tocin in women receiving prophylactic oxytocin: a double-blind, randomised, non-inferiority
trial. The Lancet 375, 217–223 (2010).

predict.bp Predict method for barycentric projection models

Description

Predict method for barycentric projection models

Usage

S3 method for class 'bp'
predict(
object,
newdata = NULL,
source.sample,
cost_function = NULL,
niter = 1000,
tol = 1e-07,
...

)

Arguments

object An object of class "bp"

newdata a data.frame containing new observations

source.sample a vector giving the sample each observations arise from

cost_function a cost metric between observations

niter number of iterations to run the barycentric projection for powers > 2.

tol Tolerance on the optimization problem for projections with powers > 2.

... Dots passed to the lbfgs method in the torch package.

40 print.dataHolder

Examples

if(torch::torch_is_installed()) {
set.seed(23483)
n <- 2^5
pp <- 6
overlap <- "low"
design <- "A"
estimate <- "ATT"
power <- 2
data <- causalOT::Hainmueller$new(n = n, p = pp,
design = design, overlap = overlap)

data$gen_data()

weights <- causalOT::calc_weight(x = data,
z = NULL, y = NULL,
estimand = estimate,
method = "NNM")

df <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x())

undebiased
fit <- causalOT::barycentric_projection(y ~ ., data = df,

weight = weights,
separate.samples.on = "z", niter = 2)

#debiased
fit_d <- causalOT::barycentric_projection(y ~ ., data = df,

weight = weights,
separate.samples.on = "z", debias = TRUE, niter = 2)

predictions, without new data
undebiased_predictions <- predict(fit, source.sample = df$z)
debiased_predictions <- predict(fit_d, source.sample = df$z)

isTRUE(all.equal(unname(undebiased_predictions), df$y)) # FALSE
isTRUE(all.equal(unname(debiased_predictions), df$y)) # TRUE
}

print.dataHolder print.dataHolder

Description

print.dataHolder

Usage

S3 method for class 'dataHolder'
print(x, ...)

PSIS 41

Arguments

x dataHolder object

... Not used

PSIS Pareto-Smoothed Importance Sampling

Description

Pareto-Smoothed Importance Sampling

Usage

PSIS(x, r_eff = NULL, ...)

S4 method for signature 'numeric'
PSIS(x, r_eff = NULL, ...)

S4 method for signature 'causalWeights'
PSIS(x, r_eff = NULL, ...)

S4 method for signature 'list'
PSIS(x, r_eff = NULL, ...)

PSIS_diag(x, ...)

S4 method for signature 'numeric'
PSIS_diag(x, r_eff = NULL)

S4 method for signature 'causalWeights'
PSIS_diag(x, r_eff = NULL)

S4 method for signature 'causalPSIS'
PSIS_diag(x, ...)

S4 method for signature 'list'
PSIS_diag(x, r_eff = NULL)

S4 method for signature 'psis'
PSIS_diag(x, r_eff = NULL)

Arguments

x For PSIS(), a vector of weights, an object of class causalWeights, or a list with
slots "w0" and "w1". For PSIS_diag, the results of a run of PSIS().

42 PSIS

r_eff A vector of relative effective sample size with one estimate per observation.
If providing an object of class causalWeights, should be a list of vectors with
one vector for each sample. See psis() from the loo package for more details.
Updates to the loo package now make it so this parameter should be ignored.

... Arguments passed to the psis() function.

Details

Acts as a wrapper to the psis() function from the loo package. It is built to handle the data types
found in this package. This method is preferred to the ESS() function in causalOT since the latter
is prone to error (infinite variances) but will not give good any indication that the estimates are
problematic.

Value

For PSIS(), returns a list. See psis() from loo for a description of the outputs. Will give the log of
the smoothed weights in slot log_weights, and in the slot diagnostics, it will give the pareto_k
parameter (see the pareto-k-diagnostic page) and the n_eff estimates. PSIS_diag() returns the
diagnostic slot from an object of class "psis".

Methods (by class)

• PSIS(numeric): numeric weights

• PSIS(causalWeights): object of class causalWeights

• PSIS(list): list of weights

• PSIS_diag(numeric): numeric weights

• PSIS_diag(causalWeights): object of class causalWeights diagnostics

• PSIS_diag(causalPSIS): diagnostics from the output of a previous call to PSIS

• PSIS_diag(list): a list of objects

• PSIS_diag(psis): output of PSIS function

See Also

ESS()

Examples

x <- runif(100)
w <- x/sum(x)

res <- PSIS(x = w, r_eff = 1)
PSIS_diag(res)

sbwOptions 43

sbwOptions Options for the SBW method

Description

Options for the SBW method

Usage

sbwOptions(delta = NULL, grid.length = 20L, nboot = 1000L, ...)

Arguments

delta A number or vector of tolerances for the balancing functions. Default is NULL
which will use a grid search

grid.length The number of values to try in the grid search

nboot The number of bootstrap samples to run during the grid search.

... Arguments passed on to osqpSettings()

Value

A list of class sbwOptions with slots

• delta Delta values to try

• grid.length The number of parameters to try

• sumto1 Forced to be TRUE. Weights will always sum to 1.

• nboot Number of bootstrap samples

• solver.optionsA list with arguments passed to osqpSettings()

Function balancing

This method will balance functions of the covariates within some tolerance, δ. For these functions
B, we will desire ∑

i:Zi=0 wiB(xi)−
∑
j:Zj=1B(xj)/n1

σ
≤ δ

, where in this case we are targeting balance with the treatment group for the ATT. σ is the pooled
standard deviation prior to balancing.

Examples

opts <- sbwOptions(delta = 0.1)

44 summary.causalWeights

scmOptions Options for the SCM Method

Description

Options for the SCM Method

Usage

scmOptions(...)

Arguments

... Arguments passed to the osqpSettings() function which solves the problem.

Details

Options for the solver used in the optimization of the Synthetic Control Method of Abadie and
Gardeazabal (2003).

Value

A list with arguments to pass to osqpSettings()

Examples

opts <- scmOptions()

summary.causalWeights Summary diagnostics for causalWeights

Description

Summary diagnostics for causalWeights

print.summary_causalWeights

plot.summary_causalWeights

summary.causalWeights 45

Usage

S3 method for class 'causalWeights'
summary(
object,
r_eff = NULL,
penalty,
p = 2,
cost = NULL,
debias = TRUE,
online.cost = "auto",
diameter = NULL,
niter = 1000,
tol = 1e-07,
...

)

S3 method for class 'summary_causalWeights'
print(x, ...)

S3 method for class 'summary_causalWeights'
plot(x, ...)

Arguments

object an object of class causalWeights

r_eff The r_eff used in the PSIS calculation. See PSIS_diag()

penalty The penalty parameter to use

p The power of the Lp distance to use. Overridden by argument cost.

cost A user supplied cost function. Should take arguments x1, x2, p.

debias Should debiased optimal transport distances be used. TRUE or FALSE

online.cost Should the cost be calculated online? One of "auto","tensorized", or "online".

diameter the diameter of the covariate space. Default is NULL.

niter the number of iterations to run the optimal transport distances

tol the tolerance for convergence for the optimal transport distances

... Not used

x an object of class "summary_causalWeights"

Value

The summary method returns an object of class "summary_causalWeights".

Functions

• print(summary_causalWeights): print method

• plot(summary_causalWeights): plot method

46 vcov.causalEffect

Examples

if(torch::torch_is_installed()) {
n <- 2^6
p <- 6
overlap <- "high"
design <- "A"
estimand <- "ATE"

get simulation functions
original <- Hainmueller$new(n = n, p = p,

design = design, overlap = overlap)
original$gen_data()
weights <- calc_weight(x = original, estimand = estimand, method = "Logistic")
s <- summary(weights)
plot(s)
}

supported_methods Supported Methods

Description

Supported Methods

Usage

supported_methods()

Value

A character list with supported methods. Note "COT" is the same as "Wasserstein". We provide the
second name for backwards compatibility.

Examples

supported_methods()

vcov.causalEffect Get the variance of a causalEffect

Description

Get the variance of a causalEffect

Usage

S3 method for class 'causalEffect'
vcov(object, ...)

vcov.causalEffect 47

Arguments

object An object of class causalEffect

... Passed on to the sandwich estimator if there is a model fit that supports one

Value

The variance of the treatment effect as a matrix

Examples

set-up data
set.seed(1234)
data <- Hainmueller$new()
data$gen_data()

calculate quantities
weight <- calc_weight(data, estimand = "ATT", method = "Logistic")
tx_eff <- estimate_effect(causalWeights = weight)

vcov(tx_eff)

Index

∗ datasets
pph, 38

barycentric_projection, 3

calc_weight, 5, 20
causalEffect, 8, 21, 47
causalOT::DataSim, 12, 21, 24
causalWeights, 3, 7, 19, 20, 26, 35, 37, 41,

42, 45
causalWeights-class, 7
CBPS(), 6
coef.causalEffect, 8
cotOptions, 9
cotOptions(), 6
CRASH3, 12

dataHolder, 4, 6, 14, 26
dataHolder(), 17
DataSim, 6, 12, 14, 15, 21, 23, 24
df2dataHolder, 17

entBWOptions, 18
entBWOptions(), 6
ESS, 19
ESS(), 42
ESS,causalWeights-method (ESS), 19
ESS,numeric-method (ESS), 19
estimate_effect, 20
estimate_effect(), 7

Hainmueller, 21

LaLonde, 23
lbfgsb3c(), 18

mean_balance, 26
Measure, 26, 29

osqp::osqp(), 32
osqp::osqpSettings(), 32

osqpSettings(), 43, 44
ot_distance, 33
OTProblem, 29

pareto-k-diagnostic, 42
plot.causalWeights, 36
plot.summary_causalWeights

(summary.causalWeights), 44
pph, 38
predict.bp, 39
print.dataHolder, 40
print.summary_causalWeights

(summary.causalWeights), 44
PSIS, 41
PSIS(), 19, 20
psis(), 42
PSIS,causalWeights-method (PSIS), 41
PSIS,list-method (PSIS), 41
PSIS,numeric-method (PSIS), 41
PSIS_diag (PSIS), 41
PSIS_diag(), 37, 45
PSIS_diag,causalPSIS-method (PSIS), 41
PSIS_diag,causalWeights-method (PSIS),

41
PSIS_diag,list-method (PSIS), 41
PSIS_diag,numeric-method (PSIS), 41
PSIS_diag,psis-method (PSIS), 41

R6, 12, 15, 21, 24

sbwOptions, 43
sbwOptions(), 6
scmOptions, 44
scmOptions(), 6
summary.causalWeights, 44
summary.causalWeights(), 37
supported_methods, 46
supported_methods(), 6

torch::lr_multiplicative(), 10

48

INDEX 49

torch::lr_reduce_on_plateau, 32
torch::lr_scheduler, 32
torch::optim_lbfgs, 31
torch::optim_lbfgs(), 10
torch::optim_rmsprop(), 10
torch::torch_device, 27
torch::torch_device(), 27, 29
torch::torch_dtype, 27, 29

vcov.causalEffect, 46

	barycentric_projection
	calc_weight
	causalWeights-class
	coef.causalEffect
	cotOptions
	CRASH3
	dataHolder
	DataSim
	df2dataHolder
	entBWOptions
	ESS
	estimate_effect
	Hainmueller
	LaLonde
	mean_balance
	Measure
	OTProblem
	ot_distance
	plot.causalWeights
	pph
	predict.bp
	print.dataHolder
	PSIS
	sbwOptions
	scmOptions
	summary.causalWeights
	supported_methods
	vcov.causalEffect
	Index

