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Abstract 

Background and objective

Multistate models, which allow the prediction of complex multistate survival pro-

cesses such as multimorbidity, or recovery, relapse and death following treatment for 

cancer, are being used for clinical prediction. It is paramount to evaluate the calibra-

tion (as well as other metrics) of a risk prediction model before implementation of the 

model. While there are a number of software applications available for developing 

multistate models, currently no software exists to aid in assessing the calibration of 

a multistate model, and as a result evaluation of model performance is uncommon. 

calibmsm has been developed to fill this gap.

Methods

Assessing the calibration of predicted transition probabilities between any two states 

is made possible through three approaches. The first two utilise calibration tech-

niques for binary and multinomial logistic regression models in combination with 

inverse probability of censoring weights, whereas the third utilises pseudo-values. 

All methods are implemented in conjunction with landmarking to allow calibration 

assessment of predictions made at any time beyond the start of follow up. This study 

focuses on calibration curves, but the methodological framework also allows estima-

tion of calibration slopes and intercepts.

Results

This article serves as a guide on how to use calibmsm to assess the calibration of 

any multistate model, via a comprehensive example evaluating a model developed to 

predict recovery, adverse events, relapse and survival in patients with blood cancer 
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after a transplantation. The calibration plots indicate that predictions of relapse made 

at the time of transplant are poorly calibrated, however predictions of death are 

well calibrated. The calibration of all predictions made at 100 days post transplant 

appear to be poor, although a larger validation sample is required to make stronger 

conclusions.

Conclusions

calibmsm is an R package which allows users to assess the calibration of predicted 

transition probabilities from a multistate model. Evaluation of model performance is a 

key step in the pathway to model implementation, yet evaluation of the performance 

of predictions from multistate models is not common. We hope availability of software 

will help model developers evaluate the calibration of models being developed.

1. Introduction

Risk prediction models enable the prediction of clinical events in either diagnostic 

or prognostic settings [1] and are used widely to inform clinical practice. A multi-

state model [2] may be used when there are multiple outcomes of interest, or when 

a single outcome of interest may be reached via intermediate states. For example, 

prediction of death after local recurrence or distant metastasis in patients with breast 

cancer following surgery [3]; prediction of death following progression of chronic 

kidney disease [4]; prediction of non-AIDS events and death in individuals living with 

HIV [5]. Using a multistate model for prediction is important when the development of 

an intermediate condition occurring post index date may have an impact on the risk 

of future outcomes of interest. Risk prediction models developed for use in clinical 

practice should be evaluated in a relevant cohort, or preferably multiple settings/

cohorts, prior to implementation [6]. If the intended use of this model is known, 

targeted validation in a specific setting may be preferred [7]. A key part of the valida-

tion process is assessment of the calibration of the model [8]. Calibration assesses 

whether the predicted risks match the observed event rates in the cohort of interest. 

Ideally calibration curves should be produced to estimate observed event rates as a 

function the predicted risks over the entire distribution of predicted risk. This corre-

sponds to a moderate assessment of calibration [9]. Methodology on this topic is well 

developed for binary outcomes [9], survival outcomes [10,11], and survival outcomes 

in the presence of competing risks [12,13], however less so for multistate models, 

where there is often interest in prediction of more than one outcome state, and in 

predictions made at landmark times.

The R [14] package mstate provides a comprehensive set of tools to develop 

a multistate model and estimate patient-specific predictions for a continuously 

observed multistate survival process [15]. mstate focuses on non-parametric and 

semi-parametric multistate models where the cause-specific hazards have been fitted 

using cox-proportional hazards models. The flexsurv package [16] builds on the 

functionality of mstate, allowing users to fit parametric multistate models (still using 
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the cause-specific hazards approach), as well as an approach that uses mixture models. Both mstate and flexsurv allow 

fitting of clock-forward (Markov) and clock reset (Semi-Markov) models. The SemiMarkov package [17] contains functions 

specifically for fitting semi-Markov models. The msm package [18] focuses on fitting multistate models to continuous time 

processes that are observed at arbitrary times (panel data). The flexmsm package [19] provides a general estimation 

framework for multistate Markov processes, with flexible specification of the transition intensities. Transition intensities can 

be specified through Generalised Additive Models, and allows models with forward and backward transitions to be fitted. 

The Lexis functions from the Epi package [20] provide a way to represent and manipulate data from multistate models, 

and provides an interface to the mstate. For a full list of packages available for fitting multistate models, see https://

cran.r-project.org/web/views/Survival.html.

There are a number of R packages which enable the estimation of calibration curves for models predicting continuous, 

binary, or survival outcomes [21–23]. However, despite a wide range of packages for developing multistate models, cur-

rently no software exists to aid researchers in assessing the calibration of a multistate model that has been developed for 

the purposes of individual risk prediction. The R package calibmsm has been developed to enable researchers to esti-

mate calibration curves and scatter plots for the transition probabilities between any two states. The methodology is based 

on three approaches outlined previously [24], which focused on assessing the calibration of the transition probabilities out 

of the starting state. The work in this paper extends the framework to assess the calibration of transition probabilities out 

of any state j  at any time s using landmarking [25,26], provides more details on estimation of the inverse-probability of 

censoring weights (where relevant), and demonstrates the process for estimating confidence intervals. calibmsm is avail-

able from the Comprehensive R Archive Network at https://CRAN.R-project.org/package=calibmsm, or can be installed 

from the following GitHub repository [27].

# install.packages("calibmsm") 

# devtools::install_github("alexpate30/calibmsm") 

De Wreede et al. [15], used data from the European Society for Blood and Marrow Transplantation [28] to showcase 

how to develop a multistate model for clinical prediction of outcomes after bone morrow transplantation in leukemia 

patients (Fig 1). In this study, we show how to assess the calibration of a model developed on the same EBMT data as a 

way of illustrating the syntax and workflows of calibmsm. This clinical example also highlights some important differences 

between the methods in how they deal with informative censoring and computational feasibility, which may impact future 

Fig 1. A six-state model for leukemia patients after bone marrow transplantation. Figure taken from De Wreede et al [15].

https://doi.org/10.1371/journal.pone.0320504.g001
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uptake of the methods. Details on the methodology are given in section 2. The clinical example, including steps for data 

preparation and production of calibration plots are given in section 3. Section 4 contains a discussion and summary.

2. Methods and theory

2.1 Setup

Let X(t) ∈ {1, . . . ,K} be a multistate survival process with K  states. We assume a multistate model has already been 

developed and we want to assess the calibration of the predicted transition probabilities, p̂j,k(s, t), in a cohort of interest. 

The transition probabilities are the probability of being in state k  at time t, if in state j  at time s, where s < t . To assess the 

calibration of the multistate model, we must estimate observed event probabilities:

 oj,k(s, t) = P [X(t) = k|X(s) = j, p̂j,k(s, t)] . 

In a well calibrated model, the transition probabilities will be equal to the observed event probabilities.

In the absence of censoring, oj,k(s, t) can be estimated using cross sectional calibration techniques in a landmark 

[25,26] cohort of individuals who are in state j  at time s (i.e., methods to assess the calibration of models predicting binary 

or multinomial outcomes). In the presence of censoring, calibration must be assessed in this landmark cohort of individu-

als either using cross sectional techniques in combination with inverse probability of censoring weights, or through  

pseudo-values. These approaches were previously proposed and evaluated in a simulation study [24], but were restricted 

to assessing calibration out of the starting state at time s = 0. The theory is summarised and revised to allow assessment 

of calibration out of any state j  at any time s in sections 2.2–2.6.

2.2 Binary logistic regression with inverse probability of censoring weights (BLR-IPCW) calibration curves

The first approach produces calibration curves using a framework for binary logistic regression models in conjunction 

with inverse probability of censoring weights to account for informative censoring (BLR-IPCW). Let Ik(t) be an indicator for 

whether an individual is in state k  at time t. Ik(t) is then modeled using a flexible approach with p̂j,k(s, t) as the sole predictor. 

This model is fit in the landmark cohort (in state j  at time s) of individuals who are also still uncensored at time t. This cohort 

is weighted using inverse probability of censoring weights (see section 2.4). We suggest using a loess smoother [29]:

 Ik(t) = loess (p̂j,k(s, t)) (1)

or a logistic regression model with restricted cubic splines [30]:

 logit (Ik(t)) = rcs (logit (p̂j,k(s, t))) (2)

Any flexible model for binary outcomes could be used, but these are the most common and are implemented in this pack-

age. Observed event probabilities ôj,k(s, t) are then estimated as fitted values from these models. These are commonly 

referred to as ‘predicted-observed risk’ values. The calibration curve is plotted using the set of points 
{

p̂j,k(s, t), ôj,k(s, t)
}

.  

To obtain unbiased calibration curves, the assumption that each outcome Ik(t) is independent from the censoring mecha-

nism in the reweighted population must hold.

2.3 Multinomial logistic regression with inverse probability of censoring weights (MLR-IPCW) calibration scatter 

plots

The second approach produces calibration scatter plots using a framework for multinomial logistic regression mod-

els with inverse probability of censoring weights (MLR-IPCW). Let IX(t) be a multinomial indicator variable taking 

values IX(t) ∈ {1, . . . ,K} such that IX(t) = k if an individual is in state k  at time t. The nominal recalibration framework 
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of Van Hoorde et al. [31,32], is then applied in the landmark cohort of individuals uncensored at time t, weighted 

using inverse probability of censoring weights (section 2.4). First calculate the log-ratios of the predicted transition 

probabilities:

 
L̂Pk = ln

(
p̂j,k(s, t)
p̂j,kref(s, t)

)

 

Then fit the following multinomial logistic regression model:

 

ln
(

P [IX(t) = k]
P [IX(t) = kref]

)
= αk +

K∑

h=2

βk,h ∗ smk

(
L̂Ph

)

 

where kref  is an arbitrary reference category which can be reached from state j , k ̸= kref  takes values in the set of states 

that can be reached from state j , and where sm is a vector spline smoother [33]. Observed event probabilities ôj,k(s, t) 
are then estimated as fitted values from this model. This results in a calibration scatter plot rather than a curve due to 

all states being modeled simultaneously, as opposed to BLR-IPCW, which is a “one vs all” approach. The scatter occurs 

because the observed event probabilities for state k  vary depending on the predicted transition probabilities of the other 

states. This is a stronger [9] form of calibration than that evaluated by BLR-IPCW, and will also result in observed event 

probabilities which sum to 1. In future iterations of calibmsm functionality will be added to produce smoothed curves 

estimated from these scatter plots. To obtain unbiased calibration curves, the assumption that the outcome IX(t) is inde-

pendent from the censoring mechanism in the reweighted population must hold.

2.4 Estimation of the inverse probability of censoring weights

The estimand for the weights is wj(s, t), the inverse of the probability of being uncensored at time t if in state j  at time s:

 
wj(s, t) =

1

P [tcens > t|t > s, X(s) = j, Z, X(t)] (3)

where X(t) denotes the history of the multistate survival process up to time t, including the transition times, and Z  

is a set of baseline predictor variables believed to be predictive of the censoring mechanism. Note that Z  may be 

the same as, but is not restricted to, the variables used for prediction when developing the multistate model. First 

the estimator P̂ [tcens > t|t > s, X(s) = j, Z] is calculated by developing an appropriate survival model. The outcome 

in this model is the time until censoring occurs. Moving into an absorbing state prevents censoring from happening 

and is treated as a censoring mechanism in this model (i.e., a competing risks approach is not taken when fitting this 

model). X(t) is explicitly conditioned on when defining wj(s, t) because the weights must reflect that censoring can 

no longer be observed for an individual if they enter an absorbing state at some time s < tabs < t . Therefore, in cal-

ibmsm, the weights are estimated as:

 P̂ [tcens > t|t > s, X(s) = j, Z,X(t)] = P̂
[

tcens > min
{

t, tabs
}

|t > s, X(s) = j, Z
]

 

Note that if the censoring mechanism is not conditionally independent from the outcome process X(t) given Z , i.e., 

the rate of censoring changes depending on outcome state occupancy, then this approach will be invalid. Instead, 

the outcome history up until time t must be conditioned on when estimating the weights, as specified in equation 

(3). By default, P̂ [tcens > t|t > s, X(s) = j, Z] is estimated in calibmsm using a cox proportional hazards model where 

all predictors Z  are assumed to have a linear effect on the log-hazard. These conditions are highly restrictive. 
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Users can therefore also input their own vector of weights which is strongly recommended. calibmsm has been 

developed to provide a framework for assessing calibration, and the packages’ primary purpose is not estimation of 

inverse probability of censoring weights, however, future versions may allow for more flexible models to estimate the 

weights. Given the BLR-IPCW and MLR-IPCW approaches are both reliant on correct estimation of the weights, we 

encourage users to take the time to carefully estimate these using a well specified model. The limitations of using 

the calibmsm internal functions for estimating the weights in this clinical example (section 4) are discussed in more 

detail later, and explored in vignette Sensitivity-analysis-for-IPCWs [27].

Stabilised weights can be estimated by multiplying by the weights wj(s, t) by the mean probability of being uncensored:

 
wstab
j (s, t) =

P [tcens > t|t > s, X(s) = j]
P [tcens > t|t > s, X(s) = j, Z, X(t)] 

The numerator can be estimated using an intercept only model, and note there is no dependence on X(t).
Another option is to estimate w(s, t), which is the inverse of the probability of being uncensored at time t if uncensored 

at time s:

 
w(s, t) =

1

P [tcens > t|t > s, Z, X(t)] 

This can be estimated using the same approach as for wj(s, t), except there is no requirement to be in state j  when 

landmarking at time s. If the censoring mechanism is conditionally independent from X(s) after conditioning on Z , then 

w(s, t) = wj(s, t), and any consistent estimator for w(s, t) will be a consistent estimator of wj(s, t). The advantage is that 

w(s, t) is calculated by developing a model in the cohort of individuals uncensored at time s, which is a larger cohort 

than those uncensored and in state j  at time s. Therefore w(s, t) will be a more precise estimator than wj(s, t). On the 

contrary, if the rate of differs depending on X(s), there is a risk of bias in estimation of the weights. We therefore rec-

ommend using the estimator wj(s, t) unless sample size (number of individuals in state j  at time s) is low, which may 

be assessed using sample size formula for prediction models with time-to-event outcomes [34]. If the sample size is 

deemed insufficient, one may consider using w(s, t), but the risk of bias associated with this estimator must be carefully 

considered.

We note the importance of using inverse probability of censoring weights, even if the censoring mechanism is believed 

to be completely at random. When a multistate model has an absorbing state (which is the case for most), entry into this 

state will prevent censoring from happening. This induces a dependence between the outcome and the censoring mech-

anism which must be adjusted for using inverse probability of censoring weights. This issue was highlighted in the supple-

mentary material of previous work [24].

2.5 Pseudo-value calibration plots

The third approach produces calibration curves using pseudo-values [35,36]. Pseudo-values can be used in place of the 

outcome of interest in a regression model if some outcomes are not observed due to right censoring. This is the case in 

models (1) and (2). For certain estimators θ̂ (where θ estimates the expectation of the outcome it is replacing), the  

pseudo-value for individual i  is defined as:

θ̂
i = n ∗ θ̂ – (n – 1) ∗ θ̂–i ,

where θ̂–i  is equal to θ̂ estimated in a cohort without individual i . One such estimator for the outcomes in models (1) and 

(2) given the underlying multistate survival process, is the Landmark Aalen-Johansen estimator [37], which estimates the 
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expectation of Ik(t) in the landmark cohort of individuals in which calibration is being assessed. The resulting pseudo- 

values are a vector with K  elements, one for each possible transition, for every individual i . These pseudo-values can 

replace the outcome Ik(t) in equations (1) and (2) in order to estimate oj,k(s, t).
Pseudo-values are based on the same assumptions as the underlying estimator θ̂. The Landmark Aalen-Johansen estima-

tor is valid for both Markov and non-Markov multistate models. However, it does make the assumption of random censoring. 

According to Kleinbaum and Klein [38], this means that “subjects who are censored at time t should be representative of all the 

study subjects who remained at risk at time t with respect to their survival experience”. The approach to alleviate this is to esti-

mate the pseudo-values within sub-groups of individuals, now making the assumption of random censoring within the specified 

subgroups. This can be done by calculating the pseudo-values within subgroups defined by baseline predictors, or subgroups 

defined by the predicted transition probabilities p̂j,k(s, t). Both options are implemented in this package. When pseudo-values 

are calculated within subgroups, they are still used as the outcome in models (1) and (2) in the same way. Note that the  

pseudo-values θ̂i are continuous, as opposed to binary Ik(t), but the link function in model (1) remains the same to ensure 

ôj,k(s, t) are between zero and one. Here, ôj,k(s, t) are commonly referred to as ‘pseudo-observed risk’ values.

2.6 Estimation of confidence intervals

Confidence intervals for both BLR-IPCW and pseudo-value calibration curves can be estimated using bootstrapping. 

While theoretically feasible, it is currently unclear how to present confidence intervals for each data point in the calibration 

scatter plots produced by MLR-IPCW, and therefore these are omitted. A process for estimating the confidence intervals 

around the BLR-IPCW calibration curves is as follows:

1. Resample validation dataset with replacement

2. Landmark the dataset for assessment of calibration

3. Calculate inverse probability of censoring weights

4. Fit the preferred calibration model in the landmarked dataset (restricted cubic splines or loess smoother)

5. Generate observed event probabilities for a fixed vector of predicted transition probabilities (specifically the predicted 

transition probabilities from the non-bootstrapped landmark validation dataset)

This will produce a number of bootstrapped calibration curves, all plotted over the same vectors of predicted transition probabil-

ities. Taking the α
2
 and 

(

1 – α

2

)

 percentiles of the observed event probabilities for each predicted transition probability gives the 

required 1 – α confidence interval around the estimated calibration curve. To estimate confidence intervals for the pseudo-value 

calibration curves using bootstrapping, the same procedure is applied except the third step is replaced with ‘calculate the  

pseudo-values within the landmarked bootstrapped dataset’. This will be highly computationally demanding as the pseudo- 

values must be estimated in every bootstrap dataset. This process is integrated into calibmsm internally, however code for how 

to implement these steps manually is also provided in the vignette BLR-IPCW-manual-boostrap [27].

If using the pseudo-value method, confidence intervals can however be calculated using closed form estimates of 

the standard error when making predictions of the observed event probabilities (i.e., when obtaining fitted values from 

models (1) and (2)). We recommended this due to the computational burden of bootstrapping the confidence inter-

vals around the pseudo-value calibration curves. There are a number of issues with estimating parametric confidence 

intervals for the BLR-IPCW calibration curves. Firstly, a robust sandwich-type estimator should be used to estimate 

the standard error [39], which are known to result in conservative confidence intervals. On the contrary, the size of the 

confidence interval will be underestimated as uncertainty in estimation of the weights is not considered. Due to the 

impact of these two factors, we recommend using bootstrapping to estimate the confidence intervals for BLR-IPCW 

calibration curves.
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3. Description of package functions and interface

The methods for estimating the calibration curves are implemented using the calib_msm function. A step-by-step guide 

to this process is given in Fig 2.

Step 1 is to obtain access to the multistate model that is being evaluated. calibmsm is designed to assess the calibra-

tion of a pre-existing model. Details on development of multistate models is given elsewhere [2,15,16].

Fig 2. Flowchart detailing steps for estimating calibration plots using calibmsm::calib_msm.

https://doi.org/10.1371/journal.pone.0320504.g002

https://doi.org/10.1371/journal.pone.0320504.g002
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Step 2 is to derive the validation dataset that calibration will be assessed in. This must be formatted in two ways, and 

will be used as the inputs for the calib_msm arguments data_raw and data_ms. The data_raw argument requires 

the validation cohort in a data.frame format with one row per individual. For methods BLR-IPCW and MLR-IPCW, 

data_raw must contain variables dtcens (censoring time) and dtcens_s (censoring indicator), where dtcens_s 

= 1 if the individual is censored at time dtcens, dtcens_s = 0 otherwise, plus any baseline predictors Z  used to 

estimate the weights. For the pseudo-value approach, data_raw must contain any baseline predictors Z  being used 

to group individuals before calculating the pseudo-values. The data_ms argument requires a dataset of class msdata. 

A dataset of this class can be derived using the package mstate [15], and will contain a separate row for every tran-

sition for each individual. Both data_ms and data_raw should contain a corresponding patient ID variable id. The 

data_raw and data_ms arguments contain the same information about individuals in the validation cohort in different 

formats, and data_ms can be derived from data_raw using the function msprep from mstate [15]. The data_raw 

argument is used to build the calibration models and estimate the calibration curves, while the data_ms argument is 

used to implement the landmarking for all methods, and estimate the Aalen-Johansen estimator for the pseudo-value 

approach. They are specified separately to reduce computation time when bootstrapping. See section 4.1 for an exam-

ple of datasets meeting these criteria and details on how they are derived.

Step 3 is to choose the state j  and time s at which calibration will be assessed. The predicted transition probabilities 

out of state j  at time s for individuals in the validation cohort must then be estimated using the multistate model that is 

being evaluated. We defer to de Wreede et al [15] and Jackson [16] for details on how to do this. The estimated transition 

probabilities are then specified in calib_msm through the tp_pred argument, which must contain a column for each 

transition k , even if the transition from j  to k  has zero probability. The rows in tp_pred must be ordered in the same way 

as those in data_raw.

Step 4 is to choose a method for assessing calibration. When running calib_msm, the user can specify the method for 

assessing calibration through the calib_type argument, and the type of non-linear curve through curve_type argu-

ment. It is also recommended to specify other relevant input parameters, such as the variables for grouping individuals if 

using the pseudo-value approach, or the number of knots if using restricted cubic splines. A list of the function arguments 

and their required inputs is given in Table 1. For full details on function inputs we refer to the package documentation, 

obtained through help(package = “calibmsm”). For users new to R, we recommend starting with the book ‘R for 

Data Science’ [41].

The methods in calibmsm require continuously observed data, however are agnostic to the type of multistate model 

used to estimate the transition probabilities. This includes Markov, Semi-Markov or non-Markov models, and non- 

parametric, semi-parametric or parametric models. A dataset of class msdata from mstate is required as input, however 

this is only required to apply landmarking, and determine the occupied state for each individual at time t. The estimated 

transition probabilities, supplied through tp_pred can be estimated using any statistical software.

Once the data for the calibration curves or scatter plots has been estimated using calib_msm, they can be plotted using 

the S3 generic, plot. Plot methods have been written for three output classes of calib_msm: calib_blr, calib_mlr 

and calib_pv. Separating these processes allows users to manually estimate bootstrapped calibration curves (see vignette 

BLR-IPCW-manual-bootstrap) [27] using the output from calib_msm. It also allows users the flexibility of producing their 

own plots utilising the full functionality of ggplot2, rather than being reliant on the S3 generics provided.

4. Clinical example and typical program run

4.1 Clinical setting and data preperation

We utilise data from the European Society for Blood and Marrow Transplantation [28], containing multistate survival data 

after a transplant for patients with blood cancer. The start of follow up is the day of the transplant and the initial state 
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is alive and in remission. There are three intermediate events (2: recovery, 3: adverse event, or 4: recovery + adverse 

event), and two absorbing states (5: relapse and 6: death). This data is available from the mstate package. We assume 

the user of calibmsm has experience with handling the type of data used to develop a multistate model as outlined by De 

Wreede et al [15].

Four datasets are provided to enable assessment of a multistate model fitted to these data. The code for deriving all 

these datasets is provided in the source code for calibmsm [27]. The first is ebmtcal, which is the input for argument 

data_raw. This data is the same as the ebmt dataset provided in mstate, with two extra variables derived: time until 

censoring (dtcens) and an indicator for whether censoring was observed (dtcens_s = 1) or an absorbing state was 

entered (dtcens_s = 0). This dataset contains baseline information on year of transplant (year), age at transplant 

(age), prophylaxis given (proph), and whether the donor was gender matched (match), and information on time until 

entry into the different outcome states. Such a dataset would need to be constructed by the user after prospective data 

collection or manipulation of observational data.

The second dataset provided is msebmtcal, which is the input for argument data_ms. This is a dataset of class 

msdata, and has been derived from the ebmt dataset by applying the processes and functions from the package 

Table 1. Arguments for the function calibmsm::calib_msm and required input.

Argument/prefix* Input

data_raw Validation dataset, data.frame, one row per individual. Must contain variables id, dtcens, dtcens_s, and 

any baseline variables used for estimation of the weights or the grouping of individuals before calculating 

pseudo-values.

data_ms Validation dataset in msdata format. Must contain variable id, and variables denoting transition history (from, 

to, trans, Tstart, Tstop, time, status). Created using msdata function from the mstate package. Please refer 

to mstate package documentation for more details.

j State from which predicted transition probabilities are made.

s Time from which predicted transition probabilities are made.

t Follow up time at which predicted transition probabilities are made.

tp_pred Predicted transition probabilities, data.frame, one row per individual, one column per state, even if the pre-

dicted probabilities into that state are 0.

tp_pred_plot Transition probabilities over which to produce calibration curves, data.frame, one column per state, even if 

the predicted probabilities into that state are 0.

calib_type Method for estimating the calibration curves or scatter plot.

curve_type Method for modelling the non-linear component of the calibration curves.

rcs_nk Number of knots if estimating the non-linear component using restricted cubic splines.

loess_* Arguments relating to the estimation of the non-linear component using loess smoothers. See stats::loess.

mlr_* Arguments relating to the specification of the vector spline smoother when estimating calibration scatter 

plots (MLR-IPCW). See VGAM [40].

weights User-inputted vector of inverse probability of censoring weights.

w_* Arguments relating to the internal estimation of inverse probability of censoring weights.

pv_* Arguments relating to the estimation of the pseudo-values.

CI* Arguments relating to the estimation of a confidence interval.

transitions_out Vector of states that can be transitioned into to produce calibration curves for. Default is to produce calibra-

tion curves for any state that can be reached from state j at time s.

assess_moderate Whether to assess moderate calibration

assess_mean Whether to assess mean calibration.

*Arguments that correspond to the same aspect of the process have been grouped. For details on each individual argument please refer to the package 

documentation [27].

https://doi.org/10.1371/journal.pone.0320504.t001

https://doi.org/10.1371/journal.pone.0320504.t001
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mstate [15]. It contains all transition times, an event indicator for each transition, as well as a trans attribute con-

taining the transition matrix. Note that while the data on transition times is not required to be present  

in ebmtcal in order to run calib_msm, it is required in order to derive the dataset msebmtcal from  

ebmtcal.

library(calibmsm)

data("ebmtcal")

head(ebmtcal, n = 3)

##   id  rec rec.s  ae ae.s recae recae.s  rel rel.s  srv srv.s      year 

agecl

## 1  1   22     1 995    0   995       0  995     0  995     0 1995-1998 

20-40

## 2  2   29     1  12    1    29       1  422     1  579     1 1995-1998 

20-40

## 3  3 1264    0  27    1  1264       0 1264     0 1264     0 1995-1998 

20-40

##   proph              match dtcens dtcens_s

## 1    no no gender mismatch    995        1

## 2    no no gender mismatch    422        0

## 3    no no gender mismatch   1264        1

data("msebmtcal")

head(msebmtcal, n = 10)

##    id from to trans Tstart Tstop time status

## 1   1    1  2     1      0    22   22      1

## 2   1    1  3     2      0    22   22      0

## 3   1    1  5     3      0    22   22      0

## 4   1    1  6     4      0 22   22      0

## 5   1    2  4     5     22   995  973      0

## 6   1    2  5     6     22   995  973      0

## 7   1    2  6     7     22   995  973      0

## 8   2    1  2     1      0    12   12      0

## 9   2    1  3     2      0    12   12      1

## 10  2    1  5     3      0    12   12      0

In the work of De Wreede et al. [15], the focus is on predicting transition probabilities made at times s = 0 and s = 100 

days, across a range of follow up times t, and comparing prognosis for patients in different states j . In this study we also 

focus on assessing the calibration of the transition probabilities made at these times. We assess calibration of the transi-

tion probabilities at t = 5 years, a common follow up time for cancer prognosis, but calibration of the model may vary for 

other values of t. We estimate transition probabilities for each individual by developing a model as demonstrated in de 

Wreede et al. [15], following the theory of Putter et al [2].

The predicted transitions probabilities from each state j  at times s = 0 and s = 100 are contained in stacked data-

sets tps0 and tps100 respectively. A leave-one-out approach was used when estimating these transition proba-

bilities. This means each individual was removed from the development dataset when fitting the multistate model to 

estimate their transition probabilities. This approach allows validation to be assessed in the same dataset that the 

model was developed with minimal levels of in-sample optimism. Note that for tps100 the predicted probabilities 

for some states k  are equal to 0. This is because no individuals in state j = 1 at time s = 100 transition into states 

3 or 4. This may be due to the definition of an adverse event having to occur within a certain number of days post 

transplant.
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data("tps0")

head(tps0, n = 3)

##   id   pstate1   pstate2    pstate3   pstate4   pstate5   pstate6        

se1

## 1  1 0.1139726 0.2295006 0.08450376 0.2326861 0.1504855 0.1888514 0.012

91133

## 2  2 0.1140189 0.2316569 0.08442692 0.2328398 0.1481977 0.1888598 0.012

91552

## 3  3 0.1136646 0.2317636 0.08274331 0.2325663 0.1504787 0.1887834 0.012

89444

##          se2        se3        se4        se5        se6 j

## 1 0.02369584 0.01257251 0.02323376 0.01648630 0.01601795 1

## 2 0.02374329 0.01256056 0.02324869 0.01632797 0.01603703 1

## 3 0.02375770 0.01245752 0.02322375 0.01647890 0.01601525 1

data("tps100")

head(tps100, n = 3)

##   id   pstate1    pstate2 pstate3 pstate4   pstate5   pstate6        se

1

## 1  1 0.7013881 0.05239271       0       0 0.1408120 0.1054072 0.0469116

8

## 2  2 0.7012745 0.05261136       0       0 0.1407625 0.1053516 0.0469121

8

## 3  3 0.7011368 0.05270176       0       0 0.1407628 0.1053987 0.0469306

8

##          se2 se3 se4        se5        se6 j

## 1 0.02077138   0   0 0.03457006 0.03081258 1

## 2 0.02082871   0   0 0.03456448 0.03079617 1

## 3 0.02086917   0   0 0.03456101 0.03081033 1

4.2 Calibration plots for the transition probabilities out of state j = 1 at time s = 0

We start by producing calibration curves for the predicted transition probabilities out of state j = 1 at time s = 0. Given all 

individuals start in state 1, there is no need to consider the transition probabilities out of states j ̸= 1 at s = 0. Calibration is 

assessed at follow up time (t = 1826 days). We start by extracting the predicted transition probabilities from state j = 1 at 

time s = 0 from the object tps0. These are the transition probabilities we aim to assess the calibration of.

tp_pred_s0 <- tps0 |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))

We first evaluate calibration using the BLR-IPCW approach by specifying calib_type = “blr”. We choose to 

estimate the calibration curves using restricted cubic splines, although the use of loess smoothers would be equally 

valid. When using restricted cubic splines, the number of knots must always be specified by the user, and 3 knots are 

chosen here given the reasonably small size of the dataset. Weights are estimated using the internal estimation pro-

cedure with baseline predictor variables year, agecl, proph and match. The w_max_follow=t_eval argument 

censors individuals at t_eval before fitting the model used to estimate the weights, i.e., a “stopped cox” approach 

[42]. This decision was made to help meet the proportional hazards assumption as there is differential follow up for 

individuals in different year groups (see vignette Sensitivity-analysis-for-IPCWs [27] for more details). The w_land-

mark_type argument assigns whether weights are estimated using all individuals uncensored at time s, or only 

those uncensored and in state j  at time s, as discussed in section 2.4 The maximum weight (w_max = 10) and sta-

bilisation of weights (w_stabilised = TRUE) are left as default. Weights can also be manually specified using the 

weights argument. We request 95% confidence intervals for the calibration curves calculated through bootstrapping 

with 200 bootstrap replicates.
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t_eval <- 1826

dat_calib_blr <-

calib_msm(data_ms = msebmtcal,

data_raw = ebmtcal,

j=1,

s=0,

t = t_eval,

tp_pred = tp_pred_s0,

calib_type = "blr",

curve_type = "rcs",

rcs_nk = 3,

w_covs = c("year", "agecl", "proph", "match"),

CI = 95,

CI_R_boot = 200)

The first element of dat_calib_blr (named plotdata) contains 6 data frames. One for the calibration curves of the 

transition probabilities into each of the six states, k ∈ {1, 2, 3, 4, 5, 6}. Each data frame contains five columns, id: the identifier 

of each individual; pred: the predicted transition probabilities; obs: the observed event probabilities; obs_lower and obs_

upper: the confidence interval for the observed event probabilities. The second element (named metadata) is a metadata 

argument containing information about the data and chosen calibration analysis. The plot data and metadata can be viewed 

using the print and metadata commands respectively. However, it is recommended to get acquainted with the underlying 

object structure, as accessing the plot data will be useful if wanting to customise plots or apply bootstrapping manually.

print(dat_calib_blr)

## $state1

##   id      pred       obs  obs_lower obs_upper

## 2  2 0.1140189 0.1095897 0.08797538 0.1331918

## 4  4 0.1383878 0.1036308 0.08151624 0.1239493

## 5  5 0.1233226 0.1051035 0.08563362 0.1247074

## 

## $state2

##   id      pred       obs obs_lower obs_upper

## 2  2 0.2316569 0.1698031 0.1195364 0.2224530

## 4  4 0.1836189 0.1855591 0.1588683 0.2141211

## 5  5 0.1609740 0.1759804 0.1456545 0.2051705

## 

## $state3

##   id       pred        obs  obs_lower obs_upper

## 2  2 0.08442692 0.12485834 0.08999565 0.1544482

## 4  4 0.07579429 0.11666056 0.08333101 0.1446896

## 5  5 0.05508100 0.09189341 0.04947315 0.1378489

## 

## $state4

## id      pred       obs obs_lower obs_upper

## 2  2 0.2328398 0.2427580 0.1998414 0.2853412

## 4  4 0.2179331 0.2243106 0.1911869 0.2580538

## 5  5 0.1828176 0.1851051 0.1543974 0.2150953

## 

## $state5

##   id      pred       obs obs_lower obs_upper

## 2  2 0.1481977 0.1909795 0.1668994 0.2206078

## 4  4 0.1538475 0.1654523 0.1502043 0.1829148

## 5  5 0.1425950 0.2215190 0.1785118 0.2722747

## 

## $state6

##   id      pred       obs obs_lower obs_upper

## 2  2 0.1888598 0.2069354 0.1850181 0.2302357

## 4 4 0.2304185 0.2542212 0.2235304 0.2829786

## 5  5 0.3352099 0.3163102 0.2792628 0.3520205

metadata(dat_calib_blr)

## $valid_transitions

## [1] 1 2 3 4 5 6

## 

## $assessed_transitions

## [1] 1 2 3 4 5 6

## 

## $CI

## [1] 95

## 

## $CI_type

## [1] "bootstrap"

## 

## $CI_R_boot

## [1] 200

## 

## $j

## [1] 1

## 

## $s

## [1] 0

## 

## $t

## [1] 1826

## 

## $calib_type

## [1] "blr"

## 

## $curve_type

## [1] "rcs"
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The BLR-IPCW calibration curves can then be generated by applying the plot function to the output from calib_msm. 

Note, when marginal density curves are requested (default), grid::grid_draw is the preferred approach to display this plot 

in the viewer. The calibration curves (Fig 3) indicate the level of calibration is different for the transition probabilities into 

each of the different states. The calibration into states 4 and 6 looks the best. State 2 has good calibration over the major-

ity of the predicted risks but over predicts for individuals with the highest predicted risks. Transition probabilities into states 

1 and 3 are over and under predicted respectively over most of the range of predicted risks. Importantly the calibration of 

the transition probabilities into state 5 (Relapse), a key clinical outcome in this clinical setting, is extremely poor.

Fig 3. BLR-IPCW calibration curves out of state j  = 1 at time s = 0.

https://doi.org/10.1371/journal.pone.0320504.g003

https://doi.org/10.1371/journal.pone.0320504.g003
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plot_pv <- plot(dat_calib_pv, combine = TRUE, nrow = 2, ncol = 3)

grid::grid.draw(plot_pv)

Next we use the pseudo-value approach to assess calibration by specifying calib_type = “pv”. Instead of specify-

ing how the weights are estimated, we now specify variables to define groups within which pseudo-values will be calcu-

lated (see section 2.5). The goal is to induce uninformative censoring within the chosen subgroups. We chose to calculate 

pseudo-values in individuals with the same year of transplant (pv_group_vars = c(“year”)), and then split individ-

uals into a further three groups defined by their predicted risk (pv_n_pctls = 3). The number of percentiles should be 

increased in bigger validation datasets, although guidance on specific numbers is currently lacking. Year of transplant was 

identified as a subgrouping variable because a later transplant resulted in a shorter possible follow up, an earlier admin-

istrative censoring time, and it was therefore highly predictive of being censored. Your data should be explored to identify 

appropriate variables for subgrouping (see vignette Evaluation-of-estimation-of-IPCWs). A parametric confidence interval 

is estimated as recommended in section 2.6.

dat_calib_pv <-

calib_msm(data_ms = msebmtcal,

data_raw = ebmtcal,

j = 1,

s = 0,

t = t_eval,

tp_pred = tp_pred_s0,

calib_type = "pv",

curve_type = "rcs",

rcs_nk = 3,

pv_group_vars = c("year"),

pv_n_pctls = 3,

CI = 95,

CI_type = "parametric")

plot_pv <- plot(dat_calib_pv, combine = TRUE, nrow = 2, ncol = 3)

grid::grid.draw(plot_pv)

The pseudo-value calibration curves (Fig 4) are largely similar to the BLR-IPCW calibration curves (Fig 3). The agreement 

in the calibration curves from two completely distinct methods provides some reassurance on the validity of the assessment 

of calibration. This is with the exception of state k = 3, where the pseudo-value calibration plot indicates the transition proba-

bilities are well calibrated, but the BLR-IPCW calibration plot indicates the transition probabilities under predict. In a situation 

like this, we recommend testing the assumptions made by each of the methods to try and diagnose which are most likely to 

hold, and what may be driving the difference. In this particular example, we hypothesised that the cox-proportional hazards 

model for estimating the inverse probability of censoring weights may be misspecified, in particular the proportional hazards 

assumption, due to the strong effect of year of transplant on the censoring mechanism. We explored this theory in more 

detail (see vignette Sensitivity-analysis-for-IPCWs), but found little change when estimating the weights using a flexible para-

metric survival model. Instead, we identified that this may be caused by a difference in the censoring mechanism for individu-

als in the adverse event state, as it appeared these individuals were less likely to be censored. This will bias the results from 

the BLR-IPCW and MLR-IPCW methods unless the weights are conditional on the amount of time spent in each outcome 

state, something which calibmsm is not currently set up to do. Although it’s not possible to be certain that the individuals in 

the adverse event state were less likely to be censored purely from looking at the data, we concluded it was a strong possi-

bility, and that the BLR-IPCW calibration curves may be biased in this particular clinical example.

Next we use the MLR-IPCW to evaluate calibration which produces a calibration scatter plot by specifying calib_

type = “mlr”. The inputs for calculating the weights are the same as for the BLR-IPCW approach, but a confidence 

interval is no longer requested which is not possible for the MLR-IPCW approach.



PLOS One | https://doi.org/10.1371/journal.pone.0320504 June 4, 2025 16 / 26

dat_calib_mlr <-

calib_msm(data_ms = msebmtcal,

data_raw = ebmtcal,

j = 1,

s= 0,

t = 1826,

tp_pred = tp_pred_s0,

calib_type = "mlr",

w_covs = c("year", "agecl", "proph", "match"))

plot_mlr <- plot(dat_calib_mlr, combine = TRUE, nrow = 2, ncol = 3)

grid::grid.draw(plot_mlr)

Fig 4. Pseudo-value calibration curves out of state j  = 1 at time s = 0.

https://doi.org/10.1371/journal.pone.0320504.g004

https://doi.org/10.1371/journal.pone.0320504.g004
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The MLR-IPCW calibration scatter plots, produced using plot are contained in Fig 5. Within each plot for state k , there 

is a large amount of variation in calibration of the transition probabilities depending on the predicted transition probabilities 

into states ̸= k. One valuable insight from these plots is that the variance in the calibration of the transition probabilities 

into state 6, is considerably smaller than that of state 4, despite these two states both having good calibration according 

to the BLR-IPCW plots (arguably state 4 looked better calibrated). This means the calibration of the transition probabilities 

into state 6 remains reasonably consistent, irrespective of the risks of the other states. On the contrary, the calibration of 

the predicted transition probabilities into state 4 is more dependent on the predicted transition probabilities of the other 

states. These plots can also be used to identify groups of individuals where calibration is poor. For example, there is a 

cluster of individuals with a predicted-observed risk > 17.5% for state 3, where the model is under-predicting. These are 

all individuals aged 20–40, year group 1995–1998, no gender mismatch and no prophylaxis.

In practice, we recommend researchers produce calibration curves using all three methods. The MLR-IPCW 

approach is a stronger [9] form of calibration assessment than the BLR-IPCW and pseudo-value approaches, but all 

Fig 5. MLR-IPCW calibration scatter plots out of state j  = 1 at time s = 0.

https://doi.org/10.1371/journal.pone.0320504.g005

https://doi.org/10.1371/journal.pone.0320504.g005
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three provide important contextual information. Note that we hypothesized that the inverse probability of censoring 

weights may not be accurate in this example due to a censoring mechanism which changes depending on outcome 

state occupancy. Using the current approach for estimating the weights, this will result in biased calibration plots for 

the BLR-IPCW and MLR-IPCW methods, having a particular effect on the plots for state 3 (adverse event). For the 

following section, we therefore proceed using only the pseudo-value method.

4.3 Calibration plots for the transition probabilities out of states j = 1 and 3 at time s = 100

In the work of De Wreede et al. [15], focus then shifts to comparing transition probabilities when s = 100  

depending on whether an individual has had an adverse event (state $3$) or remains in state 1 (post transplant).  

Our focus therefore now shifts to assessing the calibration of these transition probabilities. This is done through  

landmarking as described in section 2. We start by extracting the predicted transition probabilities from state j = 1 

and 3 at time s = 100 from the object tps100. These are the transition probabilities we aim to assess the  

calibration of.

tp_pred_j1s100 <- tps100 |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))

tp_pred_j3s100 <- tps100 |>
dplyr::filter(j == 3) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))

The process for estimating the calibration curves remains the same, changing the inputted values j and s, and specify-

ing the appropriate predicted transition probabilities to the argument tp_pred. We start by producing the calibration plots 

for j = 1 and s = 100 using pseudo-value (Fig 6) method.

dat_calib_pv_j1_s100 <-

calib_msm(data_ms = msebmtcal,

data_raw = ebmtcal,

j = 1,

s = 100,

t = t_eval,

tp_pred = tp_pred_j1s100,

calib_type = "pv",

curve_type = "rcs",

rcs_nk = 3,

pv_group_vars = c("year"),

CI = 95,

CI_type = "parametric")

plot_blr_j1_s100 <- plot(dat_calib_blr_j1_s100, combine = TRUE, nrow = 2, 

ncol = 3)

grid::grid.draw(plot_blr_j1_s100)

There are only four calibration plots because no individuals in state j = 1 at time s = 100 are in states k = 3 (adverse 

event) or k = 4 (recovery + adverse event) after t = 1826 days. We believe this is due to the definition of an adverse 

event occuring within 100 days, but as secondary users of the data, cannot be sure about this. The calibration of 

the predicted transition probabilities according is very poor. Only for state k = 6 is the observed risk a monotonically 
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increasing function of the predicted transition probabilities. The confidence intervals are very large. For states k = 2 and 

k = 5, we cannot rule out that the poor calibration is a result of sampling variation as opposed to a poorly performing 

prediction model. A larger validation dataset would be required to get to the bottom of this. There is a major issue with 

the calibration of the transition probabilities of staying in state 1, as the predicted risk is inversely proportional to the 

observed event rate.

Fig 6. Pseudo-value calibration curves out of state j  = 1 at time s = 100.

https://doi.org/10.1371/journal.pone.0320504.g006

https://doi.org/10.1371/journal.pone.0320504.g006
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Next we produce calibration plots for j = 3 and s = 100 (Fig 7).

dat_calib_pv_j3_s100 <-

calib_msm(data_ms = msebmtcal,

data_raw = ebmtcal,

j = 1,

s = 100,

t = t_eval,

tp_pred = tp_pred_j1s100,

calib_type = "pv",

curve_type = "rcs",

rcs_nk = 3,

pv_group_vars = c("year"),

CI = 95,

CI_type = "parametric")

plot_blr_j3_s100 <- plot(dat_calib_blr_j3_s100, combine = TRUE, nrow = 2, 

ncol = 3)

grid::grid.draw(plot_blr_j3_s100)

Again there are only four possible states that an individual may transition into, although this includes states 3 (adverse 

event) and 4 (recovery + adverse event), instead of 1 (post transplant) and 2 (recovery). This is because once an individ-

ual has entered state 3, they cannot move backwards into states 1 or 2. The calibration plots are better than for j = 1. For 

transitions into states k = 3, 4 and 6, the calibration curves are monotonically increasing and comparatively close to the 

line of perfect calibration, although the confidence intervals are still quite large. Again the calibration of state 5 is very poor. 

This makes it difficult to base any clinical decisions on the predicted transition probabilities for relapse out of states j = 1 

or 3 at time s = 100, whereas making clinical decisions based on the risk of death (k = 6) after survival for 100 days is 

more viable, as this was well calibrated for both j = 1 and j = 3.

We provide an overview of interpretating the calibration curves for this clinical example in Box 1.

Box 1. Interpretation of the calibration results.

Please note, the model being evaluated was originally developed to showcase the functionality of the mstate pack-

age and was never intended for clinical use. This is a hypothetical discussion to illustrate how the calibration plots 

may be interpreted.

 Assessing the calibration of multi-state clinical prediction models requires consideration of each of the states of the 

model, with a requirement for the re to be good calibration across all states before the model could be used in clinical 

practice. We have provided three methods to assess calibration (see Section 2), and we recommend assessing cali-

bration using each, so that the results can be compared.

The calibration curves shown in Figs 3–5, which consider predictions out of the recovery state a time 0, show that 

there is good agreement between the observed and predicted risks for some – but not all – of the states. The results 

tell us that the transition probabilities of remaining in state 1 (transplant) are pre-dominantly over-predicting. Specifi-

cally, the model is over-estimating the predicted risk of someone not recovering, having an adverse event, experienc-

ing relapse or death following transplant. The transition probabilities of being in state 2 (recovery) or state 5 (adverse 

event + recovery) are either under or over-predicting depending on the predicted risk value. A key clinical outcome 

in this clinical setting is the risk of relapse (state 5), with these results showing that the model should not be used to 

inform risk estimation for this state, since the calibration of state 5 is extremely poor.
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On the contrary, the calibration of transition probabilities for state 4 (adverse event + recovery) and state 6 (death) are 

reasonably well calibrated. Checking for consistency in conclusions across the three calibration methods is always 

recommended as it may reveal important insights from the analysis. Indeed, we found differences in the calibration 

results of state 3 across the three methods (as discussed in the main paper). This led to further investigation, which 

concluded that the calibration plots from the BLR-IPCW and MLR-IPCW approaches may be biased in this setting, 

in particular state 3 (adverse event). This led us to focus on the pseudo-value calibration plots which indicated the 

transition probabilities into the adverse event state were well calibrated.

The pseudo-value calibration curves in Figs 6 and 7, which consider predictions out of the recovery and adverse 

event states at time 100, show very poor agreement between the observed and predicted risks.

In our opinion, finding that there are some states with miscalibrated transition probabilities informs us that the predict-

ed risks from the model should not be used to inform clinical decision-making. For example, it is clear that the model 

should not be used to aid clinical decision-making around relapse risk following transplant, especially when making 

predictions 100 days post-transplant. On the contrary, one may argue that if using the model to inform a clinical deci-

sion based solely around the risk of death (state 6), the model is appropriate. However, if the goal is not to make a clin-

ical decision informed by the risk of all the states simultaneously, a multistate model is not necessary in the first place.

From this, one would conclude revisions to the model are needed prior to model implementation. For example, one 

could test the inclusion of interaction terms between predictors, or one could reduce the number of predictors in spe-

cific transition models to reduce overfitting. However, diagnosing which part of the multi-state model is causing certain 

transition probabilities to be miscalibrated is multifaceted. Indeed, miscalibrated transition probabilities could be 

driven by errors in any of the intermediate competing risks models into that state. Further research is needed around 

methods to help such identification.

5. Discussion

Multistate models are a unique tool for prediction, handling both competing risks and the occurrence of intermediate health 

states in the same model. Development of multistate models for prediction is becoming more common, yet validation of 

such models is still very uncommon. A major barrier to the implementation of statistical techniques is often the availability 

of software [43]. calibmsm has been developed to aid in the implementation of techniques to assess the calibration of the 

transition probabilities from a multistate model. This paper has extended previously proposed methods for assessing the 

calibration of the transition probabilities out of the initial state [24], to the transition probabilities out of any state j  at any 

time s. While package development has focused on multistate models, calibmsm could, in theory, be used to assess the 

calibration of predicted risks from a range of other models, including: competing risks models [2], standard single outcome 

survival models, where predictions can be made at any landmark time (note these are both special cases of a multistate 

model), dynamic models [26,44], and any model which utilises information post baseline to update predictions [45].

All three methods (BLR-IPCW, MLR-IPCW and pseudo-value) have been shown to give an unbiased assessment of 

calibration under random censoring mechanisms, and a predominately unbiased assessment of calibration when there 

is a strong association between the outcome and censoring mechanisms that can be explained by baseline covariates 

[24]. This paper found broadly similar evaluation of calibration when using the BLR-IPCW and pseudo-value methods, 

however there were discrepancies in the evaluation of calibration of the transition probabilities into state k = 3. This is 

an indicator that the assumptions underpinning either one of the methods could be violated. This was explored in detail 
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(see vignette Sensitivity-analysis-for-IPCWs [27]) and led to the conclusion that the BLR-IPCW and MLR-IPCW plots are 

likely unreliable, in particular for the adverse event state. We hypothesised this was driven by a differential censoring 

mechanism/observation process for individuals in the adverse event state. Simulations studies are required to 1) quan-

tify this type of bias, and 2) explore whether this can be accounted for by estimating the inverse probability of censoring 

weights using approaches which are conditional on the time spent in each outcome state (for example a latent-class 

model). If such a study could be undertaken this would be highly valuable [46,47]. For now, we reiterate the importance 

Fig 7. Pseudo-value calibration curves out of state j  = 3 at time s = 100.

https://doi.org/10.1371/journal.pone.0320504.g007

https://doi.org/10.1371/journal.pone.0320504.g007
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of implementing these methods in settings where the observation process/censoring mechanism does not change 

depending on the outcome state an individual is in. It has previously been suggested to evaluate calibration using MLR-

IPCW and one of the BLR-IPCW or pseudo-value approaches because MLR-IPCW provides a stronger assessment of 

calibration [24]. However, we now suggest to evaluate calibration using all three methods, and a comparison between 

the BLR-IPCW and pseudo-value approaches can be used to help assess whether the assumptions of either method 

may be violated.

Given it is possible to use calibmsm to validate a standard competing risks model [12,13], we carried out a sensitivity 

analysis to compare the approaches described in this paper with the ‘graphical calibration curves’ of Austin et al. [12], 

(see vignette Comparison-with-graphical-calibration-curves-in-competing-risks-setting [27]). BLR-IPCW, pseudo-values, 

and graphical calibration curves (MLR-IPCW excluded for not producing a calibration curve) all resulted in similar cali-

bration curves. This is with the exception of BLR-IPCW for state k = 3, which has been previously discussed. The three 

methods take completely different approaches to assessing the calibration of a competing risks model. Therefore finding 

agreement between these assessments of calibration can provide reassurance that the calibration plots are correct, and 

is an exercise that could be repeated in practice. Despite this, the relative performance of each method in a wider range 

of competing risks scenarios remains unknown. A comparison of these methods in a simulation when the assumptions of 

each method do and do not hold, and under a range of sample sizes and multistate model structures, would be therefore 

valuable [46].

The BLR-IPCW, MLR-IPCW and pseudo-value approaches have different computational burdens. A calibration 

curve can be obtained reasonably quickly using the BLR-IPCW or MLR-IPCW approaches, however estimation of 

confidence intervals for BLR-IPCW using bootstrapping (the recommend method in section 2.6) will result in a high 

computation time in large validation datasets. On the contrary, obtaining the calibration curve itself using the  

pseudo-value approach has a high computational burden due to estimation of the pseudo-values. Once these have 

been calculated, a calibration curve and confidence interval can be estimated quickly using parametric techniques, 

meaning estimation of the confidence interval adds minimal computational burden. We plan to extend the package 

to allow users to estimate the pseudo-values for each individual seperately before estimating the calibration curve. 

This will allow the first part of the process to be parallelised and will make estimation of calibration curves using the 

pseudo-value approach more feasible in large datasets.

Estimation of the weights is clearly of high importance for the BLR-IPCW and MLR-IPCW approaches. If the model 

to do so is misspecified, this could lead to incorrect evaluation of the calibration. It is possible this is what is causing 

the difference between the BLR-IPCW and pseudo-value approaches for the calibration of transition probabilities from 

state j = 1 at time s = 0 into state k = 3, as was explored in vignette Sensitivity-analysis-for-IPCWs [27]. This package 

is focused on creation of calibration curves, but is not a dedicated package for estimating inverse probability of censor-

ing weights. We encourage users to create a well specified model for the weights (see Robins and Hernan [39]) if using 

the BLR-IPCW or MLR-IPCW approaches. Custom functions for estimating the weights can be specified through the 

w.function argument in calib_msm. Alternatively, weights can be estimated externally and then specified though the 

weights argument. In this latter case, the internal bootstrapping procedure will not work, as the weights need to be re- 

estimated in each bootstrap dataset. We have provided a more detailed vignette about how to estimate calibration curves 

and confidence intervals using bootstrapping when defining your own function to estimate the weights (see vignette 

BLR-IPCW-manual-bootstrap) [27].

Despite sample size formulae being available for clinical prediction models predicting continuous [48], binary [34,49], 

time-to-event [34] and multinomial outcomes [50]; sample size formulae do not currently exist for when developing a 

multistate clinical prediction model. Given the combinatorial issues with multistate models, overfitting is of particular 

concern as the number of individuals passing through some transitions may be small. Future work in this area is therefore 

paramount. A multistate model, at its core, is a network of cause-specific hazards models [2], which are no different to a 
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normal time-to-event model. We hypothesise that existing sample size formula could be applied to each model in isolation 

in order to get a minimum sample size per transition, which could then be divided by the proportion of individuals expected 

to reach the starting state for that transition in order to derive the total number of individuals required to satisfy that tran-

sitions target sample size. The maximum across all transitions would then be taken. For clock-forward models, this may 

be complicated by the fact that each cause-specific model is an interval censored model, and it is currently unclear how to 

apply existing sample size formula [34] to interval censored data.

In summary, calibmsm provides tools to assess the calibration of the transition probabilities of a multistate model or 

competing risks model using three approaches (BLR-IPCW, MLR-IPCW and pseudo-values). Further comparison of these 

approaches in targeted simulations to establish their performance under different censoring mechanisms and assumptions 

would be valuable. Future work will aim to develop methodology for other model evaluation metrics and incorporate these 

into calibmsm.
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