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bst Boosting for Classification and Regression

Description

Gradient boosting for optimizing loss functions with componentwise linear, smoothing splines, tree
models as base learners.

Usage

bst(x, y, cost = 0.5, family = c("gaussian", "hinge", "hinge2", "binom", "expo",
"poisson", "tgaussianDC", "thingeDC", "tbinomDC", "binomdDC", "texpoDC", "tpoissonDC",
"huber", "thuberDC", "clossR", "clossRMM", "closs", "gloss", "qloss", "clossMM",
"glossMM", "qlossMM", "lar"), ctrl = bst_control(), control.tree = list(maxdepth = 1),
learner = c("ls", "sm", "tree"))
## S3 method for class 'bst'
print(x, ...)
## S3 method for class 'bst'
predict(object, newdata=NULL, newy=NULL, mstop=NULL,
type=c("response", "all.res", "class", "loss", "error"), ...)
## S3 method for class 'bst'
plot(x, type = c("step", "norm"),...)
## S3 method for class 'bst'
coef(object, which=object$ctrl$mstop, ...)
## S3 method for class 'bst'
fpartial(object, mstop=NULL, newdata=NULL)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be in {1, -1} for family = "hinge".

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
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family A variety of loss functions. family = "hinge" for hinge loss and family="gaussian"
for squared error loss. Implementing the negative gradient corresponding to the
loss function to be minimized. For hinge loss, +1/-1 binary responses is used.

ctrl an object of class bst_control.
type type of prediction or plot, see predict, plot
control.tree control parameters of rpart.
learner a character specifying the component-wise base learner to be used: ls linear

models, sm smoothing splines, tree regression trees.
object class of bst.
newdata new data for prediction with the same number of columns as x.
newy new response.
mstop boosting iteration for prediction.
which at which boosting mstop to extract coefficients.
... additional arguments.

Details

Boosting algorithms for classification and regression problems. In a classification problem, suppose
f is a classifier for a response y. A cost-sensitive or weighted loss function is

L(y, f, cost) = l(y, f, cost)max(0, (1− yf))

For family="hinge",

l(y, f, cost) = 1− cost, if y = +1; cost, if y = −1

For family="hinge2", l(y,f,cost)= 1, if y = +1 and f > 0 ; = 1-cost, if y = +1 and f < 0; = cost, if y
= -1 and f > 0; = 1, if y = -1 and f < 0.

For twin boosting if twinboost=TRUE, there are two types of adaptive boosting if learner="ls":
for twintype=1, weights are based on coefficients in the first round of boosting; for twintype=2,
weights are based on predictions in the first round of boosting. See Buehlmann and Hothorn (2010).

Value

An object of class bst with print, coef, plot and predict methods are available for linear models.
For nonlinear models, methods print and predict are available.

x, y, cost, family, learner, control.tree, maxdepth

These are input variables and parameters
ctrl the input ctrl with possible updated fk if family="thingeDC", "tbinomDC",

"binomdDC"

yhat predicted function estimates
ens a list of length mstop. Each element is a fitted model to the pseudo residuals,

defined as negative gradient of loss function at the current estimated function
ml.fit the last element of ens
ensemble a vector of length mstop. Each element is the variable selected in each boosting

step when applicable
xselect selected variables in mstop

coef estimated coefficients in each iteration. Used internally only
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Author(s)

Zhu Wang

References

Zhu Wang (2011), HingeBoost: ROC-Based Boost for Classification and Variable Selection. The
International Journal of Biostatistics, 7(1), Article 13.

Peter Buehlmann and Torsten Hothorn (2010), Twin Boosting: improved feature selection and pre-
diction, Statistics and Computing, 20, 119-138.

See Also

cv.bst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE,
coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE),
rfamily = "thinge", learner = "ls")
predict(dat.m2)

bst.sel Function to select number of predictors

Description

Function to determine the first q predictors in the boosting path, or perform (10-fold) cross-validation
and determine the optimal set of parameters

Usage

bst.sel(x, y, q, type=c("firstq", "cv"), ...)

Arguments

x Design matrix (without intercept).

y Continuous response vector for linear regression

q Maximum number of predictors that should be selected if type="firstq".
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type if type="firstq", return the first q predictors in the boosting path. if type="cv",
perform (10-fold) cross-validation and determine the optimal set of parameters

... Further arguments to be passed to bst, cv.bst.

Details

Function to determine the first q predictors in the boosting path, or perform (10-fold) cross-validation
and determine the optimal set of parameters. This may be used for p-value calculation. See below.

Value

Vector of selected predictors.

Author(s)

Zhu Wang

Examples

## Not run:
x <- matrix(rnorm(100*100), nrow = 100, ncol = 100)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
sel <- bst.sel(x, y, q=10)
library("hdi")
fit.multi <- hdi(x, y, method = "multi.split",
model.selector =bst.sel,
args.model.selector=list(type="firstq", q=10))
fit.multi
fit.multi$pval[1:10] ## the first 10 p-values
fit.multi <- hdi(x, y, method = "multi.split",
model.selector =bst.sel,
args.model.selector=list(type="cv"))
fit.multi
fit.multi$pval[1:10] ## the first 10 p-values

## End(Not run)

bst_control Control Parameters for Boosting

Description

Specification of the number of boosting iterations, step size and other parameters for boosting algo-
rithms.

Usage

bst_control(mstop = 50, nu = 0.1, twinboost = FALSE, twintype=1, threshold=c("standard",
"adaptive"), f.init = NULL, coefir = NULL, xselect.init = NULL, center = FALSE,
trace = FALSE, numsample = 50, df = 4, s = NULL, sh = NULL, q = NULL, qh = NULL,
fk = NULL, start=FALSE, iter = 10, intercept = FALSE, trun=FALSE)
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Arguments

mstop an integer giving the number of boosting iterations.

nu a small number (between 0 and 1) defining the step size or shrinkage parameter.

twinboost a logical value: TRUE for twin boosting.

twintype for twinboost=TRUE only. For learner="ls", if twintype=1, twin boosting
with weights from magnitude of coefficients in the first round of boosting. If
twintype=2, weights are correlations between predicted values in the first round
of boosting and current predicted values. For learners not componentwise least
squares, twintype=2.

threshold if threshold="adaptive", the estimated function ctrl$fk is updated in every
boosting step. Otherwise, no update for ctrl$fk in boosting steps. Only used
in robust nonconvex loss function.

f.init the estimate from the first round of twin boosting. Only useful when twinboost=TRUE
and learner="sm" or "tree".

coefir the estimated coefficients from the first round of twin boosting. Only useful
when twinboost=TRUE and learner="ls".

xselect.init the variable selected from the first round of twin boosting. Only useful when
twinboost=TRUE.

center a logical value: TRUE to center covariates with mean.

trace a logical value for printout of more details of information during the fitting pro-
cess.

numsample number of random sample variable selected in the first round of twin boosting.
This is potentially useful in the future implementation.

df degree of freedom used in smoothing splines.

s,q nonconvex loss tuning parameter s or frequency q of outliers for robust regres-
sion and classification. If s is missing but q is available, s may be computed as
the 1-q quantile of robust loss values using conventional software.

sh, qh threshold value or frequency qh of outliers for Huber regression family="huber"
or family="rhuberDC". For family="huber", if sh is not provided, sh is then
updated adaptively with the median of y-yhat where yhat is the estimated y in
the last boosting iteration. For family="rhuberDC", if sh is missing but qh is
available, sh may be computed as the 1-qh quantile of robust loss values using
conventional software.

fk predicted values at an iteration in the MM algorithm

start a logical value, if start=TRUE and fk is a vector of values, then bst iterations
begin with fk. Otherwise, bst iterations begin with the default values. This can
be useful, for instance, in rbst for the MM boosting algorithm.

iter number of iteration in the MM algorithm

intercept logical value, if TRUE, estimation of intercept with linear predictor model

trun logical value, if TRUE, predicted value in each boosting iteration is truncated at
-1, 1, for family="closs" in bst and rfamily="closs" in rbst
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Details

Objects to specify parameters of the boosting algorithms implemented in bst, via the ctrl argu-
ment. The s value is for robust nonconvex loss where smaller s value is more robust to outliers
with family="closs", "tbinom", "thinge", "tbinomd", and larger s value more robust with
family="clossR", "gloss", "qloss".

For family="closs", if s=2, the loss is similar to the square loss; if s=1, the loss function is
an approximation of the hinge loss; for smaller values, the loss function approaches the 0-1 loss
function if s<1, the loss function is a nonconvex function of the margin.

The default value of s is -1 if family="thinge", -log(3) if family="tbinom", and 4 if family="binomd".
If trun=TRUE, boosting classifiers can produce real values in [-1, 1] indicating their confidence in
[-1, 1]-valued classification. cf. R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pages 80-91, 1998.

Value

An object of class bst_control, a list. Note fk may be updated for robust boosting.

See Also

bst

cv.bst Cross-Validation for Boosting

Description

Cross-validated estimation of the empirical risk/error for boosting parameter selection.

Usage

cv.bst(x,y,K=10,cost=0.5,family=c("gaussian", "hinge", "hinge2", "binom", "expo",
"poisson", "tgaussianDC", "thingeDC", "tbinomDC", "binomdDC", "texpoDC", "tpoissonDC",
"clossR", "closs", "gloss", "qloss", "lar"), learner = c("ls", "sm", "tree"),
ctrl = bst_control(), type = c("loss", "error"),
plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be in {1, -1} for binary classifications.

K K-fold cross-validation

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

family family = "hinge" for hinge loss and family="gaussian" for squared error loss.
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learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

ctrl an object of class bst_control.

type cross-validation criteria. For type="loss", loss function values and type="error"
is misclassification error.

plot.it a logical value, to plot the estimated loss or error with cross validation if TRUE.

main title of plot

se a logical value, to plot with standard errors.

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send
different CV folds off to different cores.

... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations

mstop boosting iteration steps at which CV curve should be computed.

cv The CV curve at each value of mstop

cv.error The standard error of the CV curve

family loss function types

...

See Also

bst

Examples

## Not run:
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
cv.bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls", type="loss")
cv.bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls", type="error")
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
dat.m1 <- cv.bst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m),
xselect.init = dat.m$xselect, mstop=50), family = "hinge", learner="ls")

## End(Not run)
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cv.mada Cross-Validation for one-vs-all AdaBoost with multi-class problem

Description

Cross-validated estimation of the empirical misclassification error for boosting parameter selection.

Usage

cv.mada(x, y, balance=FALSE, K=10, nu=0.1, mstop=200, interaction.depth=1,
trace=FALSE, plot.it = TRUE, se = TRUE, ...)

Arguments

x a data matrix containing the variables in the model.

y vector of multi class responses. y must be an integer vector from 1 to C for C
class problem.

balance logical value. If TRUE, The K parts were roughly balanced, ensuring that the
classes were distributed proportionally among each of the K parts.

K K-fold cross-validation

nu a small number (between 0 and 1) defining the step size or shrinkage parameter.

mstop number of boosting iteration.
interaction.depth

used in gbm to specify the depth of trees.

trace if TRUE, iteration results printed out.

plot.it a logical value, to plot the cross-validation error if TRUE.

se a logical value, to plot with 1 standard deviation curves.

... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations

fraction abscissa values at which CV curve should be computed.

cv The CV curve at each value of fraction

cv.error The standard error of the CV curve

...

See Also

mada
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cv.mbst Cross-Validation for Multi-class Boosting

Description

Cross-validated estimation of the empirical multi-class loss for boosting parameter selection.

Usage

cv.mbst(x, y, balance=FALSE, K = 10, cost = NULL,
family = c("hinge","hinge2","thingeDC", "closs", "clossMM"),
learner = c("tree", "ls", "sm"), ctrl = bst_control(),
type = c("loss","error"), plot.it = TRUE, se = TRUE, n.cores=2, ...)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be integers from 1 to C for C class problem.

balance logical value. If TRUE, The K parts were roughly balanced, ensuring that the
classes were distributed proportionally among each of the K parts.

K K-fold cross-validation

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

family family = "hinge" for hinge loss. "hinge2" is a different hinge loss

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

ctrl an object of class bst_control.

type for family="hinge", type="loss" is hinge risk. For family="thingeDC",
type="loss"

plot.it a logical value, to plot the estimated risks if TRUE.

se a logical value, to plot with standard errors.

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send
different CV folds off to different cores.

... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations

fraction abscissa values at which CV curve should be computed.

cv The CV curve at each value of fraction

cv.error The standard error of the CV curve

...
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See Also

mbst

cv.mhingebst Cross-Validation for Multi-class Hinge Boosting

Description

Cross-validated estimation of the empirical multi-class hinge loss for boosting parameter selection.

Usage

cv.mhingebst(x, y, balance=FALSE, K = 10, cost = NULL, family = "hinge",
learner = c("tree", "ls", "sm"), ctrl = bst_control(),
type = c("loss","error"), plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)

Arguments

x a data frame containing the variables in the model.
y vector of responses. y must be integers from 1 to C for C class problem.
balance logical value. If TRUE, The K parts were roughly balanced, ensuring that the

classes were distributed proportionally among each of the K parts.
K K-fold cross-validation
cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
family family = "hinge" for hinge loss. Implementing the negative gradient corre-

sponding to the loss function to be minimized.
learner a character specifying the component-wise base learner to be used: ls linear

models, sm smoothing splines, tree regression trees.
ctrl an object of class bst_control.
type for family="hinge", type="loss" is hinge risk.
plot.it a logical value, to plot the estimated loss or error with cross validation if TRUE.
main title of plot
se a logical value, to plot with standard errors.
n.cores The number of CPU cores to use. The cross-validation loop will attempt to send

different CV folds off to different cores.
... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations
fraction abscissa values at which CV curve should be computed.
cv The CV curve at each value of fraction
cv.error The standard error of the CV curve

...



12 cv.mhingeova

See Also

mhingebst

cv.mhingeova Cross-Validation for one-vs-all HingeBoost with multi-class problem

Description

Cross-validated estimation of the empirical misclassification error for boosting parameter selection.

Usage

cv.mhingeova(x, y, balance=FALSE, K=10, cost = NULL, nu=0.1,
learner=c("tree", "ls", "sm"), maxdepth=1, m1=200, twinboost = FALSE,
m2=200, trace=FALSE, plot.it = TRUE, se = TRUE, ...)

Arguments

x a data frame containing the variables in the model.

y vector of multi class responses. y must be an integer vector from 1 to C for C
class problem.

balance logical value. If TRUE, The K parts were roughly balanced, ensuring that the
classes were distributed proportionally among each of the K parts.

K K-fold cross-validation

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

nu a small number (between 0 and 1) defining the step size or shrinkage parameter.

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

maxdepth tree depth used in learner=tree

m1 number of boosting iteration

twinboost logical: twin boosting?

m2 number of twin boosting iteration

trace if TRUE, iteration results printed out

plot.it a logical value, to plot the estimated risks if TRUE.

se a logical value, to plot with standard errors.

... additional arguments.
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Value

object with

residmat empirical risks in each cross-validation at boosting iterations

fraction abscissa values at which CV curve should be computed.

cv The CV curve at each value of fraction

cv.error The standard error of the CV curve

...

Note

The functions for balanced cross validation were from R package pmar.

See Also

mhingeova

cv.rbst Cross-Validation for Nonconvex Loss Boosting

Description

Cross-validated estimation of the empirical risk/error, can be used for tuning parameter selection.

Usage

cv.rbst(x, y, K = 10, cost = 0.5, rfamily = c("tgaussian", "thuber", "thinge",
"tbinom", "binomd", "texpo", "tpoisson", "clossR", "closs", "gloss", "qloss"),
learner = c("ls", "sm", "tree"), ctrl = bst_control(), type = c("loss", "error"),
plot.it = TRUE, main = NULL, se = TRUE, n.cores=2,...)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be in {1, -1} for binary classification

K K-fold cross-validation

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

rfamily nonconvex loss function types.

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

ctrl an object of class bst_control.

type cross-validation criteria. For type="loss", loss function values and type="error"
is misclassification error.
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plot.it a logical value, to plot the estimated loss or error with cross validation if TRUE.

main title of plot

se a logical value, to plot with standard errors.

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send
different CV folds off to different cores.

... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations

mstop boosting iteration steps at which CV curve should be computed.

cv The CV curve at each value of mstop

cv.error The standard error of the CV curve

rfamily nonconvex loss function types.

...

Author(s)

Zhu Wang

See Also

rbst

Examples

## Not run:
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="lose")
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="error")
dat.m <- rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls")
dat.m1 <- cv.rbst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m),
xselect.init = dat.m$xselect, mstop=50), family = "thinge", learner="ls")

## End(Not run)
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cv.rmbst Cross-Validation for Nonconvex Multi-class Loss Boosting

Description

Cross-validated estimation of the empirical multi-class loss, can be used for tuning parameter se-
lection.

Usage

cv.rmbst(x, y, balance=FALSE, K = 10, cost = NULL, rfamily = c("thinge", "closs"),
learner = c("tree", "ls", "sm"), ctrl = bst_control(), type = c("loss","error"),
plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)

Arguments

x a data frame containing the variables in the model.
y vector of responses. y must be integers from 1 to C for C class problem.
balance logical value. If TRUE, The K parts were roughly balanced, ensuring that the

classes were distributed proportionally among each of the K parts.
K K-fold cross-validation
cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
rfamily rfamily = "thinge" for truncated multi-class hinge loss. Implementing the neg-

ative gradient corresponding to the loss function to be minimized.
learner a character specifying the component-wise base learner to be used: ls linear

models, sm smoothing splines, tree regression trees.
ctrl an object of class bst_control.
type loss value or misclassification error.
plot.it a logical value, to plot the estimated loss or error with cross validation if TRUE.
main title of plot
se a logical value, to plot with standard errors.
n.cores The number of CPU cores to use. The cross-validation loop will attempt to send

different CV folds off to different cores.
... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations
fraction abscissa values at which CV curve should be computed.
cv The CV curve at each value of fraction
cv.error The standard error of the CV curve

...
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Author(s)

Zhu Wang

See Also

rmbst

ex1data Generating Three-class Data with 50 Predictors

Description

Randomly generate data for a three-class model.

Usage

ex1data(n.data, p=50)

Arguments

n.data number of data samples.

p number of predictors.

Details

The data is generated based on Example 1 described in Wang (2012).

Value

A list with n.data by p predictor matrix x, three-class response y and conditional probabilities.

Author(s)

Zhu Wang

References

Zhu Wang (2012), Multi-class HingeBoost: Method and Application to the Classification of Cancer
Types Using Gene Expression Data. Methods of Information in Medicine, 51(2), 162–7.

Examples

## Not run:
dat <- ex1data(100, p=5)
mhingebst(x=dat$x, y=dat$y)

## End(Not run)
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loss Internal Function

Description

Internal Function

mada Multi-class AdaBoost

Description

One-vs-all multi-class AdaBoost

Usage

mada(xtr, ytr, xte=NULL, yte=NULL, mstop=50, nu=0.1, interaction.depth=1)

Arguments

xtr training data matrix containing the predictor variables in the model.

ytr training vector of responses. ytr must be integers from 1 to C, for C class
problem.

xte test data matrix containing the predictor variables in the model.

yte test vector of responses. yte must be integers from 1 to C, for C class problem.

mstop number of boosting iteration.

nu a small number (between 0 and 1) defining the step size or shrinkage parameter.
interaction.depth

used in gbm to specify the depth of trees.

Details

For a C-class problem (C > 2), each class is separately compared against all other classes with
AdaBoost, and C functions are estimated to represent confidence for each class. The classification
rule is to assign the class with the largest estimate.

Value

A list contains variable selected xselect and training and testing error err.tr, err.te.

Author(s)

Zhu Wang
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See Also

cv.mada for cross-validated stopping iteration.

Examples

data(iris)
mada(xtr=iris[,-5], ytr=iris[,5])

mbst Boosting for Multi-Classification

Description

Gradient boosting for optimizing multi-class loss functions with componentwise linear, smoothing
splines, tree models as base learners.

Usage

mbst(x, y, cost = NULL, family = c("hinge", "hinge2", "thingeDC", "closs", "clossMM"),
ctrl = bst_control(), control.tree=list(fixed.depth=TRUE,
n.term.node=6, maxdepth = 1), learner = c("ls", "sm", "tree"))
## S3 method for class 'mbst'
print(x, ...)
## S3 method for class 'mbst'
predict(object, newdata=NULL, newy=NULL, mstop=NULL,
type=c("response", "class", "loss", "error"), ...)
## S3 method for class 'mbst'
fpartial(object, mstop=NULL, newdata=NULL)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be 1, 2, ..., k for a k classification problem

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

family family = "hinge" for hinge loss, family="hinge2" for hinge loss but the re-
sponse is not recoded (see details). family="thingeDC" for DCB loss function,
see rmbst.

ctrl an object of class bst_control.

control.tree control parameters of rpart.

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

type in predict a character indicating whether the response, all responses across the
boosting iterations, classes, loss or classification errors should be predicted in
case of hinge problems. in plot, plot of boosting iteration or $L_1$ norm.
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object class of mbst.

newdata new data for prediction with the same number of columns as x.

newy new response.

mstop boosting iteration for prediction.

... additional arguments.

Details

A linear or nonlinear classifier is fitted using a boosting algorithm for multi-class responses. This
function is different from mhingebst on how to deal with zero-to-sum constraint and loss functions.
If family="hinge", the loss function is the same as in mhingebst but the boosting algorithm is
different. If family="hinge2", the loss function is different from family="hinge": the response
is not recoded as in Wang (2012). In this case, the loss function is∑

I(yi 6= j)(fj + 1)+.

family="thingeDC" for robust loss function used in the DCB algorithm.

Value

An object of class mbst with print, coef, plot and predict methods are available for linear
models. For nonlinear models, methods print and predict are available.

x, y, cost, family, learner, control.tree, maxdepth

These are input variables and parameters

ctrl the input ctrl with possible updated fk if family="thingeDC"

yhat predicted function estimates

ens a list of length mstop. Each element is a fitted model to the pseudo residuals,
defined as negative gradient of loss function at the current estimated function

ml.fit the last element of ens

ensemble a vector of length mstop. Each element is the variable selected in each boosting
step when applicable

xselect selected variables in mstop

coef estimated coefficients in each iteration. Used internally only

Author(s)

Zhu Wang

References

Zhu Wang (2011), HingeBoost: ROC-Based Boost for Classification and Variable Selection. The
International Journal of Biostatistics, 7(1), Article 13.

Zhu Wang (2012), Multi-class HingeBoost: Method and Application to the Classification of Cancer
Types Using Gene Expression Data. Methods of Information in Medicine, 51(2), 162–7.
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See Also

cv.mbst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- quantile(x[,1], prob=c(0.33, 0.67))
y <- rep(1, 100)
y[x[,1] > c[1] & x[,1] < c[2] ] <- 2
y[x[,1] > c[2]] <- 3
x <- as.data.frame(x)
dat.m <- mbst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- mbst(x, y, ctrl = bst_control(twinboost=TRUE,
f.init=predict(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rmbst(x, y, ctrl = bst_control(mstop=50, s=1, trace=TRUE),
rfamily = "thinge", learner = "ls")
predict(dat.m2)

mhingebst Boosting for Multi-class Classification

Description

Gradient boosting for optimizing multi-class hinge loss functions with componentwise linear least
squares, smoothing splines and trees as base learners.

Usage

mhingebst(x, y, cost = NULL, family = c("hinge"), ctrl = bst_control(),
control.tree = list(fixed.depth=TRUE, n.term.node=6, maxdepth = 1),
learner = c("ls", "sm", "tree"))
## S3 method for class 'mhingebst'
print(x, ...)
## S3 method for class 'mhingebst'
predict(object, newdata=NULL, newy=NULL, mstop=NULL,
type=c("response", "class", "loss", "error"), ...)
## S3 method for class 'mhingebst'
fpartial(object, mstop=NULL, newdata=NULL)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be in {1, -1} for family = "hinge".

cost equal costs for now and unequal costs will be implemented in the future.

family family = "hinge" for multi-class hinge loss.

ctrl an object of class bst_control.
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control.tree control parameters of rpart.

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

type in predict a character indicating whether the response, classes, loss or classifi-
cation errors should be predicted in case of hinge

object class of mhingebst.

newdata new data for prediction with the same number of columns as x.

newy new response.

mstop boosting iteration for prediction.

... additional arguments.

Details

A linear or nonlinear classifier is fitted using a boosting algorithm based on component-wise base
learners for multi-class responses.

Value

An object of class mhingebst with print and predict methods being available for fitted models.

Author(s)

Zhu Wang

References

Zhu Wang (2011), HingeBoost: ROC-Based Boost for Classification and Variable Selection. The
International Journal of Biostatistics, 7(1), Article 13.

Zhu Wang (2012), Multi-class HingeBoost: Method and Application to the Classification of Cancer
Types Using Gene Expression Data. Methods of Information in Medicine, 51(2), 162–7.

See Also

cv.mhingebst for cross-validated stopping iteration. Furthermore see bst_control

Examples

## Not run:
dat <- ex1data(100, p=5)
res <- mhingebst(x=dat$x, y=dat$y)

## End(Not run)
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mhingeova Multi-class HingeBoost

Description

Multi-class algorithm with one-vs-all binary HingeBoost which optimizes the hinge loss functions
with componentwise linear, smoothing splines, tree models as base learners.

Usage

mhingeova(xtr, ytr, xte=NULL, yte=NULL, cost = NULL, nu=0.1,
learner=c("tree", "ls", "sm"), maxdepth=1, m1=200, twinboost = FALSE, m2=200)
## S3 method for class 'mhingeova'
print(x, ...)

Arguments

xtr training data containing the predictor variables.

ytr vector of training data responses. ytr must be in {1,2,...,k}.

xte test data containing the predictor variables.

yte vector of test data responses. yte must be in {1,2,...,k}.

cost default is NULL for equal cost; otherwise a numeric vector indicating price to
pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

nu a small number (between 0 and 1) defining the step size or shrinkage parameter.

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

maxdepth tree depth used in learner=tree

m1 number of boosting iteration

twinboost logical: twin boosting?

m2 number of twin boosting iteration

x class of mhingeova.

... additional arguments.

Details

For a C-class problem (C > 2), each class is separately compared against all other classes with
HingeBoost, and C functions are estimated to represent confidence for each class. The classification
rule is to assign the class with the largest estimate. A linear or nonlinear multi-class HingeBoost
classifier is fitted using a boosting algorithm based on one-against component-wise base learners
for +1/-1 responses, with possible cost-sensitive hinge loss function.

Value

An object of class mhingeova with print method being available.
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Author(s)

Zhu Wang

References

Zhu Wang (2011), HingeBoost: ROC-Based Boost for Classification and Variable Selection. The
International Journal of Biostatistics, 7(1), Article 13.

Zhu Wang (2012), Multi-class HingeBoost: Method and Application to the Classification of Cancer
Types Using Gene Expression Data. Methods of Information in Medicine, 51(2), 162–7.

See Also

bst for HingeBoost binary classification. Furthermore see cv.bst for stopping iteration selection
by cross-validation, and bst_control for control parameters.

Examples

## Not run:
dat1 <- read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/
thyroid-disease/ann-train.data")
dat2 <- read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/
thyroid-disease/ann-test.data")
res <- mhingeova(xtr=dat1[,-22], ytr=dat1[,22], xte=dat2[,-22], yte=dat2[,22],
cost=c(2/3, 0.5, 0.5), nu=0.5, learner="ls", m1=100, K=5, cv1=FALSE,
twinboost=TRUE, m2= 200, cv2=FALSE)
res <- mhingeova(xtr=dat1[,-22], ytr=dat1[,22], xte=dat2[,-22], yte=dat2[,22],
cost=c(2/3, 0.5, 0.5), nu=0.5, learner="ls", m1=100, K=5, cv1=FALSE,
twinboost=TRUE, m2= 200, cv2=TRUE)

## End(Not run)

nsel Find Number of Variables In Multi-class Boosting Iterations

Description

Find Number of Variables In Multi-class Boosting Iterations

Usage

nsel(object, mstop)

Arguments

object an object of mhingebst, mbst, or rmbst

mstop boosting iteration number
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Value

a vector of length mstop indicating number of variables selected in each boosting iteration

Author(s)

Zhu Wang

rbst Robust Boosting for Robust Loss Functions

Description

MM (majorization/minimization) algorithm based gradient boosting for optimizing nonconvex ro-
bust loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

rbst(x, y, cost = 0.5, rfamily = c("tgaussian", "thuber","thinge", "tbinom", "binomd",
"texpo", "tpoisson", "clossR", "closs", "gloss", "qloss"), ctrl=bst_control(),
control.tree=list(maxdepth = 1), learner=c("ls","sm","tree"),del=1e-10)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be in {1, -1} for classification.

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

rfamily robust loss function, see details.

ctrl an object of class bst_control.

control.tree control parameters of rpart.

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

del convergency criteria

Details

An MM algorithm operates by creating a convex surrogate function that majorizes the nonconvex
objective function. When the surrogate function is minimized with gradient boosting algorithm,
the desired objective function is decreased. The MM algorithm contains difference of convex (DC)
algorithm for rfamily=c("tgaussian", "thuber","thinge", "tbinom", "binomd", "texpo",
"tpoisson") and quadratic majorization boosting algorithm (QMBA) for rfamily=c("clossR",
"closs", "gloss", "qloss").

rfamily = "tgaussian" for truncated square error loss, "thuber" for truncated Huber loss, "thinge"
for truncated hinge loss, "tbinom" for truncated logistic loss, "binomd" for logistic difference loss,
"texpo" for truncated exponential loss, "tpoisson" for truncated Poisson loss, "clossR" for C-loss in
regression, "closs" for C-loss in classification, "gloss" for G-loss, "qloss" for Q-loss.
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s must be a numeric value to be specified in bst_control. For rfamily="thinge", "tbinom",
"texpo" s < 0. For rfamily="binomd", "tpoisson", "closs", "qloss", "clossR" , s > 0 and
for rfamily="gloss", s > 1. Some suggested s values: "thinge"= -1, "tbinom"= -log(3), "bi-
nomd"= log(4), "texpo"= log(0.5), "closs"=1, "gloss"=1.5, "qloss"=2, "clossR"=1.

Value

An object of class bst with print, coef, plot and predict methods are available for linear models.
For nonlinear models, methods print and predict are available.

x, y, cost, rfamily, learner, control.tree, maxdepth

These are input variables and parameters

ctrl the input ctrl with possible updated fk if family="tgaussian", "thingeDC",
"tbinomDC", "binomdDC" or "tpoisson".

yhat predicted function estimates

ens a list of length mstop. Each element is a fitted model to the pseudo residuals,
defined as negative gradient of loss function at the current estimated function

ml.fit the last element of ens

ensemble a vector of length mstop. Each element is the variable selected in each boosting
step when applicable

xselect selected variables in mstop

coef estimated coefficients in mstop

Author(s)

Zhu Wang

References

Zhu Wang (2018), Quadratic Majorization for Nonconvex Loss with Applications to the Boost-
ing Algorithm, Journal of Computational and Graphical Statistics, 27(3), 491-502, doi: 10.1080/
10618600.2018.1424635

Zhu Wang (2018), Robust boosting with truncated loss functions, Electronic Journal of Statistics,
12(1), 599-650, doi: 10.1214/18EJS1404

See Also

cv.rbst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
y[1:10] <- -y[1:10]
x <- as.data.frame(x)

https://doi.org/10.1080/10618600.2018.1424635
https://doi.org/10.1080/10618600.2018.1424635
https://doi.org/10.1214/18-EJS1404
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dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE,
coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE),
rfamily = "thinge", learner = "ls")
predict(dat.m2)

rbstpath Robust Boosting Path for Nonconvex Loss Functions

Description

Gradient boosting path for optimizing robust loss functions with componentwise linear, smoothing
splines, tree models as base learners. See details below before use.

Usage

rbstpath(x, y, rmstop=seq(40, 400, by=20), ctrl=bst_control(), del=1e-16, ...)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be in {1, -1}.

rmstop vector of boosting iterations

ctrl an object of class bst_control.

del convergency criteria

... arguments passed to rbst

Details

This function invokes rbst with mstop being each element of vector rmstop. It can provide dif-
ferent paths. Thus rmstop serves as another hyper-parameter. However, the most important hyper-
parameter is the loss truncation point or the point determines the level of nonconvexity. This is an
experimental function and may not be needed in practice.

Value

A length rmstop vector of lists with each element being an object of class rbst.

Author(s)

Zhu Wang

See Also

rbst



rmbst 27

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
y[1:10] <- -y[1:10]
x <- as.data.frame(x)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE,
coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE),
rfamily = "thinge", learner = "ls")
predict(dat.m2)
rmstop <- seq(10, 40, by=10)
dat.m3 <- rbstpath(x, y, rmstop, ctrl=bst_control(s=0), rfamily = "thinge", learner = "ls")

rmbst Robust Boosting for Multi-class Robust Loss Functions

Description

MM (majorization/minimization) based gradient boosting for optimizing nonconvex robust loss
functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

rmbst(x, y, cost = 0.5, rfamily = c("thinge", "closs"), ctrl=bst_control(),
control.tree=list(maxdepth = 1),learner=c("ls","sm","tree"),del=1e-10)

Arguments

x a data frame containing the variables in the model.

y vector of responses. y must be in {1, 2, ..., k}.

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

rfamily family = "thinge" is currently implemented.

ctrl an object of class bst_control.

control.tree control parameters of rpart.

learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.

del convergency criteria
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Details

An MM algorithm operates by creating a convex surrogate function that majorizes the noncon-
vex objective function. When the surrogate function is minimized with gradient boosting algo-
rithm, the desired objective function is decreased. The MM algorithm contains difference of con-
vex (DC) for rfamily="thinge", and quadratic majorization boosting algorithm (QMBA) for
rfamily="closs".

Value

An object of class bst with print, coef, plot and predict methods are available for linear models.
For nonlinear models, methods print and predict are available.

x, y, cost, rfamily, learner, control.tree, maxdepth

These are input variables and parameters

ctrl the input ctrl with possible updated fk if type="adaptive"

yhat predicted function estimates

ens a list of length mstop. Each element is a fitted model to the pseudo residuals,
defined as negative gradient of loss function at the current estimated function

ml.fit the last element of ens

ensemble a vector of length mstop. Each element is the variable selected in each boosting
step when applicable

xselect selected variables in mstop

coef estimated coefficients in mstop

Author(s)

Zhu Wang

References

Zhu Wang (2018), Quadratic Majorization for Nonconvex Loss with Applications to the Boost-
ing Algorithm, Journal of Computational and Graphical Statistics, 27(3), 491-502, doi: 10.1080/
10618600.2018.1424635

Zhu Wang (2018), Robust boosting with truncated loss functions, Electronic Journal of Statistics,
12(1), 599-650, doi: 10.1214/18EJS1404

See Also

cv.rmbst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- quantile(x[,1], prob=c(0.33, 0.67))
y <- rep(1, 100)
y[x[,1] > c[1] & x[,1] < c[2] ] <- 2
y[x[,1] > c[2]] <- 3

https://doi.org/10.1080/10618600.2018.1424635
https://doi.org/10.1080/10618600.2018.1424635
https://doi.org/10.1214/18-EJS1404
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x <- as.data.frame(x)
x <- as.data.frame(x)
dat.m <- mbst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- mbst(x, y, ctrl = bst_control(twinboost=TRUE,
f.init=predict(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rmbst(x, y, ctrl = bst_control(mstop=50, s=1, trace=TRUE),
rfamily = "thinge", learner = "ls")
predict(dat.m2)
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