Package ‘boostingDEA’

May 15, 2023
Type Package
Title A Boosting Approach to Data Envelopment Analysis
Version 0.1.0
Maintainer Maria D. Guillen <maria.guilleng@umh.es>

Description Includes functions to estimate production frontiers
and make ideal output predictions in the Data Envelopment Analysis (DEA)
context using both standard models from DEA and Free Disposal Hull (FDH)
and boosting techniques. In particular, EATBoosting (Guillen et al., 2023
<doi:10.1016/j.eswa.2022.119134>) and MARSBoosting. Moreover, the package
includes code for estimating several technical efficiency measures using
different models such as the input and output-oriented radial measures, the
input and output-oriented Russell measures, the Directional Distance
Function (DDF), the Weighted Additive Measure (WAM) and the Slacks-Based
Measure (SBM).

License AGPL (>=3)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports Rglpk, dplyr, IpSolveAPI, stats, MLmetrics, methods

URL https://github.com/itsmeryguillen/boostingDEA

BugReports https://github.com/itsmeryguillen/boostingDEA/issues
Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Depends R (>=3.5.0)

NeedsCompilation no

Author Maria D. Guillen [cre, aut] (<https://orcid.org/0000-0002-2445-5654>),
Juan Aparicio [aut] (<https://orcid.org/0000-0002-0867-0004>),
Victor Espafia [aut] (<https://orcid.org/0000-0002-1807-6180>)

Repository CRAN
Date/Publication 2023-05-15 09:10:04 UTC

https://doi.org/10.1016/j.eswa.2022.119134
https://github.com/itsmeryguillen/boostingDEA
https://github.com/itsmeryguillen/boostingDEA/issues
https://orcid.org/0000-0002-2445-5654
https://orcid.org/0000-0002-0867-0004
https://orcid.org/0000-0002-1807-6180

2

R topics documented:

R topics documented:

Index

AddBF . . . o e 3
banks 3
BBC_in e 4
BBC_out e 5
bestEATBOOSt 6
bestMARSBoost e 7
CobbDouglas e 8
compareParetoo 8
CreateBF e 9
CreateCubicBF e 9
DDF . . . e 10
DEA . . . e 11
deepEAT e 11
EAT . . . e 12
EATBooSt e e 13
EAT_object o 14
efficiency 15
ERG . . . 16
EstimCoeffsForward 17
estimEAT 17
FDH . . . e 18
get.a. EATBOOSt e e e 18
GELAMTEES © . v v v e e e e e e e e e e e e e e e e e e 19
geth.ATeeS e e 19
ELANtErSeCtion.a e e e e e e e e e 20
isFinalNode L 20
MARSAdapted e 21
MARSAdaptedSmootho 22
MARSAdapted_object 22
MARSBOOSt o e e e 23
INSE + v v v e 24
IMSE LI . . . o v o o o e e e e e e e e e 25
posldNode L 26
predict.t DEA e 26
predict.t EAT o 27
predict.t EATBoost 27
predict FDH o e 28
predict MARSAdapted 28
predict MARSBOOSt 29
Predictor L L e e e e e e e e 29
PreProcess L e e e 30
Russell_in e 30
Russell_out e 31
SPIit . . e e e e 32
WAM & e 32

34

AddBF

AddBF

Add a new pair of Basis Functions

Description

This function adds the best pair of basis functions to the model

Usage

AddBF (data, x, y, ForwardModel, knots_list, Kp, minspan, Le, linpreds, err_min)

Arguments
data
X

y
ForwardModel

knots_list
Kp

minspan

Le

linpreds

err_min

Value

data data.frame or matrix containing the variables in the model.
Column input indexes in data.

Column output indexes in data.

list containing the set of basis functions and the B matrix.

list containing the set of selected knots.

Maximum degree of interaction allowed.

integer. Minimum number of observations between knots. When minspan =
0, it is calculated as in Friedman’s MARS paper section 3.8 with alpha = 0.05.

integer Minimum number of observations before the first and after the final
knot.

logical. If TRUE, predictors can enter linearly

Minimum error in the split.

A list containing the matrix of basis functions (B), a 1ist of basis functions (BF), a 1list of
selected knots (knots_list) and the minimum error (err_min).

banks

Taiwanese banks (in 2010)

Description

The dataset consists of 31 banks operating in Taiwan.

Usage
data(banks)

4 BBC_in

Format

banks is a dataframe with 31 banks (rows) and 6 variables (outputs) named Financial. funds (de-
posits and borrowed funds in millions of TWD), Labor (number of employees), Physical.capital
(net amount of fixed assets in millions of TWD), Finalcial.investments (financial assets, secu-
rities, and equity investments in millions of TWD), Loans (loans and discounts in millions of TWD)
and Revenue (interests from financial investments and loans).

Source

The dataset has been extracted from the “Condition and Performance of Domestic Banks” published
by the Central Bank of China (Taiwan) and the Taiwan Economic Journal (TEJ) for the year 2010.
The “Condition and Performance of Domestic Banks” was downloaded from http://www.cbc.gov.tw/ct.asp?xItem=1062&ctN

References

Juo, J. C., Fu, T. T, Yu, M. M., & Lin, Y. H. (2015). Profit-oriented productivity change. Omega,
57, 176-187.

BBC_in Linear programming model for radial input measure

Description

This function predicts the expected output through a DEA model.

Usage

BBC_in(
data,
X,
Y,
dataOriginal = data,
xOriginal = x,
yOriginal =y,

FDH = FALSE
)
Arguments
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.

dataOriginal data. frame or matrix containing the original variables used to create the model.
x0Original Vector. Column input indexes in original data.
yOriginal Vector. Column output indexes in original data.

FDH Binary decision variables

BBC out 5

Value

matrix with the the predicted score

BBC_out Linear programming model for radial output measure

Description

This function predicts the expected output through a DEA model.

Usage

BBC_out(
data,
X,
Y,
dataOriginal = data,
x0Original = x,
yOriginal =y,

FDH = FALSE
)
Arguments
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.

dataOriginal data. frame ormatrix containing the original variables used to create the model.

x0Original Vector. Column input indexes in original data.
yOriginal Vector. Column output indexes in original data.
FDH Binary decision variables

Value

matrix with the the predicted score

6 bestEATBoost

bestEATBoost Tuning an EATBoost model

Description

This function computes the root mean squared error (RMSE) for a set of EATBoost models built
with a grid of given hyperparameters.

Usage

bestEATBoost (
training,
test,
X!
Y,
num.iterations,
learning.rate,
num. leaves,
verbose = TRUE

)
Arguments
training Training data.frame or matrix containing the variables for model construc-
tion.
test Test data. frame or matrix containing the variables for model assessment.
X Column input indexes in training.
y Column output indexes in training.

num.iterations Maximum number of iterations the algorithm will perform

learning.rate Learning rate that control overfitting of the algorithm. Value must be in (0,1]

num. leaves Maximum number of terminal leaves in each tree at each iteration
verbose Controls the verbosity.
Value

A data. frame with the sets of hyperparameters and the root mean squared error (RMSE) and mean
square error (MSE) associated for each model.

bestMARSBoost 7

bestMARSBoost Tuning an MARSBoost model

Description

This funcion computes the root mean squared error (RMSE) for a set of MARSBoost models built
with a grid of given hyperparameters.

Usage

bestMARSBoost (
training,
test,
X,
Y,
num.iterations,
learning.rate,

num. terms,
verbose = TRUE
)
Arguments
training Training data.frame or matrix containing the variables for model construc-
tion.
test Test data. frame or matrix containing the variables for model assessment.
X Column input indexes in training.
y Column output indexes in training.

num.iterations Maximum number of iterations the algorithm will perform

learning.rate Learning rate that control overfitting of the algorithm. Value must be in (0,1]

num. terms Maximum number of reflected pairs created by the forward algorithm of MARS.
verbose Controls the verbosity.
Value

A data. frame with the sets of hyperparameters and the root mean squared error (RMSE) associated
for each model.

8 comparePareto

CobbDouglas Single Output Data Generation

Description

This function is used to simulate the data in a single output scenario.

Usage

CobbDouglas(N, nX)

Arguments

N Sample size.

nX Number of inputs. Possible values: 1, 2, 3, 4, 5,6, 9, 12 and 15.
Value

data. frame with the simulated data.

comparePareto Pareto-dominance relationships

Description
This function denotes if a node dominates another one or if there is no Pareto-dominance relation-
ship.

Usage

comparePareto(t1, t2)

Arguments

t1 A first node.

t2 A second node.
Value

-1 if t1 dominates t2, 1 if t2 dominates t1 and 0 if there are no Pareto-dominance relationships.

CreateBF 9

CreateBF Generate a new pair of Basis Functions

Description

This function generates two new basis functions from a variable and a knot.

Usage
CreateBF (data, xi, knt, B, p)

Arguments
data data.frame or matrix containing the variables in the model.
xi integer. Variable index of the new basis function(s).
knt Knot for creating the new basis function(s).
B matrix of basis functions on which the new pair of functions is added.
p integer. Parent basis function index.
Value

Matrix of basis function (B) updated with the new basis functions.

CreateCubicBF Generate a new pair of Cubic Basis Functions

Description

This function generates two new cubic basis functions from a variable and a knot previously created
during MARS algorithm.

Usage

CreateCubicBF (data, xi, knt, B, side)

Arguments
data data.frame or matrix containing the variables in the model.
X1 Variable index of the new basis function(s).
knt Knots for creating the new basis function(s).
B Matrix of basis functions.
side Side of the basis function.
Value

Matrix of basis functions updated with the new basis functions.

10 DDF

DDF Linear programming model for Directional Distance Function mea-
sure

Description

This function predicts the expected output through a DEA model.

Usage

DDF (
data,
X!
Y,
dataOriginal = data,
xOriginal = x,
yOriginal =y,

FDH = FALSE,
direction.vector
)
Arguments
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.

dataOriginal data.frame or matrix containing the original variables used to create the model.

xOriginal Vector. Column input indexes in original data.
yOriginal Vector. Column output indexes in original data.
FDH Binary decision variables

direction.vector
Direction vector. Valid values are: dmu (x_0, y_0), unit (unit vector), mean
(mean values of each variable) and a user specific vector of the same length as
the number of input and output variables

Value

matrix with the the predicted score

DEA 11

DEA Data Envelope Analysis model

Description

This function estimates a production frontier satisfying Data Envelope Analysis axioms using the
radial output measure.

This function saves information about the DEA model.

Usage

DEA(data, x, y)

DEA_object(data, x, y, pred, score)

Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
pred Output predictions using the BBC radial output measure
score Efficiency score using the BBC radial output measure

Value

A DEA object.
A DEA object.

deepEAT Deep Efficiency Analysis Trees

Description

This function creates a deep Efficiency Analysis Tree and a set of possible prunings by the weakest-
link pruning procedure.

Usage

deepEAT(data, x, y, numStop = 5, max.leaves)

12

Arguments
data
X

y

numStop

max.leaves

Value

EAT

data.frame or matrix containing the variables in the model.

Column input indexes in data.

Column output indexes in data.

Minimum number of observations in a node for a split to be attempted.

Maximum number of leaf nodes.

A list containing each possible pruning for the deep tree and its associated alpha value.

EAT

Efficiency Analysis Trees

Description

This function estimates a stepped production frontier through regression trees.

Usage

EAT(data, x, y, numStop = 5, max.leaves, na.rm = TRUE)

Arguments

data

X

y

numStop
max.leaves

na.rm

Details

data.frame or matrix containing the variables in the model.

Column input indexes in data.

Column output indexes in data.

Minimum number of observations in a node for a split to be attempted.
Maximum number of leaf nodes.

logical. If TRUE, NA rows are omitted.

The EAT function generates a regression tree model based on CART under a new approach that
guarantees obtaining a stepped production frontier that fulfills the property of free disposability.
This frontier shares the aforementioned aspects with the FDH frontier but enhances some of its
disadvantages such as the overfitting problem or the underestimation of technical inefficiency.

EATBoost 13

Value

An EAT object containing:

e data

df: data frame containing the variables in the model.

x: input indexes in data.

y: output indexes in data.

input_names: input variable names.

output_names: output variable names.
— row_names: rownames in data.

e control

fold: fold hyperparameter value.

numStop: numStop hyperparameter value.

max.leaves: max.leaves hyperparameter value.

max . depth: max.depth hyperparameter value.
— na.rm: na.rm hyperparameter value.

* tree: list structure containing the EAT nodes.
* nodes_df: data frame containing the following information for each node.

— id: node index.
SL: left child node index.
— N: number of observations at the node.

Proportion: proportion of observations at the node.

the output predictions.
— R: the error at the node.
— index: observation indexes at the node.

e model

nodes: total number of nodes at the tree.

leaf_nodes: number of leaf nodes at the tree.
a: lower bound of the nodes.

y: output predictions.

EATBoost Gradient Tree Boosting

Description

This function estimates a production frontier satisfying some classical production theory axioms,
such as monotonicity and determinictiness, which is based upon the adaptation of the machine
learning technique known as Gradient Tree Boosting

This function saves information about the EATBoost model

14 EAT_object

Usage

EATBoost(data, x, y, num.iterations, num.leaves, learning.rate)

EATBoost_object(
data,
X,
Y,
num.iterations,
num. leaves,
learning.rate,

EAT.models,
fo,
prediction
)
Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.

num.iterations Maximum number of iterations the algorithm will perform
num. leaves Maximum number of terminal leaves in each tree at each iteration.

learning.rate Learning rate that control overfitting of the algorithm. Value must be in (0,1]

EAT.models List of the EAT models created in each iterations
fo Initial predictions of the model (they correspond to maximum value of each
output variable)
prediction Final predictions of the original data
Value

A EATBoost object.
A EATBoost object.

EAT_object Create a EAT object

Description

This function saves information about the Efficiency Analysis Trees model.

Usage

EAT_object(data, x, y, rownames, numStop, max.leaves, na.rm, tree)

efficiency 15

Arguments

data data.frame or matrix containing the variables in the model.

X Column input indexes in data.

y Column output indexes in data.

rownames string. Data rownames.

numStop Minimum number of observations in a node for a split to be attempted.

max.leaves Depth of the tree.

na.rm logical. If TRUE, NA rows are omitted. If FALSE, an error occurs in case of NA

TOWS.

tree list containing the nodes of the Efficiency Analysis Trees pruned model.
Value

An EAT object.

efficiency Calculate efficiency scores

Description

Calculates the efficiency score corresponding to the given model using the given measure

Usage

efficiency(
model,
measure = "rad.out”,
data,
X)
Y,
heuristic = TRUE,
direction.vector = NULL,
weights = NULL

)
Arguments
model Model object for which efficiency score is computed. Valid classes are: DEA,
FDH, EATBoost and MARSBoost.
measure Efficiency measure used. Valid measures are: rad.out, rad.in
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.

y Vector. Column output indexes in data.

16 ERG
heuristic Only used if model is EATBoost. This indicates whether the heuristic or the
exact approach is used.
direction.vector
Only used when measure is DDF.Direction vector. Valid values are: dmu (x_0,
y_0), unit (unit vector), mean (mean values of each variable) and a user specific
vector of the same length as the number of input and output variables
weights Only used when measure is WAM. Weights. Valid values are: MIP (Measure of
Inefficiency Proportions), RAM (Range Adjusted Measure), BAM (Bounded Ad-
justed Measure), normalized (normalized weighted additive model) and a user
specific vector of the same length as the number of input and output variables
Value
matrix with the the predicted score
ERG Enhanced Russell Graph measure
Description
This function predicts the expected output through a DEA model.
Usage
ERG(data, x, y, dataOriginal = data, xOriginal = x, yOriginal =y, FDH = FALSE)
Arguments
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.
dataOriginal data.frame or matrix containing the original variables used to create the model.
x0Original Vector. Column input indexes in original data.
yOriginal Vector. Column output indexes in original data.
FDH Binary decision variables
Value

matrix with the the predicted score

EstimCoeftsForward 17

EstimCoeffsForward Estimate Coefficients in Multivariate Adaptive Frontier Splines during
Forward Procedure.

Description

This function solves a Quadratic Programming Problem to obtain a set of coefficients.

Usage

EstimCoeffsForward(B, y)

Arguments
B matrix of basis functions.
y Output vector in data.
Value

vector with the coefficients estimated.

estimEAT Estimation of child nodes

Description
This function gets the estimation of the response variable and updates Pareto-coordinates and the
observation index for both new nodes.

Usage

estimEAT(data, leaves, t, xi, s, y)

Arguments
data Data to be used.
leaves List structure with leaf nodes or pending expansion nodes.
t Node which is being split.
xi Variable index that produces the split.
s Value of xi variable that produces the split.
y Column output indexes in data.
Value

Left and right children nodes.

18 get.a.EATBoost

FDH Free Disposal Hull model

Description

This function estimates a production frontier satisfying Free Disposal HUIl axioms using the radial
output measure.

This function saves information about the FDH model.

Usage

FDH(data, x, y)

FDH_object(data, x, y, pred, score)

Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
pred Output predictions using the BBC radial output measure
score Efficiency score using the BBC radial output measure

Value

A FDH object.
A FDH object.

get.a.EATBoost Get EATBoost leaves supports

Description

Calculates the inferior corner of the leaves supports of a EATBoost model.

Usage
get.a.EATBoost (EATBoost_model)

Arguments

EATBoost_model Model from class EATBoost from which the data are obtained

Value

data.frame with the leave supports

get.a.trees 19

get.a.trees Get the inferior corner of the leave support from all trees of EATBoost

Description
Calculates the inferior corner of the support of all leave nodes of every tree created in the EATBoost
model

Usage

get.a.trees(EATBoost_model)

Arguments

EATBoost_model Model from class EATBoost from which the data are obtained

Value

list of matrix. The length of the list is equal to the num.iterations of the EATBoost_model.
Each matrix corresponds to a tree, where the number of columns is the number of input variables
and the number of rows to the number of leaves

get.b.trees Get the superior corner of the leave support from all trees of EATBoost

Description
Calculates the superior corner of the support of all leave nodes of every tree created in the EATBoost
model

Usage

get.b.trees(EATBoost_model)

Arguments

EATBoost_model Model from class EATBoost from which the data are obtained

Value

list of matrix. The length of the list is equal to the num.iterations of the EATBoost_model.
Each matrix corresponds to a tree, where the number of columns is the number of input variables
and the number of rows to the number of leaves

20 isFinalNode

get.intersection.a Get intersection between two leaves supports

Description

Calculates the intersection between two leave nodes from different trees of a EATBoost model.

Usage

get.intersection.a(comb_a_actual, comb_b_actual)

Arguments

comb_a_actual Inferior corner of first leave support

comb_b_actual Superior corner of first leave support

Value

vector with the intersection. NULL if intersection is not valid.

isFinalNode Is Final Node

Description

This function evaluates a node and checks if it fulfills the conditions to be a final node.

Usage

isFinalNode(obs, data, numStop)

Arguments

obs Observation in the evaluated node.

data Data with predictive variable.

numStop Minimum number of observations in a node to be split.
Value

True if the node is a final node and false in any other case.

MARSAdapted 21

MARSAdapted Adapted Multivariate Adaptive Frontier Splines

Description

Create an adapted version of Multivariate Adaptive Regression Splines (MARS) model to estimate
a production frontier satisfying some classical production theory axioms, such as monotonicity and

concavity.
Usage
MARSAdapted(
data,
X,
Y,
nterms,
Kp =1,
d=2,
err_red = 0.01,
minspan = 0,
endspan = 0,
linpreds = FALSE,
na.rm = TRUE
)
Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
nterms Maximum number of reflected pairs created by the forward algorithm of MARS.
Kp Maximum degree of interaction allowed. Default is 1.
d Generalized Cross Validation (GCV) penalty per knot. Default is 2. If it is set
to-1,GCV=RSS / n.
err_red Minimum reduced error rate for the addition of two new basis functions. Default
is 0.01.
minspan Minimum number of observations between knots. When minspan = @ (default),
it is calculated as in Friedman’s MARS paper section 3.8 with alpha = 0.05.
endspan Minimum number of observations before the first and after the final knot. When
endspan = @ (default), it is calculated as in Friedman’s MARS paper section 3.8
with alpha = 0.05.
linpreds logical. If TRUE, predictors can enter linearly

na.rm logical. If TRUE, NA rows are omitted.

22 MARSAdapted_object

Value

An AdaptedMARS object.

MARSAdaptedSmooth Smoothing (Forward) Multivariate Adaptive Frontier Splines

Description

This function smoothes the Forward MARS predictor.

Usage

MARSAdaptedSmooth(data, nX, knots, y)

Arguments
data data.frame or matrix containing the variables in the model.
nX number of inputs in data.
knots data. frame containing knots from Forward MARS.
y output indexes in data.
Value

List containing the set of knots from backward (knots), the new cubic knots (cubic_knots) and
the set of coefficients (alpha).

MARSAdapted_object Create an MARSAdapted object

Description

This function saves information about the adapted Multivariate Adaptive Frontier Splines model.

Usage

MARSAdapted_object(
data,
X,
Y,
rownames,
nterms,
Kp,
d,
err_red,

MARSBoost

minspan,
endspan,
na.rm,
MARS.Forward,

23

MARS.Forward. Smooth

Arguments
data
X

y
rownames

nterms
Kp

d
err_red
minspan
endspan

na.rm
MARS.Forward

data.frame or matrix containing the variables in the model.

Column input indexes in data.

Column output indexes in data.

string. Data rownames.

Maximum number of terms created by the forward algorithm .

Maximum degree of interaction allowed. Default is 1.

Generalized Cross Validation (GCV) penalty per knot. Default is 2. If set to -1,
GCV=RSS / n.

Minimum reduced error rate for the addition of two new basis functions. Default
is@.01.

Minimum number of observations between knots. When minspan = @ (default),
it is calculated as in Friedman’s MARS paper section 3.8 with alpha = 0.05.
Minimum number of observations before the first and after the final knot. When
endspan = 0 (default), it is calculated as in Friedman’s MARS paper section 3.8
with alpha = 0.05.

logical. If TRUE, NA rows are omitted.

The Multivariate Adaptive Frontier Splines model after applying the forward
algorithm without the smoothing procedures

MARS.Forward.Smooth

Value

The Multivariate Adaptive Frontier Splines model after applying the forward
algorithm after applying the smoothing procedure

A MARSAdapted object.

MARSBoost

LS-Boosting with adapted Multivariate Adaptive Frontier Splines
(MARS)

Description

This function estimates a production frontier satisfying some classical production theory axioms,
such as monotonicity and concavity, which is based upon the adaptation of the machine learning
technique known as LS-boosting using adapted Multivariate Adaptive Regression Splines (MARS)

as base learners.

This function saves information about the LS-Boosted Multivariate Adaptive Frontier Splines model.

24 mse

Usage

MARSBoost(data, x, y, num.iterations, num.terms, learning.rate)

MARSBoost_object(
data,
X,
Y,
num.iterations,
learning.rate,

num. terms,
MARS .models,
fo,
prediction,
prediction.smooth
)
Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.

num.iterations Maximum number of iterations the algorithm will perform

num. terms Maximum number of reflected pairs created by the forward algorithm of MARS.
learning.rate Learning rate that control overfitting of the algorithm. Value must be in (0,1]
MARS.models List of the adapted forward MARS models created in each iterations

fo Initial predictions of the model (they correspond to maximum value of each
output variable)

prediction Final predictions of the original data without applying the smoothing procedure
prediction.smooth
Final predictions of the original data after applying the smoothing procedure

Value

A MARSBoost object.
A MARSBoost object.

mse Mean Squared Error

Description

This function computes the mean squared error between two numeric vectors.

mse_tree 25

Usage

mse(y, yPred)

Arguments
y Vector of actual data.
yPred Vector of predicted values.
Value

Mean Squared Error.

mse_tree Mean Squared Error

Description
This function calculates the Mean Square Error between the predicted value and the observations in
a given node.

Usage

mse_tree(data, t, y)

Arguments

data Data to be used.

t A given node.

y Column output indexes in data.
Value

Mean Square Error at a node.

26

predict DEA

posIdNode Position of the node

Description

This function finds the node where a register is located.

Usage
posIdNode(tree, idNode)

Arguments
tree A list containing EAT nodes.
idNode Id of a specific node.

Value

Position of the node or -1 if it is not found.

predict.DEA Model Prediction for DEA

Description

This function predicts the expected output by a DEA object.

Usage
S3 method for class 'DEA'
predict(object, newdata, x, y, ...)
Arguments
object A DEA object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.
y Outputs index.

further arguments passed to or from other methods.

Value

data.frame with the predicted values. Valid measures are: rad.out.

predict. EAT

predict.EAT Model Prediction for Efficiency Analysis Trees.

Description

This function predicts the expected output by an EAT object.

Usage
S3 method for class 'EAT'
predict(object, newdata, x, ...)
Arguments
object An EAT object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.

further arguments passed to or from other methods.

Value

data. frame with the predicted values.

predict.EATBoost Model prediction for EATBoost algorithm

Description

This function predicts the expected output by a EATBoost object.

Usage
S3 method for class 'EATBoost'
predict(object, newdata, x, ...)
Arguments
object A EATBoost object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.

further arguments passed to or from other methods.

Value

data.frame with the predicted values.

28 predict MARSAdapted

predict.FDH Model Prediction for FDH

Description

This function predicts the expected output by a FDH object.

Usage
S3 method for class 'FDH'
predict(object, newdata, x, y, ...)
Arguments
object A FDH object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.
y Outputs index.

further arguments passed to or from other methods.

Value

data. frame with the predicted values. Valid measures are: rad.out.

predict.MARSAdapted Model Prediction for Adapted Multivariate Adaptive Frontier Splines.

Description

This function predicts the expected output by a MARS object.

Usage
S3 method for class 'MARSAdapted'’
predict(object, newdata, x, class =1, ...)
Arguments
object A MARSAdapted object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.
class Model for prediction. 1 MARS Boost without smoothing procedure.2 MARS

Boost with smoothing procedure..

further arguments passed to or from other methods.

predict. MARSBoost 29

Value

data.frame with the predicted values.

predict.MARSBoost Model Prediction for Boosted Multivariate Adaptive Frontier Splines

Description

This function predicts the expected output by a MARSBoost object.

Usage
S3 method for class 'MARSBoost'
predict(object, newdata, x, class =1, ...)
Arguments
object A MARSBoost object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.
class Model for prediction. 1 MARS Boost without smoothing. 2 MARS Boost with
smoothing.

further arguments passed to or from other methods.

Value

data. frame with the predicted values.

predictor Efficiency Analysis Trees Predictor

Description

This function predicts the expected value based on a set of inputs.

Usage

predictor(tree, register)

Arguments
tree list with the tree nodes.
register Set of independent values.
Value

The expected value of the dependent variable based on the given register.

30 Russell_in

preProcess Data Pre-processing for Multivariate Adaptive Frontier Splines.

Description

This function arranges the data in the required format and displays error messages.

Usage

preProcess(data, x, y, na.rm = TRUE)

Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
na.rm logical If TRUE, NA rows are omitted.
Value

It returns a data. frame in the required format.

Russell_in Linear programming model for Russell input measure

Description

This function predicts the expected output through a DEA model.

Usage

Russell_in(
data,
X7
Y,
dataOriginal = data,
xOriginal = x,
yOriginal =y,
FDH = FALSE

Russell out 31

Arguments
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.

dataOriginal data. frame or matrix containing the original variables used to create the model.

x0Original Vector. Column input indexes in original data.
yOriginal Vector. Column output indexes in original data.
FDH Binary decision variables

Value

matrix with the the predicted score

Russell_out Linear programming model for Russell output measure

Description

This function predicts the expected output through a DEA model.

Usage

Russell_out(
data,
X!
Y,
dataOriginal = data,
xOriginal = x,
yOriginal =y,

FDH = FALSE
)
Arguments
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.

dataOriginal data. frame or matrix containing the original variables used to create the model.

xOriginal Vector. Column input indexes in original data.
yOriginal Vector. Column output indexes in original data.
FDH Binary decision variables

Value

matrix with the the predicted score

32 WAM

split Split node

Description
This function gets the variable and split value to be used in estimEAT, selects the best split and
updates Varlnfo, node indexes and leaves list.

Usage

split(data, tree, leaves, t, x, y, numStop)

Arguments

data Data to be used.

tree List structure with the tree nodes.

leaves List with leaf nodes or pending expansion nodes.

t Node which is being split.

X Column input indexes in data.

y Column output indexes in data.

numStop Minimum number of observations in a node to be split.
Value

Leaves and tree lists updated with the new child nodes.

WAM Linear programming model for Weighted Additive Model

Description

This function predicts the expected output through a DEA model.

Usage

WAM(
data,
X,
"
dataOriginal = data,
xOriginal = x,
yOriginal =y,
FDH = FALSE,
weights

WAM 33

Arguments
data data.frame or matrix containing the new variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.

dataOriginal data. frame or matrix containing the original variables used to create the model.

x0Original Vector. Column input indexes in original data.

yOriginal Vector. Column output indexes in original data.

FDH Binary decision variables

weights Weights. Valid values are: MIP (Measure of Inefficiency Proportions), RAM

(Range Adjusted Measure), BAM (Bounded Adjusted Measure), normalized (nor-
malized weighted additive model) and a user specific vector of the same length
as the number of input and output variables

Value

matrix with the the predicted score

Index

x datasets
banks, 3

AddBF, 3

banks, 3
BBC_in, 4
BBC_out, 5
bestEATBoost, 6
bestMARSBoost, 7

CobbDouglas, 8
comparePareto, 8
CreateBF, 9
CreateCubicBF, 9

DDF, 10

DEA, 11

DEA_object (DEA), 11
deepEAT, 11

EAT, 12

EAT_object, 14

EATBoost, 13

EATBoost_object (EATBoost), 13
efficiency, 15

ERG, 16
EstimCoeffsForward, 17
estimEAT, 17

FDH, 18
FDH_object (FDH), 18

get.a.EATBoost, 18
get.a.trees, 19
get.b.trees, 19
get.intersection.a, 20

isFinalNode, 20

MARSAdapted, 21

34

MARSAdapted_object, 22
MARSAdaptedSmooth, 22
MARSBoost, 23

MARSBoost_object (MARSBoost), 23
mse, 24

mse_tree, 25

posIdNode, 26
predict.DEA, 26
predict.EAT, 27
predict.EATBoost, 27
predict.FDH, 28
predict.MARSAdapted, 28
predict.MARSBoost, 29
predictor, 29
preProcess, 30

Russell_in, 30
Russell_out, 31

split, 32

WAM, 32

	AddBF
	banks
	BBC_in
	BBC_out
	bestEATBoost
	bestMARSBoost
	CobbDouglas
	comparePareto
	CreateBF
	CreateCubicBF
	DDF
	DEA
	deepEAT
	EAT
	EATBoost
	EAT_object
	efficiency
	ERG
	EstimCoeffsForward
	estimEAT
	FDH
	get.a.EATBoost
	get.a.trees
	get.b.trees
	get.intersection.a
	isFinalNode
	MARSAdapted
	MARSAdaptedSmooth
	MARSAdapted_object
	MARSBoost
	mse
	mse_tree
	posIdNode
	predict.DEA
	predict.EAT
	predict.EATBoost
	predict.FDH
	predict.MARSAdapted
	predict.MARSBoost
	predictor
	preProcess
	Russell_in
	Russell_out
	split
	WAM
	Index

