bnclassify usage

Bojan Mihaljevi¢, Concha Bielza, Pedro Larranaga

2024-03-13

Abstract

This vignette gives detailed usage examples and shows how to combine the functions.

Contents

1

2

8

9

Introduction
Data
Workflow

Network structure
4.1 Learning e e e e e e
4.2 Analyzing

Network parameters

5.1 Learning L e
5.2 Analyzing L
5.3 Interface to bnlearn, gRain, and graph

Selecting features
6.1 External feature selection L

Evaluating

7.1 Network scores e e e e
7.2 Predictive accuracyo
7.3 More e e e e

Predicting

Miscellaneous

10 Complementing bnclassify with mlr

10.1 Wrapper feature selection
10.2 Comparing to random forest Lo

References

10

11

11
11
12

12

1 Introduction

The bnclassify package implements state-of-the-art algorithms for learning discrete Bayesian
network classifiers from data, as well as functions for using these classifiers for prediction, assessing
their predictive performance, and inspecting and analyzing their properties. This vignette gives
detailed usage examples and shows how to combine the functions. Other resources provide additional
information:

o vignette("overview", package="bnclassify") provides an overview of the package and
background on the implemented methods.

e 7bnclassify provides a concise overview of the functionalities, with pointers to relevant
functions and their documentation.

o vignette("methods", package="bnclassify") provides details on the underlying methods
and documents implementation specifics, especially where they differ from or are undocumented
in the original paper.

2 Data

Throughout the vignette we will use the car evaluation data set. It has six discrete features,
describing car properties such as buying price or the number of doors, and 1728 instances assigned
to four different classes (unacc, acc, good, vgood). See 7car for more details.

library(bnclassify)
data(car)

dim(car)

#> [1] 1728 7
head(car)

#> buying maint doors persons lug_boot safety class

#>

#> 1 whigh vhigh 2 2 small low unacc

#> 2 whigh vhigh 2 2 small med unacc

#> 3 whigh vhigh 2 2 small high unacc

#> 4 whigh vhigh 2 2 med low unacc

#> 5 whigh vhigh 2 2 med med unacc
6 2 2

vhigh vhigh med high unacc

3 Workflow

Using bnclassify generally consists of four steps:

1. Learning network structure
2. Learning network parameters
3. Evaluating the model

4. Predicting with the model

In between those steps, you may also want to inspect the model’s properties.

Below is an example of the four steps done in four lines.

nb <- nb('class', car) # Learn a naive Bayes structure
nb <- 1lp(nb, car, smooth = 1) # Learn parameters

cv(nb, car, k = 10) # 10-fold Cross-validation estimate of accuracy
#> [1] 0.8576045

head (predict(nb, car)) # Classify the entire data set

#> [1] unacc unacc unacc unacc uUnNGCc unacc

#> Levels: unacc acc good vgood

While there are multiple alternatives to nb for the first step, you are most likely to use 1p, cv, and
predict for steps 2-4. We will elaborate on all four steps throughout the rest of the vignette.

4 Network structure

4.1 Learning

bnlassify provides one function per each structure learning algorithm that it implements. Grouped
according to algorithm type (see vignette("bnclassify-technical")), these are:

Naive Bayes:

e 1nb
CL ODE:

e tan_cl
Greedy wrapper:

e tan_hc
e tan_hcsp
o fssj

e bsej

They all receive the name of the class variable and the data set as their first two arguments, followed
by optional arguments.

The following learns three different structures with three different algorithms.

Naive Bayes

nb <- nb('class', car)

ODE Chow-Liu with AIC score (penalized log-likelihood)

ode cl aic <- tan_cl('class', car, score = 'aic')

Semi-naive Bayes with forward sequential selection and joining (FSSJ) and
5-fold cross-validation

fssj <- fssj('class', car, k = 5, epsilon = 0)

For details on the learning algorithms, see the corresponding functions (e.g., 7tan_cl) and
vignette("bnclassify-technical").

4.2 Analyzing

The above nb, ode_cl_aic, and fssj are objects of class bnc_dag. There are a number of functions
that you can perform on such objects.

Printing the object to console outputs basic information on structure:

ode_cl_aic

#>

#> Bayesian network classifier (only structure, no parameters)
#>

#> class wvariable: class
#> num. features: 6

#> num. arcs: 9

#> learning algorithm: tan_cl

The above tells that the ode_cl_aic object is a network structure without any parameters, the
name of the class variables is “class”, it has six feature nodes and nine arcs, and it was learned with
the tan_cl function.

Plotting network structure can reveal probabilistic relationships among the variables:

plot(ode_cl_aic)

cl@s

bu@ngn@mec @ rsa@®ine Doaors

If the network is not displaying properly, e.g., with node names overlapping in large networks, you
may try different layout types and font sizes (see ?plot.bnc_dag).

plot(ode_cl_aic, layoutType = 'twopi', fontsize = 15)

An alternative to plotting, useful when the graph is large, is to query for the families that compose
the structure (a family of a node is itself plus its parents in the graph).

families(ode_cl_aic)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

$buying
[1] "buying" "class"

$maint
[1] "maint" "buyin
Yying

n IICLaSSII

$doors
[1] "doors" '"class"

$persons
[1] "persons" "class"

$lug_boot
[1] "lug_boot" "safety" "class"

$safety
[1] "safety" '"persons" "class"

$class
[1] "class"

narcs gives the number of arcs in a structure.

narcs (nb)
#> [1] 6
Functions such as is_ode, is_nb, or id_semi query the type of structure. For example:

is_ode(ode_cl_aic)

#> [1] TRUE
is_semi_naive(ode_cl_aic)
#> [1] FALSE

For more functions to query a network structure, see 7inspect_bnc_dag.

5 Network parameters

5.1 Learning
bnclassify provides three parameter estimation methods, all implemented with the 1p function.

e Bayesian and maximum likelihood estimation
« AWNB
« MANB

1p which takes the network structure and the dataset from which to learn parameters as its first
two arguments.

To get Bayesian parameter estimates assuming a Dirichlet prior, provide a positive smooth argument
to 1p.

nb <- lp(nb, car, smooth = 0.01)

For AWNB or MANB parameter estimation, provide the appropriate arguments to 1p, in addition
to smooth.

awnb <- lp(nb, car, smooth
manb <- 1lp(nb, car, smooth

0.01, awnb_trees = 10, awnb_bootstrap = 0.5)
0.01, manb_prior = 0.5)

The bnc function is shorthand for learning both structure and parameters in a single step. Provide
the name of the structure learning algorithm, as a character, and its optional arguments in dag_args.

ode_cl_aic <- bnc('tan_cl', 'class', car, smooth = 1, dag_args = list(score = 'aic'))

5.2 Analyzing

1p and bnc return objects of class bnc_bn, which are fully specified Bayesian network classifiers
(i.e., with both structure and parameters).

Printing the ode_cl_aic object now also shows how many free parameters there are in the model
(131).

ode_cl_aic

#>

#> Bayestan network classifier

#>

#> class wvariable: class

#> num. features: 6

#> num. arcs: 9

#> free parameters: 131

#> learning algorithm: tan_cl

params lets you access the conditional probability tables (CPTs). For example, the CPT of the
buying feature in nb is:

params (nb) $buying

#> class

#> buying unacc acc good vgood
#> low 0.2132243562 0.2317727320 0.6664252607 0.5997847478
#> med 0.2214885458 0.2994740131 0.3332850521 0.3999077491
#> high 0.2677680077 0.2812467451 0.0001448436 0.0001537515
#> whigh 0.2975190903 0.1875065097 0.0001448436 0.0001537515

nparams gives the number of parameters of the classifier.
nparams (nb)

#> [1] 63

For more functions for querying a bnc_bn object, see 7inspect_bnc_bn

5.3 Interface to bnlearn, gRain, and graph

You can convert a bnc_bn object to bnlearn (Scutari 2010), gRain (Hgjsgaard 2012) and graph
(Gentleman et al. 2015) objects to leverage functionalities from those packages, such as Bayesian
network querying or inference.

Use

e as_igraph for graph
e as_grain for gRain

For bnlearn, first convert to gRain and then convert the gRain object to a bnlearn one (see
bnlearn docs for how to do this).

The following uses gRain to ge the marginal probability of the buying feature: (NOTE: not currently
working due to recent changes in the gRain package)

a <- 1lp(nb('class', car), car, smooth = 1)
g <- as_grain(a)

gRain: :querygrain(g) $buying

#> buying

#> low med high vhigh
#> 0.2488415 0.2495832 0.2507330 0.2508423

6 Selecting features

Some structure and parameter learning methods perform feature selection:

o fssj and bsej : embedded wrapper
o« MANB: Bayesian model averaging
o« AWNB: weighting

fssj and bsej perform feature selection while learning structure. On the car evaluation data they
both select all features.

length(features(fssj))

#> [1] 5

suppressWarnings (RNGversion("3.5.0"))
set.seed(0)

bsej <- bsej('class', car, k = 5, epsilon = 0)
length(features(bsej))

#> [1] 6

MANB has computed zero posterior probability for the arc from class to doors and 100% probability
for arcs to the other features.

manb_arc_posterior (manb)
#> buying maint doors persons lug_boot safety
#> 1.000000e+00 1.000000e+00 3.937961e-20 1.000000e+00 9.980275e-01 1.000000e+00

This means that it has effectively omitted doors from the model, rendering it independent from the
class.

params (manb) $doors

#> class

#> doors wumacc acc good vgood
#> 2 0.25 0.25 0.25 0.25
#> 3 0.25 0.25 0.25 0.25
#> 4 0.25 0.25 0.25 0.25

#> bmore 0.25 0.25 0.25 0.25

It has left the other features’ parameters unaltered.
all.equal (params (manb)$buying, params(nb)$buying)
#> [1] TRUE

The AWNB method has decreased the effect of each feature on the class posterior, especially doors,
lug_boot, and maint, also modifying their local distributions towards independence from the class.

awnb_weights (awnb)
#> buying maint doors persons lug_boot safety
#> 0.5773503 0.5000000 0.3931064 0.8535534 0.4355240 0.8535534

6.1 External feature selection

You can use R packages such as mlr (Bischl et al. 2015) or caret (Kuhn 2008) to select features
prior to learning a classifier with bnclassify. See Section 10 for how to do it with mlr.

7 Evaluating

7.1 Network scores
The are three functions for computing penalized log-likelihood network scores of bnc_bn objects.

e loglik
e AIC
e BIC

In addition to the model, provide them the dataset on which to compute the score.

loglik(ode_cl_aic, car)

#> 'log Lik.' -13307.59 (df=131)
AIC(ode_cl_aic, car)

#> [1] -13438.59
BIC(ode_cl_aic, car)

#> [1] -13795.87

7.2 Predictive accuracy

accuracy lets you compute the classifier’s predictive accuracy on a given data set. You need to
provide the vectors of predicted and true labels.

p <- predict(nb, car)
accuracy(p, car$class)
#> [1] 0.8738426

cv estimates predictive accuracy with stratified cross-validation. Indicate the desired number of
folds with k.

suppressWarnings (RNGversion("3.5.0"))
set.seed(0)

cv(ode_cl_aic, car, k = 10)

#> [1] 0.9386636

Each bnc_bn object records the structure and parameter learning methods that were used to produce
it. cv just reruns these methods. Hence, the above is the accuracy estimate for tan_cl with the
AIC score and Bayesian parameter estimation with smooth = 0.01.

To keep the structure fixed and evaluate just the parameter learning method, set dag = FALSE:

suppressWarnings (RNGversion("3.5.0"))
set.seed(0)

cv(ode_cl_aic, car, k = 10, dag = FALSE)
#> [1] 0.9386636

To get the accuracy for each of the folds, instead of the mean accuracy, set mean = FALSE.

suppressWarnings (RNGversion("3.5.0"))

set.seed(0)

cv(ode_cl_aic, car, k = 10, dag = FALSE, mean = FALSE)
#> [,1]

#> 1 0.925287
#> 2 0.92/8555
#> 3 0.9534884
#> 4 0.9651163
#> 5 0.9479769
#> 6 0.9479769
#> 7 0.9302326
#> 8 0.9127907
#> 9 0.9306358
#> 10 0.9482759

Finally, to cross-validate multiple classifiers at once pass a list of bnc_bn objects to cv.
suppressWarnings (RNGversion("3.5.0"))

set.seed(0)

accu <- cv(list(nb = nb, ode_cl_aic = ode_cl_aic), car, k = 5, dag = TRUE)
accu

#> nb ode_cl_aic

#> 0.8582303 0.9345913

7.3 More

General-purpose machine learning packages such as mlr or caret provide additional options for
evaluating a model, including bootstrap resampling and performance measures such as the area
under the curve. See Section 10 for how that could be done with mlr.

8 Predicting

We can use a bnc_bn object to classify data instances, with predict.

Here we use the naive Bayes to predict the class for our entire data set.

p <- predict(ab, car)

We use head() to print the first elements of wvector p
head (p)

#> [1] unacc unacc unacc unacc unacc UNace

#> Levels: unacc acc good vgood

You can also get the class posterior probabilities.

pp <- predict(nb, car, prob = TRUE)

head (pp)

#> unacc acc good vgood
#> [1,] 1.0000000 2.171346e-10 8.267214e-16 3.536615e-19
#> [2,] 0.9999937 6.306269e-06 5.203338e-12 5.706038e-19
#> [3,] 0.9999908 9.211090e-06 5.158884e-12 4.780777e-15
#> [4,] 1.0000000 3.204714e-10 1.084552e-15 1.015375e-15
#> [5,] 0.9999907 9.307467e-06 6.826088e-12 1.638219e-15
#> [6,] 0.9999864 1.359469e-05 6.767760e-12 1.372573e-11

10

9 Miscellaneous

You can compute the (conditional) mutual information between two variables with cmi. Mutual
information of maint and buying:

cmi('maint', 'buying', car)

#> [1] 0

Mutual information of maint and buying conditioned to class:

cmi('maint', 'buying', car, 'class')
#> [1] 0.07199921

10 Complementing bnclassify with mlr

General-purpose machine learning packages, such as mlr and caret, provide many options for
feature selection and model evaluation. For example, the provide resampling methods other than
cross-validation and performance measures other than accuracy. Here we use mlr to:

1. Perform and evaluate wrapper feature selection using tan_cl
2. Estimate the accuracy of tan_cl and random forest

To use a bnc_bn object with mlr, call the as_mlr function.

library (mlr)
ode_cl_aic_mlr <- as_mlr(ode_cl_aic, dag = TRUE, id = "ode_cl_aic")

The obtained ode_cl_aic_mlr behaves like any other classifier supported by mlr.

10.1 Wrapper feature selection

Set up sequential forward search with 2-fold cross validation and ode_cl_aic_mlr as the classifier.

5-fold cross-validation
rdesc = makeResampleDesc("CV", iters = 2)
sequential floating forward search
ctrl = makeFeatSelControlSequential(method = "sfs", alpha = 0)
Wrap ode_cl_aic_mlr with feature selection
ode_cl_aic_mlr_fs = makeFeatSelWrapper(ode_cl_aic_mlr, resampling = rdesc,
control = ctrl, show.info = FALSE)
t <- makeClassifTask(id = "car", data = car,
target = 'class', fixup.data = "no", check.data = FALSE)

Select features:

suppressWarnings (RNGversion("3.5.0"))
set.seed(0)

Select features

mod <- train(ode_cl_aic_mlr_fs, task = t)
sfeats <- getFeatSelResult(mod)

sfeats

11

mlr makes it easy to evaluate the predictive performance of the combination of feature selection
plus classifier learning. The following estimates accuracy with 2-fold cross-validation:

suppressWarnings (RNGversion("3.5.0"))
set.seed(0)
r = resample(learner = ode_cl_aic_mlr_fs, task = t,
resampling = rdesc, show.info = FALSE, measure = mlr::acc)

10.2 Comparing to random forest

With mlr you can compare the predictive performance of bnclassify models to those of different
classification paradigms, such as random forests.

rf <- makeLearner("classif.randomForest", id = "rf")

classifiers <- list(ode_cl_aic_mlr, rf)

suppressWarnings (RNGversion("3.5.0"))

set.seed(0)

benchmark(classifiers, t, rdesc, show.info = FALSE, measures = mlr::acc)

References

Bischl, Bernd, Michel Lang, Jakob Richter, Jakob Bossek, Leonard Judt, Tobias Kuehn, Erich
Studerus, and Lars Kotthoff. 2015. Mir: Machine Learning in r. https://CRAN.R-project.org/
package=mlr.

Gentleman, R., Elizabeth Whalen, W. Huber, and S. Falcon. 2015. Graph: A Package to Handle
Graph Data Structures

Hgjsgaard, Sgren. 2012. “Graphical Independence Networks with the gRain Package for R Journal
of Statistical Software 46 (10): 1-26.

Kuhn, Max. 2008. “Building Predictive Models in R Using the caret Package.” Journal of Statistical
Software 28 (5): 1-26.

Scutari, Marco. 2010. “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software 35 (3): 1-22.

12

https://CRAN.R-project.org/package=mlr
https://CRAN.R-project.org/package=mlr

	Introduction
	Data
	Workflow
	Network structure
	Learning
	Analyzing

	Network parameters
	Learning
	Analyzing
	Interface to bnlearn, gRain, and graph

	Selecting features
	External feature selection

	Evaluating
	Network scores
	Predictive accuracy
	More

	Predicting
	Miscellaneous
	Complementing bnclassify with mlr
	Wrapper feature selection
	Comparing to random forest

	References

