
Package ‘bio3d’
October 30, 2024

Title Biological Structure Analysis

Version 2.4-5

Author Barry Grant [aut, cre],
Xin-Qiu Yao [aut],
Lars Skjaerven [aut],
Julien Ide [aut]

VignetteBuilder knitr

LinkingTo Rcpp

Imports Rcpp, parallel, grid, graphics, grDevices, stats, utils

Suggests XML, RCurl, lattice, ncdf4, igraph, bigmemory, knitr,
rmarkdown, testthat (>= 0.9.1), httr, msa, Biostrings

Depends R (>= 3.1.0)

LazyData yes

Description Utilities to process, organize and explore protein structure,
sequence and dynamics data. Features include the ability to read and write
structure, sequence and dynamic trajectory data, perform sequence and structure
database searches, data summaries, atom selection, alignment, superposition,
rigid core identification, clustering, torsion analysis, distance matrix
analysis, structure and sequence conservation analysis, normal mode analysis,
principal component analysis of heterogeneous structure data, and correlation
network analysis from normal mode and molecular dynamics data. In addition,
various utility functions are provided to enable the statistical and graphical
power of the R environment to work with biological sequence and structural data.
Please refer to the URLs below for more information.

Maintainer Barry Grant <bjgrant@ucsd.edu>

License GPL (>= 2)

URL http://thegrantlab.org/bio3d/,

https://bitbucket.org/Grantlab/bio3d/

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-10-29 23:40:10 UTC

1

http://thegrantlab.org/bio3d/
https://bitbucket.org/Grantlab/bio3d/

2 Contents

Contents
bio3d-package . 6
aa.index . 7
aa.table . 9
aa123 . 10
aa2index . 11
aa2mass . 12
aanma . 14
aanma.pdbs . 17
aln2html . 19
angle.xyz . 21
as.fasta . 22
as.pdb . 23
as.select . 26
atom.index . 27
atom.select . 28
atom2ele . 31
atom2mass . 33
atom2xyz . 34
basename.pdb . 35
bhattacharyya . 36
binding.site . 38
biounit . 40
blast.pdb . 41
bounds . 44
bounds.sse . 45
bwr.colors . 47
cat.pdb . 48
chain.pdb . 49
check.utility . 50
clean.pdb . 51
cmap . 52
cna . 55
cnapath . 58
com . 61
combine.select . 63
community.aln . 65
community.tree . 67
consensus . 69
conserv . 70
convert.pdb . 72
core.cmap . 74
core.find . 75
cov.nma . 79
covsoverlap . 80
dccm . 81
dccm.enma . 82

Contents 3

dccm.gnm . 83
dccm.nma . 85
dccm.pca . 86
dccm.xyz . 88
deformation.nma . 90
diag.ind . 92
difference.vector . 93
dist.xyz . 94
dm . 95
dssp . 98
elements . 101
entropy . 103
example.data . 105
filter.cmap . 106
filter.dccm . 107
filter.identity . 109
filter.rmsd . 111
fit.xyz . 112
fluct.nma . 115
formula2mass . 117
gap.inspect . 118
geostas . 119
get.pdb . 123
get.seq . 125
gnm . 127
hclustplot . 129
hmmer . 131
identify.cna . 134
inner.prod . 135
inspect.connectivity . 136
is.gap . 138
is.mol2 . 139
is.pdb . 140
is.select . 141
is.xyz . 142
layout.cna . 142
lbio3d . 144
load.enmff . 144
mask . 146
mktrj . 148
motif.find . 150
mustang . 151
network.amendment . 153
nma . 155
nma.pdb . 156
nma.pdbs . 160
normalize.vector . 163
orient.pdb . 164

4 Contents

overlap . 165
pairwise . 167
pca . 168
pca.array . 169
pca.pdbs . 170
pca.tor . 172
pca.xyz . 173
pdb.annotate . 176
pdb2aln . 177
pdb2aln.ind . 179
pdb2sse . 181
pdbaln . 182
pdbfit . 184
pdbs2pdb . 185
pdbs2sse . 187
pdbseq . 188
pdbsplit . 189
pfam . 191
plot.bio3d . 193
plot.cmap . 196
plot.cna . 198
plot.core . 200
plot.dccm . 202
plot.dmat . 205
plot.enma . 207
plot.fasta . 209
plot.fluct . 210
plot.geostas . 212
plot.hmmer . 214
plot.matrix.loadings . 215
plot.nma . 216
plot.pca . 218
plot.pca.loadings . 220
plot.rmsip . 221
print.cna . 222
print.core . 224
print.fasta . 225
print.xyz . 226
project.pca . 227
prune.cna . 228
pymol . 230
read.all . 233
read.cif . 235
read.crd . 236
read.crd.amber . 238
read.crd.charmm . 239
read.dcd . 240
read.fasta . 242

Contents 5

read.fasta.pdb . 244
read.mol2 . 246
read.ncdf . 249
read.pdb . 251
read.pdcBD . 254
read.pqr . 256
read.prmtop . 258
rgyr . 260
rle2 . 262
rmsd . 263
rmsf . 265
rmsip . 266
sdENM . 268
seq2aln . 269
seqaln . 270
seqaln.pair . 274
seqbind . 275
seqidentity . 276
setup.ncore . 278
sip . 278
sse.bridges . 280
store.atom . 281
struct.aln . 282
torsion.pdb . 284
torsion.xyz . 286
trim . 288
trim.mol2 . 290
trim.pdbs . 291
trim.xyz . 293
unbound . 294
uniprot . 295
var.xyz . 296
vec2resno . 297
vmd . 298
vmd_colors . 300
wrap.tor . 301
write.crd . 302
write.fasta . 303
write.mol2 . 305
write.ncdf . 306
write.pdb . 308
write.pir . 310
write.pqr . 311

Index 314

6 bio3d-package

bio3d-package Biological Structure Analysis

Description

Utilities for the analysis of protein structure and sequence data.

Details

Package: bio3d
Type: Package
Version: 2.4-5
Date: 2024-10-25
License: GPL version 2 or newer
URL: http://thegrantlab.org/bio3d/

Features include the ability to read and write structure (read.pdb, write.pdb, read.fasta.pdb),
sequence (read.fasta, write.fasta) and dynamics trajectory data (read.dcd, read.ncdf, write.ncdf).

Perform sequence and structure database searches (blast.pdb, hmmer), atom summaries (summary.pdb),
atom selection (atom.select), alignment (pdbaln, seqaln, mustang) superposition (rot.lsq,
fit.xyz), pdbfit), rigid core identification (core.find, plot.core, fit.xyz), dynamic domain
analysis (geostas), torsion/dihedral analysis (torsion.pdb, torsion.xyz), clustering (via hclust),
principal component analysis (pca.xyz, pca.pdbs, pca.tor, plot.pca, plot.pca.loadings,
mktrj.pca), dynamical cross-correlation analysis (dccm, plot.dccm) and correlation network anal-
ysis (cna, plot.cna, cnapath) of structure data.

Perform conservation analysis of sequence (seqaln, conserv, seqidentity, entropy, consensus)
and structural (pdbaln, rmsd, rmsf, core.find) data.

Perform normal mode analysis (nma, build.hessian), ensemble normal mode analysis (nma.pdbs),
mode comparison (rmsip) and (overlap), atomic fluctuation prediction (fluct.nma), cross-correlation
analysis (dccm.nma), cross-correlation visualization (pymol.dccm), deformation analysis (deformation.nma),
and mode visualization (pymol.modes, mktrj.nma).

In addition, various utility functions are provided to facilitate manipulation and analysis of bio-
logical sequence and structural data (e.g. get.pdb, get.seq, aa123, aa321, pdbseq, aln2html,
atom.select, rot.lsq, fit.xyz, is.gap, gap.inspect, orient.pdb, pairwise, plot.bio3d,
plot.nma, plot.blast, biounit, etc.).

Note

The latest version, package vignettes and documentation with worked example outputs can be ob-
tained from the bio3d website:
http://thegrantlab.org/bio3d/.
http://thegrantlab.org/bio3d/reference/.
https://bitbucket.org/Grantlab/bio3d/.

http://thegrantlab.org/bio3d/
http://thegrantlab.org/bio3d/
http://thegrantlab.org/bio3d/reference/
https://bitbucket.org/Grantlab/bio3d/

aa.index 7

Author(s)

Barry Grant <bjgrant@ucsd.edu> Xin-Qiu Yao <xinqiu.yao@gmail.com> Lars Skjaerven <larsss@gmail.com>
Julien Ide <julien.ide.fr@gmail.com>

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. Skjaerven, L. et al. (2014) BMC Bioinfor-
matics 15, 399. Grant, B.J. et al. (2021) Protein Science 30, 20–30.

Examples

help(package="bio3d") # list the functions within the package
#lbio3d() # list bio3d function names only

Or visit:
http://thegrantlab.org/bio3d/reference/

See the individual functions for further documentation and examples, e.g.
#help(read.pdb)

Or online:
http://thegrantlab.org/bio3d/reference/read.pdb.html

Not run:
##-- See the list of Bio3D demos
demo(package="bio3d")

Try some out, e.g:
demo(pdb) # PDB Reading, Manipulation, Searching and Alignment
demo(pca) # Principal Component Analysis
demo(md) # Molecular Dynamics Trajectory Analysis
demo(nma) # Normal Mode Analysis

See package vignettes and tutorals online:
http://thegrantlab.org/bio3d/articles/

End(Not run)

aa.index AAindex: Amino Acid Index Database

Description

A collection of published indices, or scales, of numerous physicochemical and biological properties
of the 20 standard aminoacids (Release 9.1, August 2006).

Usage

data(aa.index)

8 aa.index

Format

A list of 544 named indeces each with the following components:

1. H, character vector: Accession number.
2. D, character vector: Data description.
3. R, character vector: LITDB entry number.
4. A, character vector: Author(s).
5. T, character vector: Title of the article.
6. J, character vector: Journal reference.
7. C, named numeric vector: Correlation coefficients of similar indeces (with coefficients of

0.8/-0.8 or more/less). The correlation coefficient is calculated with zeros filled for missing
values.

8. I, named numeric vector: Amino acid index data.

Source

‘AAIndex’ was obtained from:
https://www.genome.jp/aaindex/
For a description of the ‘AAindex’ database see:
https://www.genome.jp/aaindex/aaindex_help.html.

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘AAIndex’ is the work of Kanehisa and co-workers:
Kawashima and Kanehisa (2000) Nucleic Acids Res. 28, 374;
Tomii and Kanehisa (1996) Protein Eng. 9, 27–36;
Nakai, Kidera and Kanehisa (1988) Protein Eng. 2, 93–100.

Examples

Load AAindex data
data(aa.index)

Find all indeces described as "volume"
ind <- which(sapply(aa.index, function(x)

length(grep("volume", x$D, ignore.case=TRUE)) != 0))

find all indeces with author "Kyte"
ind <- which(sapply(aa.index, function(x) length(grep("Kyte", x$A)) != 0))

examine the index
aa.index[[ind]]$I

find indeces which correlate with it
all.ind <- names(which(Mod(aa.index[[ind]]$C) >= 0.88))

examine them all
sapply(all.ind, function (x) aa.index[[x]]$I)

https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/aaindex_help.html

aa.table 9

aa.table Table of Relevant Amino Acids

Description

This data set provides the atomic masses of a selection of amino acids regularly occuring in proteins.

Usage

aa.table

Format

A data frame with the following components.

aa3 a character vector containing three-letter amino acid code.

aa1 a character vector containing one-letter amino acid code.

mass a numeric vector containing the mass of the respective amino acids.

formula a character vector containing the formula of the amino acid in which the mass calculat
was based.

name a character vector containing the full names of the respective amino acids.

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

aa2mass, aa.index, atom.index, elements,

Examples

data(aa.table)
aa.table

table look up
aa.table["HIS",]

read PDB, and fetch residue masses
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
aa2mass(pdb)

10 aa123

aa123 Convert Between 1-letter and 3-letter Aminoacid Codes

Description

Convert between one-letter IUPAC aminoacid codes and three-letter PDB style aminoacid codes.

Usage

aa123(aa)
aa321(aa)

Arguments

aa a character vector of individual aminoacid codes.

Details

Standard conversions will map ‘A’ to ‘ALA’, ‘G’ to ‘GLY’, etc. Non-standard codes in aa will
generate a warning and return ‘UNK’ or ‘X’.

Value

A character vector of aminoacid codes.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of IUPAC one-letter codes see:
https://www.insdc.org/documents/feature_table.html#7.4.3

For more information on PDB residue codes see:
http://ligand-expo.rcsb.org/ld-search.html

See Also

read.pdb, read.fasta, pdbseq

https://www.insdc.org/documents/feature_table.html#7.4.3
http://ligand-expo.rcsb.org/ld-search.html

aa2index 11

Examples

Simple conversion
aa123(c("D","L","A","G","S","H"))
aa321(c("ASP", "LEU", "ALA", "GLY", "SER", "HIS"))

Not run:
Extract sequence from a PDB file's ATOM and SEQRES cards
pdb <- read.pdb("1BG2")
s <- aa321(pdb$seqres) # SEQRES
a <- aa321(pdb$atom[pdb$calpha,"resid"]) # ATOM

Write both sequences to a fasta file
write.fasta(alignment=seqbind(s,a), id=c("seqres","atom"), file="eg2.fa")

Alternative approach for ATOM sequence extraction
pdbseq(pdb)
pdbseq(pdb, aa1=FALSE)

End(Not run)

aa2index Convert an Aminoacid Sequence to AAIndex Values

Description

Converts sequences to aminoacid indeces from the ‘AAindex’ database.

Usage

aa2index(aa, index = "KYTJ820101", window = 1)

Arguments

aa a protein sequence character vector.

index an index name or number (default: “KYTJ820101”, hydropathy index by Kyte-
Doolittle, 1982).

window a positive numeric value, indicating the window size for smoothing with a slid-
ing window average (default: 1, i.e. no smoothing).

Details

By default, this function simply returns the index values for each amino acid in the sequence. It can
also be set to perform a crude sliding window average through the window argument.

Value

Returns a numeric vector.

12 aa2mass

Author(s)

Ana Rodrigues

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘AAIndex’ is the work of Kanehisa and co-workers: Kawashima and Kanehisa (2000) Nucleic
Acids Res. 28, 374; Tomii and Kanehisa (1996) Protein Eng. 9, 27–36; Nakai, Kidera and Kanehisa
(1988) Protein Eng. 2, 93–100.

For a description of the ‘AAindex’ database see:
https://www.genome.jp/aaindex/ or the aa.index documentation.

See Also

aa.index, read.fasta

Examples

Residue hydropathy values
seq <- c("R","S","D","X","-","X","R","H","Q","V","L")
aa2index(seq)

Not run:
Use a sliding window average
aa2index(aa=seq, index=22, window=3)

Use an alignment

aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))
prop <- t(apply(aln$ali, 1, aa2index, window=1))

find and use indices for volume calculations
i <- which(sapply(aa.index,

function(x) length(grep("volume", x$D, ignore.case=TRUE)) != 0))
sapply(i, function(x) aa2index(aa=seq, index=x, window=5))

End(Not run)

aa2mass Amino Acid Residues to Mass Converter

Description

Convert a sequence of amino acid residue names to mass.

Usage

aa2mass(pdb, inds=NULL, mass.custom=NULL, addter=TRUE, mmtk=FALSE)

https://www.genome.jp/aaindex/

aa2mass 13

Arguments

pdb a character vector containing the atom names to convert to atomic masses. Al-
ternatively, a object of type pdb can be provided.

inds atom and xyz coordinate indices obtained from atom.select that selects the
elements of pdb upon which the calculation should be based.

mass.custom a list of amino acid residue names and their corresponding masses.

addter logical, if TRUE terminal atoms are added to final masses.

mmtk logical, if TRUE use the exact aminoacid residue masses as provided with the
MMTK database (for testing purposes).

Details

This function converts amino acid residue names to their corresponding masses. In the case of a
non-standard amino acid residue name mass.custom can be used to map the residue to the correct
mass. User-defined amino acid masses (with argument mass.custom) will override mass entries
obtained from the database.

See examples for more details.

Value

Returns a numeric vector of masses.

Note

When object of type pdb is provided, non-calpha atom records are omitted from the selection.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

atom.index, atom2mass, aa.index

Examples

resi.names <- c("LYS", "ALA", "CYS", "HIS")
masses <- aa2mass(resi.names, addter=FALSE)

Not run:
Fetch atomic masses in a PDB object
pdb <- read.pdb("3dnd")
masses <- aa2mass(pdb)

or

14 aanma

masses <- aa2mass(pdb$atom[1:10,"resid"])

Dealing with unconventional residues
#pdb <- read.pdb("1xj0")

#mass.cust <- list("CSX"=122.166)
#masses <- aa2mass(pdb, mass.custom=mass.cust)

End(Not run)

aanma All Atom Normal Mode Analysis

Description

Perform all-atom elastic network model normal modes calculation of a protein structure.

Usage

aanma(...)

S3 method for class 'pdb'
aanma(pdb, pfc.fun = NULL, mass = TRUE, temp = 300,
keep = NULL, hessian = NULL, outmodes = "calpha", rm.wat = TRUE,
reduced = FALSE, rtb = FALSE, nmer = 1, ...)

rtb(hessian, pdb, mass = TRUE, nmer = 1, verbose = TRUE)

Arguments

... additional arguments to build.hessian and aa2mass. One useful option here
for dealing with unconventional residues is ‘mass.custom’, see the aa2mass
function for details.

pdb an object of class pdb as obtained from function read.pdb.

pfc.fun customized pair force constant (‘pfc’) function. The provided function should
take a vector of distances as an argument to return a vector of force constants. If
NULL, the default function ‘aaenm2’ will be employed. (See details below).

mass logical, if TRUE the Hessian will be mass-weighted.

temp numerical, temperature for which the amplitudes for scaling the atomic displace-
ment vectors are calculated. Set ‘temp=NULL’ to avoid scaling.

keep numerical, final number of modes to be stored. Note that all subsequent analyses
are limited to this subset of modes. This option is useful for very large structures
and cases where memory may be limited.

hessian hessian matrix as obtained from build.hessian. For internal purposes and
generally not intended for public use.

aanma 15

outmodes either a character (‘calpha’ or ‘noh’) or atom indices as obtained from atom.select
specifying the atoms to include in the resulting mode object. (See details below).

rm.wat logical, if TRUE water molecules will be removed before calculation.

reduced logical, if TRUE the coarse-grained (‘4-bead’) ENM will be employed. (See
details below).

rtb logical, if TRUE the rotation-translation block based approximate modes will be
calculated. (See details below).

nmer numerical, defines the number of residues per block (used only when rtb=TRUE).

verbose logical, if TRUE print detailed processing message

Details

This function builds an elastic network model (ENM) based on all heavy atoms of input pdb, and
performs subsequent normal mode analysis (NMA) in various manners. By default, the ‘aaenm2’
force field (defining of the spring constants between atoms) is used, which was obtained by fitting to
a local energy minimum of a crambin model derived from the AMBER99SB force field. It employs
a pair force constant function which falls as r^-6, and specific force constants for covalent and
intra-residue atom pairs. See also load.enmff for other force field options.

The outmodes argument controls the type of output modes. There are two standard types of output
modes: ‘noh’ and ‘calpha’. outmodes='noh' invokes regular all-atom based ENM-NMA. When
outmodes='calpha', an effective Hessian with respect to all C-alpha atoms will be first calculated
using the same formula as in Hinsen et al. NMA is then performed on this effective C-alpha based
Hessian. In addition, users can provide their own atom selection (see atom.select) as the value of
outmodes for customized output modes generation.

When reduced=TRUE, only a selection of all heavy atoms is used to build the ENM. More specifi-
cally, three to five atoms per residue constitute the model. Here the N, CA, C atoms represent the
protein backbone, and zero to two selected side chain atoms represent the side chain (selected based
on side chain size and the distance to CA). This coarse-grained ENM has significantly improved
computational efficiency and similar prediction accuracy with respect to the all-atom ENM.

When rtb=TRUE, rotation-translation block (RTB) based approximate modes will be calculated. In
this method, each residue is assumed to be a rigid body (or ‘block’) that has only rotational and
translational degrees of freedom. Intra-residue deformation is thus ignored. (See Durand et al 1994
and Tama et al. 2000 for more details). N residues per block is also supported, where N=1, 2, 3,
etc. (See argument nmer). The RTB method has significantly improved computational efficiency
and similar prediction accuracy with respect to the all-atom ENM.

By default the function will diagonalize the mass-weighted Hessian matrix. The resulting mode
vectors are moreover scaled by the thermal fluctuation amplitudes.

Value

Returns an object of class ‘nma’ with the following components:

modes numeric matrix with columns containing the normal mode vectors. Mode vec-
tors are converted to unweighted Cartesian coordinates when mass=TRUE. Note
that the 6 first trivial eigenvectos appear in columns one to six.

frequencies numeric vector containing the vibrational frequencies corresponding to each
mode (for mass=TRUE).

16 aanma

force.constants

numeric vector containing the force constants corresponding to each mode (for
mass=FALSE)).

fluctuations numeric vector of atomic fluctuations.

U numeric matrix with columns containing the raw eigenvectors. Equals to the
modes component when mass=FALSE and temp=NULL.

L numeric vector containing the raw eigenvalues.

xyz numeric matrix of class xyz containing the Cartesian coordinates in which the
calculation was performed.

mass numeric vector containing the residue masses used for the mass-weighting.

temp numerical, temperature for which the amplitudes for scaling the atomic displace-
ment vectors are calculated.

triv.modes number of trivial modes.

natoms number of C-alpha atoms.

call the matched call.

Author(s)

Lars Skjaerven & Xin-Qiu Yao

References

Hinsen, K. et al. (2000) Chem. Phys. 261, 25. Durand, P. et al. (1994) Biopolymers 34, 759. Tama,
F. et al. (2000) Proteins 41, 1.

See Also

nma.pdb for C-alpha based NMA, aanma.pdbs for ensemble all-atom NMA, load.enmff for avail-
able ENM force fields, and fluct.nma, mktrj.nma, and dccm.nma for various post-NMA calcula-
tions.

Examples

Not run:
All-atom NMA takes relatively long time - Don't run by default.

Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate all-atom normal modes
modes.aa <- aanma(pdb, outmodes='noh')

Calculate all-atom normal modes with RTB approximation
modes.aa.rtb <- aanma(pdb, outmodes='noh', rtb=TRUE)

Compare the two modes
rmsip(modes.aa, modes.aa.rtb)

aanma.pdbs 17

Calculate C-alpha normal modes.
modes <- aanma(pdb)

Calculate C-alpha normal modes with reduced ENM.
modes.cg <- aanma(pdb, reduced=TRUE)

Calculate C-alpha normal modes with RTB approximation
modes.rtb <- aanma(pdb, rtb=TRUE)

Compare modes
rmsip(modes, modes.cg)
rmsip(modes, modes.rtb)

Print modes
print(modes)

Plot modes
plot(modes)

Visualize modes
#m7 <- mktrj.nma(modes, mode=7, file="mode_7.pdb", pdb=pdb)

End(Not run)

aanma.pdbs Ensemble Normal Mode Analysis with All-Atom ENM

Description

Perform normal mode analysis (NMA) on an ensemble of aligned protein structures using all-atom
elastic network model (aaENM).

Usage

S3 method for class 'pdbs'
aanma(pdbs, fit = TRUE, full = FALSE, subspace = NULL,
rm.gaps = TRUE, ligand = FALSE, outpath = NULL, gc.first = TRUE,
ncore = NULL, ...)

Arguments

pdbs an ‘pdbs’ object as obtained from read.all.
fit logical, if TRUE C-alpha coordinate based superposition is performed prior to

normal mode calculations.
full logical, if TRUE return the complete, full structure, ‘nma’ objects.
subspace number of eigenvectors to store for further analysis.
rm.gaps logical, if TRUE obtain the hessian matrices for only atoms in the aligned po-

sitions (non-gap positions in all aligned structures). Thus, gap positions are
removed from output.

18 aanma.pdbs

ligand logical, if TRUE ligand molecules are also included in the calculation.

outpath character string specifing the output directory to which the PDB structures should
be written.

gc.first logical, if TRUE will call gc() first before mode calculation for each structure.
This is to avoid memory overload when ncore > 1.

ncore number of CPU cores used to do the calculation.

... additional arguments to aanma.

Details

This function builds elastic network model (ENM) using all heavy atoms and performs subse-
quent normal mode analysis (NMA) on a set of aligned protein structures obtained with function
read.all. The main purpose is to automate ensemble normal mode analysis using all-atom ENMs.

By default, the effective Hessian for all C-alpha atoms is calculated based on the Hessian built from
all heavy atoms (including ligand atoms if ligand=TRUE). Returned values include aligned mode
vectors and (when full=TRUE) a list containing the full ‘nma’ objects one per each structure. When
‘rm.gaps=TRUE’ the unaligned atoms are ommited from output. With default arguments ‘rmsip’
provides RMSIP values for all pairwise structures.

When outmodes is provided and is not ‘calpha’ (e.g. ‘noh’. See aanma for more details), the
function simply returns a list of ‘nma’ objects, one per each structure, and no aligned mode vector
is returned. In this case, the arguments full, subspace, and rm.gaps are ignored. This is equivalent
to a wrapper function repeatedly calling aanma.

Value

Returns a list of ‘nma’ objects (outmodes is provided and is not ‘calpha’) or an ‘enma’ object with
the following components:

fluctuations a numeric matrix containing aligned atomic fluctuations with one row per input
structure.

rmsip a numeric matrix of pair wise RMSIP values (only the ten lowest frequency
modes are included in the calculation).

U.subspace a three-dimensional array with aligned eigenvectors (corresponding to the sub-
space defined by the first N non-trivial eigenvectors (‘U’) of the ‘nma’ object).

L numeric matrix containing the raw eigenvalues with one row per input structure.

full.nma a list with a nma object for each input structure (available only when full=TRUE).

Author(s)

Xin-Qiu Yao & Lars Skjaerven

See Also

For normal mode analysis on single structure PDB: aanma

For conventional C-alpha based normal mode analysis: nma, nma.pdbs.

For the analysis of the resulting ‘eNMA’ object: mktrj.enma, dccm.enma, plot.enma, cov.enma.

aln2html 19

Similarity measures: sip, covsoverlap, bhattacharyya, rmsip.

Related functionality: read.all.

Examples

Needs MUSCLE installed - testing excluded
if(check.utility("muscle")) {

Fetch PDB files and split to chain A only PDB files
ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A")
files <- get.pdb(ids, split = TRUE, path = tempdir())

Sequence Alignement
aln <- pdbaln(files, outfile = tempfile())

Read all pdb coordinates
pdbs <- read.all(aln)

Normal mode analysis on aligned data
modes <- aanma(pdbs, rm.gaps=TRUE)

Plot fluctuation data
plot(modes, pdbs=pdbs)

Cluster on Fluctuation similariy
sip <- sip(modes)
hc <- hclust(dist(sip))
col <- cutree(hc, k=3)

Plot fluctuation data
plot(modes, pdbs=pdbs, col=col)

RMSIP is pre-calculated
heatmap(1-modes$rmsip)

Bhattacharyya coefficient
bc <- bhattacharyya(modes)
heatmap(1-bc)

}

aln2html Create a HTML Page For a Given Alignment

Description

Renders a sequence alignment as coloured HTML suitable for viewing with a web browser.

20 aln2html

Usage

aln2html(aln, file="alignment.html", Entropy=0.5, append=TRUE,
caption.css="color: gray; font-size: 9pt",
caption="Produced by Bio3D",
fontsize="11pt", bgcolor=TRUE, colorscheme="clustal")

Arguments

aln an alignment list object with id and ali components, similar to that generated
by read.fasta.

file name of output html file.

Entropy conservation ‘cuttoff’ value below which alignment columns are not coloured.

append logical, if TRUE output will be appended to file; otherwise, it will overwrite
the contents of file.

caption.css a character string of css options for rendering ‘caption’ text.

caption a character string of text to act as a caption.

fontsize the font size for alignment characters.

bgcolor background colour.

colorscheme conservation colouring scheme, currently only “clustal” is supported with alter-
native arguments resulting in an entropy shaded alignment.

Value

Called for its effect.

Note

Your web browser should support style sheets.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, write.fasta, seqaln

angle.xyz 21

Examples

Not run:
Read an example alignment
aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))

Produce a HTML file for this alignment
aln2html(aln, append=FALSE, file=file.path("eg.html"))
aln2html(aln, colorscheme="ent", file="eg.html")
View/open the file in your web browser
#browseURL("eg.html")

End(Not run)

angle.xyz Calculate the Angle Between Three Atoms

Description

A function for basic bond angle determination.

Usage

angle.xyz(xyz, atm.inc = 3)

Arguments

xyz a numeric vector of Cartisean coordinates.

atm.inc a numeric value indicating the number of atoms to increment by between suc-
cessive angle evaluations (see below).

Value

Returns a numeric vector of angles.

Note

With atm.inc=1, angles are calculated for each set of three successive atoms contained in xyz (i.e.
moving along one atom, or three elements of xyz, between sucessive evaluations). With atm.inc=3,
angles are calculated for each set of three successive non-overlapping atoms contained in xyz (i.e.
moving along three atoms, or nine elements of xyz, between sucessive evaluations).

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

22 as.fasta

See Also

torsion.pdb, torsion.xyz, read.pdb, read.dcd.

Examples

Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Angle between N-CA-C atoms of residue four
inds <- atom.select(pdb, resno=4, elety=c("N","CA","C"))
angle.xyz(pdb$xyz[inds$xyz])

Basic stats of all N-CA-C bound angles
inds <- atom.select(pdb, elety=c("N","CA","C"))
summary(angle.xyz(pdb$xyz[inds$xyz]))
#hist(angle.xyz(pdb$xyz[inds$xyz]), xlab="Angle")

as.fasta Alignment to FASTA object

Description

Convert alignment/sequence in matrix/vector format to FASTA object.

Usage

as.fasta(x, id=NULL, ...)

Arguments

x a sequence character matrix/vector (e.g obtained from get.seq or seqbind).
id a vector of sequence names to serve as sequence identifers. By default the func-

tion will use the row names of the alignment if they exists, otherwise ids will be
generated.

... arguments passed to and from functions.

Details

This function provides basic functionality to convert a sequence character matrix/vector to a FASTA
object.

Value

Returns a list of class "fasta" with the following components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

id sequence names as identifers.
call the matched call.

as.pdb 23

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

get.seq, seqaln, seqbind, pdbaln

Examples

as.fasta(c("A", "C", "D"))

as.pdb Convert to PDB format

Description

Convert Tripos Mol2 format, or Amber parameter/topology and coordinate data to PDB format.

Usage

as.pdb(...)

S3 method for class 'mol2'
as.pdb(mol, ...)

S3 method for class 'prmtop'
as.pdb(prmtop, crd=NULL, inds=NULL, inds.crd=inds, ncore=NULL, ...)

Default S3 method:
as.pdb(pdb=NULL, xyz=NULL, type=NULL, resno=NULL,

resid=NULL, eleno=NULL, elety=NULL, chain=NULL,
insert=NULL, alt=NULL, o=NULL, b=NULL, segid=NULL,
elesy=NULL, charge=NULL, verbose=TRUE, ...)

Arguments

... arguments passed to and from functions.

mol a list object of type "mol2" (obtained with read.mol2).

prmtop a list object of type "prmtop" (obtained with read.prmtop).

crd a list object of type "crd" (obtained with read.crd.amber).

inds a list object of type "select" as obtained from atom.select. The indices
points to which atoms in the PRMTOP object to convert.

24 as.pdb

inds.crd same as the ‘inds’ argument, but pointing to the atoms in CRD object to con-
vert. By default, this argument equals to ‘inds’, assuming the same number and
sequence of atoms in the PRMTOP and CRD objects.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

pdb an object of class ‘pdb’ as obtained from read.pdb.

xyz a numeric vector/matrix of Cartesian coordinates. If provided, the number of
atoms in the new PDB object will be set to ncol(as.xyz(xyz))/3 (see as.xyz).
If xyz is not provided the number of atoms will be based on the length of eleno,
resno, or resid (in that order).

type a character vector of record types, i.e. "ATOM" or "HETATM", with length
equal to ncol(as.xyz(xyz))/3. Alternatively, a single element character vec-
tor can be provided which will be repeated to match the number of atoms.

resno a numeric vector of residue numbers of length equal to ncol(as.xyz(xyz))/3.

resid a character vector of residue types/ids of length equal to ncol(as.xyz(xyz))/3.
Alternatively, a single element character vector can be provided which will be
repeated to match the number of atoms.

eleno a numeric vector of element/atom numbers of length equal to ncol(as.xyz(xyz))/3.

elety a character vector of element/atom types of length equal to ncol(as.xyz(xyz))/3.
Alternatively, a single element character vector can be provided which will be
repeated to match the number of atoms.

chain a character vector of chain identifiers with length equal to ncol(as.xyz(xyz))/3.
Alternatively, a single element character vector can be provided which will be
repeated to match the number of atoms.

insert a character vector of insertion code with length equal to ncol(as.xyz(xyz))/3.

alt a character vector of alternate record with length equal to ncol(as.xyz(xyz))/3.

o a numeric vector of occupancy values of length equal to ncol(as.xyz(xyz))/3.
Alternatively, a single element numeric vector can be provided which will be
repeated for to match the number of atoms.

b a numeric vector of B-factors of length equal to ncol(as.xyz(xyz))/3. Alter-
natively, a single element numeric vector can be provided which will be repeated
to match the number of atoms.

segid a character vector of segment id of length equal to ncol(as.xyz(xyz))/3. Al-
ternatively, a single element character vector can be provided which will be
repeated to match the number of atoms.

elesy a character vector of element symbol of length equal to ncol(as.xyz(xyz))/3.
Alternatively, a single element character vector can be provided which will be
repeated to match the number of atoms.

charge a numeric vector of atomic charge of length equal to ncol(as.xyz(xyz))/3.

verbose logical, if TRUE details of the PDB generation process is printed to screen.

as.pdb 25

Details

This function converts Tripos Mol2 format, Amber formatted parameter/topology (PRMTOP) and
coordinate objects, and vector data to a PDB object.

While as.pdb.mol2 and as.pdb.prmtop converts specific objects to a PDB object, as.pdb.default
provides basic functionality to convert raw data such as vectors of e.g. residue numbers, residue
identifiers, Cartesian coordinates, etc to a PDB object. When pdb is provided the returned PDB
object is built from the input object with fields replaced by any input vector arguments. e.g.
as.pdb(pdb, xyz=crd) will return the same PDB object, with only the Cartesian coordinates
changed to crd.

Value

Returns a list of class "pdb" with the following components:

atom a data.frame containing all atomic coordinate ATOM data, with a row per ATOM
and a column per record type. See below for details of the record type naming
convention (useful for accessing columns).

xyz a numeric matrix of ATOM coordinate data of class xyz.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

call the matched call.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. https://ambermd.org/FileFormats.
php

See Also

read.crd, read.ncdf, atom.select, read.pdb

Examples

Vector(s) to PDB object
pdb <- as.pdb(resno=1:6, elety="CA", resid="ALA", chain="A")
pdb

Not run:
Read a PRMTOP file
prmtop <- read.prmtop(system.file("examples/crambin.prmtop", package="bio3d"))

Read Amber coordinates
crds <- read.crd(system.file("examples/crambin.inpcrd", package="bio3d"))

Atom selection

https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php

26 as.select

ca.inds <- atom.select(prmtop, "calpha")

Convert to PDB format
pdb <- as.pdb(prmtop, crds, inds=ca.inds)

Read a single entry MOL2 file
(returns a single object)
mol <- read.mol2(system.file("examples/aspirin.mol2", package="bio3d"))

Convert to PDB
pdb <- as.pdb(mol)

End(Not run)

as.select Convert Atomic Indices to a Select Object

Description

Convert atomic indices to a select object with ‘atom’ and ‘xyz’ components.

Usage

as.select(x, ...)

Arguments

x a numeric vector containing atomic indices to be converted to a ‘select’ object.
Alternatively, a logical vector can be provided.

... arguments passed to and from functions.

Details

Convert atomic indices to a select object with ‘atom’ and ‘xyz’ components.

Value

Returns a list of class "select" with the following components:

atom a numeric matrix of atomic indices.

xyz a numeric matrix of xyz indices.

call the matched call.

Author(s)

Lars Skjaerven

atom.index 27

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

atom.select, read.pdb

Examples

as.select(c(1,2,3))

atom.index Atom Names/Types

Description

This data set gives for various atom names/types the corresponding atomic symbols.

Usage

atom.index

Format

A data frame with the following components.

name a character vector containing atom names/types.

symb a character vector containing atomic symbols.

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

elements, atom.index, atom2ele

Examples

data(atom.index)
atom.index

Get the atomic symbol of some atoms
atom.names <- c("CA", "O", "N", "OXT")
atom.index[match(atom.names, atom.index$name), "symb"]

28 atom.select

atom.select Atom Selection from PDB and PRMTOP Structure Objects

Description

Return the ‘atom’ and ‘xyz’ coordinate indices of ‘pdb’ or ‘prmtop’ structure objects corresponding
to the intersection of a hierarchical selection.

Usage

atom.select(...)

S3 method for class 'pdb'
atom.select(pdb, string = NULL,

type = NULL, eleno = NULL, elety = NULL,
resid = NULL, chain = NULL, resno = NULL,
insert = NULL, segid = NULL,
operator = "AND", inverse = FALSE,
value = FALSE, verbose=FALSE, ...)

S3 method for class 'pdbs'
atom.select(pdbs, string = NULL,

resno = NULL, chain = NULL, resid = NULL,
operator="AND", inverse = FALSE,
value = FALSE, verbose=FALSE, ...)

S3 method for class 'mol2'
atom.select(mol, string=NULL,

eleno = NULL, elena = NULL, elety = NULL,
resid = NULL, chain = NULL, resno = NULL,
statbit = NULL,

operator = "AND", inverse = FALSE,
value = FALSE, verbose=FALSE, ...)

S3 method for class 'prmtop'
atom.select(prmtop, ...)

S3 method for class 'select'
print(x, ...)

Arguments

... arguments passed to atom.select.pdb, atom.select.prmtop, or print.

pdb a structure object of class "pdb", obtained from read.pdb.

pdbs a numeric matrix of aligned C-alpha xyz Cartesian coordinates as obtained with
read.fasta.pdb or pdbaln.

string a single selection keyword from calpha cbeta backbone sidechain protein
nucleic ligand water h or noh.

atom.select 29

type a single element character vector for selecting ‘ATOM’ or ‘HETATM’ record
types.

eleno a numeric vector of element numbers.

elena a character vector of atom names.

elety a character vector of atom names.

resid a character vector of residue name identifiers.

chain a character vector of chain identifiers.

resno a numeric vector of residue numbers.

insert a character vector of insert identifiers. Non-insert residues can be selected with
NA or ‘’ values. The default value of NULL will select both insert and non-insert
residues.

segid a character vector of segment identifiers. Empty segid values can be selected
with NA or ‘’ values. The default value of NULL will select both empty and non-
empty segment identifiers.

operator a single element character specifying either the AND or OR operator by which
individual selection components should be combined. Allowed values are ‘"AND"’
and ‘"OR"’.

verbose logical, if TRUE details of the selection are printed.

inverse logical, if TRUE the inversed selection is retured (i.e. all atoms NOT in the
selection).

value logical, if FALSE, vectors containing the (integer) indices of the matches deter-
mined by atom.select are returned, and if TRUE, a pdb object containing the
matching atoms themselves is returned.

mol a structure object of class "mol2", obtained from read.mol2.

statbit a character vector of statbit identifiers.

prmtop a structure object of class "prmtop", obtained from read.prmtop.

x a atom.select object as obtained from atom.select.

Details

This function allows for the selection of atom and coordinate data corresponding to the intersection
of various input criteria.

Input selection criteria include selection string keywords (such as "calpha", "backbone", "sidechain",
"protein", "nucleic", "ligand", etc.) and individual named selection components (including
‘chain’, ‘resno’, ‘resid’, ‘elety’ etc.).

For example, atom.select(pdb, "calpha") will return indices for all C-alpha (CA) atoms found
in protein residues in the pdb object, atom.select(pdb, "backbone") will return indices for all
protein N,CA,C,O atoms, and atom.select(pdb, "cbeta") for all protein N,CA,C,O,CB atoms.

Note that keyword string shortcuts can be combined with individual selection components, e.g.
atom.select(pdb, "protein", chain="A") will select all protein atoms found in chain A.

Selection criteria are combined according to the provided operator argument. The default operator
AND (or &) will combine by intersection while OR (or |) will take the union.

30 atom.select

For example, atom.select(pdb, "protein", elety=c("N", "CA", "C"), resno=65:103) will
select the N, CA, C atoms in the protein residues 65 through 103, while atom.select(pdb,
"protein", resid="ATP", operator="OR") will select all protein atoms as well as any ATP
residue(s).

Other string shortcuts include: "calpha", "back", "backbone", "cbeta", "protein", "notprotein",
"ligand", "water", "notwater", "h", "noh", "nucleic", and "notnucleic".

In addition, the combine.select function can further combine atom selections using ‘AND’, ‘OR’,
or ‘NOT’ logical operations.

Value

Returns a list of class "select" with the following components:

atom a numeric matrix of atomic indices.

xyz a numeric matrix of xyz indices.

call the matched call.

Note

Protein atoms are defined as any atom in a residue matching the residue name in the attached
aa.table data frame. See aa.table$aa3 for a complete list of residue names.

Nucleic atoms are defined as all atoms found in residues with names A, U, G, C, T, I, DA, DU, DG,
DC, DT, or DI.

Water atoms/residues are defined as those with residue names H2O, OH2, HOH, HHO, OHH, SOL,
WAT, TIP, TIP, TIP3, or TIP4.

Author(s)

Barry Grant, Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, as.select, combine.select, trim.pdb, write.pdb, read.prmtop, read.crd, read.dcd,
read.ncdf.

Examples

##- PDB example
Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Select protein atoms of chain A
atom.select(pdb, "protein", chain="A")

Select all atoms except from the protein

atom2ele 31

atom.select(pdb, "protein", inverse=TRUE, verbose=TRUE)

Select all C-alpha atoms with residues numbers between 43 and 54
sele <- atom.select(pdb, "calpha", resno=43:54, verbose=TRUE)

Access the PDB data with the selection indices
print(pdb$atom[sele$atom, "resid"])
print(pdb$xyz[sele$xyz])

Trim PDB to selection
ca.pdb <- trim.pdb(pdb, sele)

Not run:

##- PRMTOP example
prmtop <- read.prmtop(system.file("examples/crambin.prmtop", package="bio3d"))

Atom selection
ca.inds <- atom.select(prmtop, "calpha")

End(Not run)

atom2ele Atom Names/Types to Atomic Symbols Converter

Description

Convert atom names/types into atomic symbols

Usage

atom2ele(...)

Default S3 method:
atom2ele(x, elety.custom=NULL, rescue=TRUE, ...)

S3 method for class 'pdb'
atom2ele(pdb, inds=NULL, ...)

Arguments

x a character vector containing atom names/types to be converted.

elety.custom a customized data.frame containing atom names/types and corresponding atomic
symbols.

rescue logical, if TRUE the atomic symbols will be converted based on matching with
bio3d::elements$symb.

pdb an object of class ‘pdb’ for which elety will be converted.

32 atom2ele

inds an object of class ‘select’ indicating a subset of the pdb object to be used (see
atom.select and trim.pdb).

... further arguments passed to or from other methods.

Details

The default method searchs for the atom names/types in the atom.index data set and returns their
corresponding atomic symbols. If elety.custom is specified it is combined with atom.index
(using rbind) before searching. Therefore, elety.custom must contains columns named name and
symb.

The S3 method for object of class ‘pdb’, pass pdb$atom[,"elety"] to the default method.

Value

Return a character vector of atomic symbols

Author(s)

Julien Ide, Lars Skjaerven

See Also

atom.index, elements, read.pdb, atom2mass, formula2mass

Examples

atom.names <- c("CA", "O", "N", "OXT")
atom2ele(atom.names)

PDB server connection required - testing excluded
try({

Get atomic symbols from a PDB object with a customized data set
pdb <- read.pdb("3RE0",verbose=FALSE)
lig <- trim(pdb, "ligand")

maps PT1 to Pt, CL2 to Cl, C4A to C
atom2ele(lig)

map atom name to element manually
myelety <- data.frame(name = "CL2", symb = "Cl")
atom2ele(lig, elety.custom = myelety)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

atom2mass 33

atom2mass Atom Names/Types to Mass Converter

Description

Convert atom names/types into atomic masses.

Usage

atom2mass(...)
Default S3 method:
atom2mass(x, mass.custom=NULL, elety.custom=NULL,

grpby=NULL, rescue=TRUE, ...)
S3 method for class 'pdb'
atom2mass(pdb, inds=NULL, mass.custom=NULL,

elety.custom=NULL, grpby=NULL, rescue=TRUE, ...)

Arguments

x a character vector containing atom names/types to be converted.

mass.custom a customized data.frame containing atomic symbols and corresponding masses.

elety.custom a customized data.frame containing atom names/types and corresponding atomic
symbols.

grpby a ‘factor’, as returned by as.factor, used to group the atoms.

rescue logical, if TRUE the atomic symbols will be mapped to the first character of the
atom names/types.

pdb an object of class ‘pdb’ for which elety will be converted.

inds an object of class ‘select’ indicating a subset of the pdb object to be used (see
atom.select and trim.pdb).

... .

Details

The default method first convert atom names/types into atomic symbols using the atom2ele func-
tion. Then, atomic symbols are searched in the elements data set and their corresponding masses
are returned. If mass.custom is specified it is combined with elements (using rbind) before
searching. Therefore, mass.custom must have columns named symb and mass (see examples). If
grpby is specified masses are splitted (using split) to compute the mass of groups of atoms defined
by grpby.

The S3 method for object of class ‘pdb’, pass pdb$atom$elety to the default method.

Value

Return a numeric vector of masses.

34 atom2xyz

Author(s)

Julien Ide, Lars Skjaerven

See Also

elements, atom.index, atom2ele, read.pdb

Examples

atom.names <- c("CA", "O", "N", "OXT")
atom2mass(atom.names)

PDB server connection required - testing excluded
try({

Get atomic symbols from a PDB object with a customized data set
pdb <- read.pdb("3RE0", verbose=FALSE)
inds <- atom.select(pdb, resno=201, verbose=FALSE)

selected atoms
print(pdb$atom$elety[inds$atom])

default will map CL2 to C
atom2mass(pdb, inds)

map element CL2 correctly to Cl
myelety <- data.frame(name = c("CL2","PT1","N1","N2"), symb = c("Cl","Pt","N","N"))
atom2mass(pdb, inds, elety.custom = myelety)

custom masses
mymasses <- data.frame(symb = c("Cl","Pt"), mass = c(35.45, 195.08))
atom2mass(pdb, inds, elety.custom = myelety, mass.custom = mymasses)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

atom2xyz Convert Between Atom and xyz Indices

Description

Basic functions to convert between xyz and their corresponding atom indices.

basename.pdb 35

Usage

atom2xyz(num)
xyz2atom(xyz.ind)

Arguments

num a numeric vector of atom indices.
xyz.ind a numeric vector of xyz indices.

Value

A numeric vector of either xyz or atom indices.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

atom.select, read.pdb

Examples

xyz.ind <- atom2xyz(c(1,10,15))
xyz2atom(xyz.ind)

basename.pdb Manipulate PDB File Names

Description

Removes all of the path up to and including the last path separator (if any) and the final ‘.pdb’
extension.

Usage

basename.pdb(x, mk4 = FALSE, ext=".pdb")

Arguments

x character vector of PDB file names, containing path and extensions.
mk4 logical, if TRUE the output will be truncated to the first 4 characters of the

basename. This is frequently convenient for matching RCSB PDB identifier
conventions (see examples below).

ext character, specifying the file extension, e.g. ‘.pdb’ or ‘.mol2’.

36 bhattacharyya

Details

This is a simple utility function for the common task of PDB file name manipulation. It is used
internally in several bio3d functions and van be thought of as basename for PDB files.

Value

A character vector of the same length as the input ‘x’.

Paths not containing any separators are taken to be in the current directory.

If an element of input is ‘x’ is ‘NA’, so is the result.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

basename, dirname

Examples

basename.pdb("/somedir/somewhere/1bg2_myfile.pdb")
basename.pdb("/somedir/somewhere/1bg2_myfile.pdb", TRUE)

bhattacharyya Bhattacharyya Coefficient

Description

Calculate the Bhattacharyya Coefficient as a similarity between two modes objects.

Usage

bhattacharyya(...)

S3 method for class 'enma'
bhattacharyya(enma, covs=NULL, ncore=NULL, ...)

S3 method for class 'array'
bhattacharyya(covs, ncore=NULL, ...)

S3 method for class 'matrix'
bhattacharyya(a, b, q=90, n=NULL, ...)

bhattacharyya 37

S3 method for class 'nma'
bhattacharyya(...)

S3 method for class 'pca'
bhattacharyya(...)

Arguments

enma an object of class "enma" obtained from function nma.pdbs.

covs an array of covariance matrices of equal dimensions.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

a covariance matrix to be compared with b.

b covariance matrix to be compared with a.

q a numeric value (in percent) determining the number of modes to be compared.

n the number of modes to be compared.

... arguments passed to associated functions.

Details

Bhattacharyya coefficient provides a means to compare two covariance matrices derived from NMA
or an ensemble of conformers (e.g. simulation or X-ray conformers).

Value

Returns the similarity coefficient(s).

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696. Fuglebakk, E. et al. (2013) JCTC 9, 5618–5628.

See Also

Other similarity measures: sip, covsoverlap, rmsip.

38 binding.site

binding.site Binding Site Residues

Description

Determines the interacting residues between two PDB entities.

Usage

binding.site(a, b=NULL, a.inds=NULL, b.inds=NULL, cutoff=5,
hydrogens=TRUE, byres=TRUE, verbose=FALSE)

Arguments

a an object of class pdb as obtained from function read.pdb.
b an object of class pdb as obtained from function read.pdb.
a.inds atom and xyz coordinate indices obtained from atom.select that selects the

elements of a upon which the calculation should be based.
b.inds atom and xyz coordinate indices obtained from atom.select that selects the

elements of b upon which the calculation should be based.
cutoff distance cutoff
hydrogens logical, if FALSE hydrogen atoms are omitted from the calculation.
byres logical, if TRUE all atoms in a contacting residue is returned.
verbose logical, if TRUE details of the selection are printed.

Details

This function reports the residues of a closer than a cutoff to b. This is a wrapper function calling
the underlying function dist.xyz.

If b=NULL then b.inds should be elements of a upon which the calculation is based (typically chain
A and B of the same PDB file).

If b=a.inds=b.inds=NULL the function will use atom.select with arguments "protein" and
"ligand" to determine receptor and ligand, respectively.

Value

Returns a list with the following components:

inds object of class select with atom and xyz components.
inds$atom atom indices of a.
inds$xyz xyz indices of a.
resnames a character vector of interacting residues.
resno a numeric vector of interacting residues numbers.
chain a character vector of the associated chain identifiers of "resno".
call the matched call.

binding.site 39

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, atom.select, dm

Examples

PDB server connection required - testing excluded
try({

pdb <- read.pdb('3dnd')

automatically identify 'protein' and 'ligand'
bs <- binding.site(pdb)

bs$resnames
#pdb$atom[bs$inds$atom,]

provide indices
rec.inds <- atom.select(pdb, chain="A", resno=1:350)
lig.inds <- atom.select(pdb, chain="A", resno=351)
bs <- binding.site(pdb, a.inds=rec.inds, b.inds=lig.inds)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
Interaction between peptide and protein
rec.inds <- atom.select(pdb, chain='A', resno=c(1:350))
lig.inds <- atom.select(pdb, chain='I', resno=c(5:24))
bs <- binding.site(pdb, a.inds=rec.inds, b.inds=lig.inds)

End(Not run)

Redundant testing excluded
try({

Interaction between two PDB entities
#rec <- read.pdb("receptor.pdb")
#lig <- read.pdb("ligand.pdb")
rec <- trim.pdb(pdb, inds=rec.inds)

40 biounit

lig <- trim.pdb(pdb, inds=lig.inds)
bs <- binding.site(rec, lig, hydrogens=FALSE)

}, silent=TRUE)

biounit Biological Units Construction

Description

Construct biological assemblies/units based on a ’pdb’ object.

Usage

biounit(pdb, biomat = NULL, multi = FALSE, ncore = NULL)

Arguments

pdb an object of class pdb as obtained from function read.pdb.

biomat a list object as returned by read.pdb (pdb$remark$biomat), containing matrices
for symmetry operation on individual chains to build biological units. It will
override the matrices stored in pdb.

multi logical, if TRUE the biological unit is returned as a ’multi-model’ pdb object
with each symmetric copy a distinct structural ’MODEL’. Otherwise, all copies
are represented as separated chains.

ncore number of CPU cores used to do the calculation. By default (ncore=NULL), use
all available CPU cores.

Details

A valid structural/simulation study should be performed on the biological unit of a protein system.
For example, the alpha2-beta2 tetramer form of hemoglobin. However, canonical PDB files usually
contain the asymmetric unit of the crystal cell, which can be:

1. One biological unit

2. A portion of a biological unit

3. Multiple biological units

The function performs symmetry operations to the coordinates based on the transformation matrices
stored in a ’pdb’ object returned by read.pdb, and returns biological units stored as a list of pdb
objects.

Value

a list of pdb objects with each representing an individual biological unit.

blast.pdb 41

Author(s)

Xin-Qiu Yao

See Also

read.pdb

Examples

PDB server connection required - testing excluded
try({

pdb <- read.pdb("2dn1")
biounit <- biounit(pdb)
pdb
biounit

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
biounit <- biounit(read.pdb("2bfu"), multi=TRUE)
write.pdb(biounit[[1]], file="biounit.pdb")
open the pdb file in VMD to have a look on the biological unit

End(Not run)

blast.pdb NCBI BLAST Sequence Search and Summary Plot of Hit Statistics

Description

Run NCBI blastp, on a given sequence, against the PDB, NR and swissprot sequence databases.
Produce plots that facilitate hit selection from the match statistics of a BLAST result.

Usage

blast.pdb(seq, database = "pdb", time.out = NULL, chain.single=TRUE)

get.blast(urlget, time.out = NULL, chain.single=TRUE)

S3 method for class 'blast'
plot(x, cutoff = NULL, cut.seed=NULL, cluster=TRUE, mar=c(2, 5, 1, 1), cex=1.5, ...)

42 blast.pdb

Arguments

seq a single element or multi-element character vector containing the query se-
quence. Alternatively a ‘fasta’ object from function get.seq or ‘pdb’ object
from function read.pdb can be provided.

database a single element character vector specifying the database against which to search.
Current options are ‘pdb’, ‘nr’ and ‘swissprot’.

time.out integer specifying the number of seconds to wait for the blast reply before a time
out occurs.

urlget the URL to retrieve BLAST results; Usually it is returned by blast.pdb if time.out
is set and met.

chain.single logical, if TRUE double NCBI character PDB database chain identifiers are sim-
plified to lowercase ’1WF4_GG’ > ’1WF4_g’. If FALSE no conversion to match
RCSB PDB files is performed.

x BLAST results as obtained from the function blast.pdb.

cutoff A numeric cutoff value, in terms of minus the log of the evalue, for returned hits.
If null then the function will try to find a suitable cutoff near ‘cut.seed’ which
can be used as an initial guide (see below).

cut.seed A numeric seed cutoff value, used for initial cutoff estimation. If null then a
seed position is set to the point of largest drop-off in normalized scores (i.e. the
biggest jump in E-values).

cluster Logical, if TRUE (and ‘cutoff’ is null) a clustering of normalized scores is per-
formed to partition hits in groups by similarity to query. If FALSE the partition
point is set to the point of largest drop-off in normalized scores.

mar A numerical vector of the form c(bottom, left, top, right) which gives the number
of lines of margin to be specified on the four sides of the plot.

cex a numerical single element vector giving the amount by which plot labels should
be magnified relative to the default.

... extra plotting arguments.

Details

The blast.pdb function employs direct HTTP-encoded requests to the NCBI web server to run
BLASTP, the protein search algorithm of the BLAST software package.

BLAST, currently the most popular pairwise sequence comparison algorithm for database search-
ing, performs gapped local alignments via a heuristic strategy: it identifies short nearly exact
matches or hits, bidirectionally extends non-overlapping hits resulting in ungapped extended hits
or high-scoring segment pairs(HSPs), and finally extends the highest scoring HSP in both direc-
tions via a gapped alignment (Altschul et al., 1997)

For each pairwise alignment BLAST reports the raw score, bitscore and an E-value that assess the
statistical significance of the raw score. Note that unlike the raw score E-values are normalized with
respect to both the substitution matrix and the query and database lengths.

Here we also return a corrected normalized score (mlog.evalue) that in our experience is easier to
handle and store than conventional E-values. In practice, this score is equivalent to minus the natural

blast.pdb 43

log of the E-value. Note that, unlike the raw score, this score is independent of the substitution
matrix and and the query and database lengths, and thus is comparable between BLASTP searches.

Examining plots of BLAST alignment lengths, scores, E-values and normalized scores (-log(E-
Value) from the blast.pdb function can aid in the identification sensible hit similarity thresholds.
This is facilitated by the plot.blast function.

If a ‘cutoff’ value is not supplied then a basic hierarchical clustering of normalized scores is per-
formed with initial group partitioning implemented at a hopefully sensible point in the vicinity of
‘h=cut.seed’. Inspection of the resultant plot can then be use to refine the value of ‘cut.seed’ or
indeed ‘cutoff’. As the ‘cutoff’ value can vary depending on the desired application and indeed the
properties of the system under study it is envisaged that ‘plot.blast’ will be called multiple times to
aid selection of a suitable ‘cutoff’ value. See the examples below for further details.

Value

The function blast.pdb returns a list with three components, hit.tbl, raw, and url. The func-
tion plot.blast produces a plot on the active graphics device and returns a list object with four
components, hits, pdb.id, acc, and inds. See below:

hit.tbl a data frame summarizing BLAST results for each reported hit. It contains fol-
lowing major columns:

• ‘bitscore’, a numeric vector containing the raw score for each alignment.
• ‘evalue’, a numeric vector containing the E-value of the raw score for each

alignment.
• ‘mlog.evalue’, a numeric vector containing minus the natural log of the E-

value.
• ‘acc’, a character vector containing the accession database identifier of each

hit.
• ‘pdb.id’, a character vector containing the PDB database identifier of each

hit.

raw a data frame containing the raw BLAST output. Note multiple hits may appear
in the same row.

url a single element character vector with the NCBI result URL and RID code. This
can be passed to the get.blast function.

hits an ordered matrix detailing the subset of hits with a normalized score above
the chosen cutoff. Database identifiers are listed along with their cluster group
number.

pdb.id a character vector containing the PDB database identifier of each hit above the
chosen threshold.

acc a character vector containing the accession database identifier of each hit above
the chosen threshold.

inds a numeric vector containing the indices of the hits relative to the input blast
object.

Note

Online access is required to query NCBI blast services.

44 bounds

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘BLAST’ is the work of Altschul et al.: Altschul, S.F. et al. (1990) J. Mol. Biol. 215, 403–410.

Full details of the ‘BLAST’ algorithm, along with download and installation instructions can be
obtained from:
https://www.ncbi.nlm.nih.gov/BLAST/.

See Also

plot.blast, hmmer, seqaln, get.pdb

Examples

Not run:
pdb <- read.pdb("4q21")
blast <- blast.pdb(pdbseq(pdb))

head(blast$hit.tbl)
top.hits <- plot(blast)
head(top.hits$hits)

Use 'get.blast()' to retrieve results at a later time.
#x <- get.blast(blast$url)
#head(x$hit.tbl)

Examine and download 'best' hits
top.hits <- plot.blast(blast, cutoff=188)
head(top.hits$hits)
#get.pdb(top.hits)

End(Not run)

bounds Bounds of a Numeric Vector

Description

Find the ‘bounds’ (i.e. start, end and length) of consecutive numbers within a larger set of numbers
in a given vector.

Usage

bounds(nums, dup.inds=FALSE, pre.sort=TRUE)

https://www.ncbi.nlm.nih.gov/BLAST/

bounds.sse 45

Arguments

nums a numeric vector.

dup.inds logical, if TRUE the bounds of consecutive duplicated elements are returned.

pre.sort logical, if TRUE the input vector is ordered prior to bounds determination.

Details

This is a simple utility function useful for summarizing the contents of a numeric vector. For
example: find the start position, end position and lengths of secondary structure elements given a
vector of residue numbers obtained from a DSSP secondary structure prediction.

By setting ‘dup.inds’ to TRUE then the indices of the first (start) and last (end) duplicated elements
of the vector are returned. For example: find the indices of atoms belonging to a particular residue
given a vector of residue numbers (see below).

Value

Returns a three column matrix listing starts, ends and lengths.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Examples

test <- c(seq(1,5,1),8,seq(10,15,1))
bounds(test)

test <- rep(c(1,2,4), times=c(2,3,4))
bounds(test, dup.ind=TRUE)

bounds.sse Obtain A SSE Object From An SSE Sequence Vector

Description

Inverse process of the funciton pdb2sse.

Usage

bounds.sse(x, pdb = NULL)

46 bounds.sse

Arguments

x a character vector indicating SSE for each amino acid residue.

pdb an object of class pdb as obtained from function read.pdb. Can be ignored if x
has ’names’ attribute for residue labels.

Details

call for its effects.

Value

a ’sse’ object.

Note

In both $helix and $sheet, an additional $id component is added to indicate the original number-
ing of the sse. This is particularly useful in e.g. trim.pdb() function.

Author(s)

Xin-Qiu Yao & Barry Grant

See Also

pdb2sse

Examples

PDB server connection required - testing excluded
try({

pdb <- read.pdb("1a7l")
sse <- pdb2sse(pdb)
sse.ind <- bounds.sse(sse)
sse.ind

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

bwr.colors 47

bwr.colors Color Palettes

Description

Create a vector of ‘n’ “contiguous” colors forming either a Blue-White-Red or a White-Gray-Black
color palette.

Usage

bwr.colors(n)
mono.colors(n)

Arguments

n the number of colors in the palette (>=1).

Details

The function bwr.colors returns a vector of n color names that range from blue through white to
red.

The function mono.colors returns color names ranging from white to black. Note: the first element
of the returned vector will be NA.

Value

Returns a character vector, cv, of color names. This can be used either to create a user-defined color
palette for subsequent graphics with palette(cv), or as a col= specification in graphics functions
and par.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

The bwr.colors function is derived from the gplots package function colorpanel by Gregory R.
Warnes.

See Also

vmd_colors, cm.colors, colors, palette, hsv, rgb, gray, col2rgb

48 cat.pdb

Examples

Redundant testing excluded

Color a distance matrix
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
d <- dm(pdb,"calpha")

plot(d, color.palette=bwr.colors)

plot(d,
resnum.1 = pdb$atom[pdb$calpha,"resno"],
color.palette = mono.colors,
xlab="Residue Number", ylab="Residue Number")

cat.pdb Concatenate Multiple PDB Objects

Description

Produce a new concatenated PDB object from two or more smaller PDB objects.

Usage

cat.pdb(..., renumber=FALSE, rechain=TRUE)

Arguments

... two or more PDB structure objects obtained from read.pdb.

renumber logical, if ‘TRUE’ residues will be renumbered.

rechain logical, if ‘TRUE’ molecules will be assigned new chain identifiers.

Details

This is a basic utility function for creating a concatenated PDB object based on multipe smaller
PDB objects.

Value

Returns an object of class "pdb". See read.pdb for further details.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

chain.pdb 49

See Also

read.pdb, atom.select, write.pdb, trim.pdb

Examples

Not run:
Read a PDB file from the RCSB online database
pdb1 <- read.pdb("1etl")
pdb2 <- read.pdb("1hel")

Concat
new.pdb <- cat.pdb(pdb1, pdb2, pdb1, rechain=TRUE, renumber=TRUE)

Write to file
write.pdb(new.pdb, file="concat.pdb")

End(Not run)

chain.pdb Find Possible PDB Chain Breaks

Description

Find possible chain breaks based on connective Calpha or peptide bond (C-N) atom separation.

Usage

chain.pdb(pdb, ca.dist = 4, bond=TRUE, bond.dist=1.5, blank = "X", rtn.vec = TRUE)

Arguments

pdb a PDB structure object obtained from read.pdb.

ca.dist the maximum distance that separates Calpha atoms considered to be in the same
chain.

bond logical, if TRUE inspect peptide bond (C-N) instead of Calpha-Calpha distances
whenever possible.

bond.dist cutoff value for C-N distance separation.

blank a character to assign non-protein atoms.

rtn.vec logical, if TRUE then the one-letter chain vector consisting of the 26 upper-case
letters of the Roman alphabet is returned.

Details

This is a basic function for finding possible chain breaks in PDB structure files, i.e. connective
Calpha atoms that are further than ca.dist apart or peptide bond (C-N) atoms separated by at least
bond.dist.

50 check.utility

Value

Prints basic chain information and if rtn.vec is TRUE returns a character vector of chain ids
consisting of the 26 upper-case letters of the Roman alphabet plus possible blank entries for non-
protein atoms.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, atom.select, trim.pdb, write.pdb

Examples

PDB server connection required - testing excluded
try({

full.pdb <- read.pdb(get.pdb("5p21", URLonly=TRUE))
inds <- atom.select(full.pdb, resno=c(10:20,30:33))
cut.pdb <- trim.pdb(full.pdb, inds)
chain.pdb(cut.pdb)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

check.utility Check on Missing Utility Programs

Description

Internally used in examples, tests, or vignettes.

Usage

check.utility(x = c("muscle", "clustalo", "dssp", "stride",
"mustang", "makeup"), quiet = TRUE)

Arguments

x Names of one or more utility programs to check.

quiet logical, if TRUE no warning or message printed.

clean.pdb 51

Details

Check if requested utility programs are availabe or not.

Value

logical, TRUE if programs are available and FALSE if any one of them is missing.

Examples

check.utility(c("muscle", "dssp"), quiet=FALSE)
if(!check.utility("mustang"))

cat(" The utility program, MUSTANG, is missing on your system\n")

clean.pdb Inspect And Clean Up A PDB Object

Description

Inspect alternative coordinates, chain breaks, bad residue numbering, non-standard/unknow amino
acids, etc. Return a ’clean’ pdb object with fixed residue numbering and optionally relabeled chain
IDs, corrected amino acid names, removed water, ligand, or hydrogen atoms. All changes are
recorded in a log in the returned object.

Usage

clean.pdb(pdb, consecutive = TRUE, force.renumber = FALSE,
fix.chain = FALSE, fix.aa = FALSE, rm.wat = FALSE, rm.lig = FALSE,
rm.h = FALSE, verbose = FALSE)

Arguments

pdb an object of class pdb as obtained from function read.pdb.

consecutive logical, if TRUE renumbering will result in consecutive residue numbers span-
ning all chains. Otherwise new residue numbers will begin at 1 for each chain.

force.renumber logical, if TRUE atom and residue records are renumbered even if no ’insert’
code is found in the pdb object.

fix.chain logical, if TRUE chains are relabeled based on chain breaks detected.

fix.aa logical, if TRUE non-standard amino acid names are converted into equivalent
standard names.

rm.wat logical, if TRUE water atoms are removed.

rm.lig logical, if TRUE ligand atoms are removed.

rm.h logical, if TRUE hydrogen atoms are removed.

verbose logical, if TRUE details of the conversion process are printed.

52 cmap

Details

call for its effects.

Value

a ’pdb’ object with an additional $log component storing all the processing messages.

Author(s)

Xin-Qiu Yao & Barry Grant

See Also

read.pdb

Examples

PDB server connection required - testing excluded
try({

pdb <- read.pdb("1a7l")
clean.pdb(pdb)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

cmap Contact Map

Description

Construct a Contact Map for Given Protein Structure(s).

Usage

cmap(...)

Default S3 method:
cmap(...)

S3 method for class 'xyz'
cmap(xyz, grpby = NULL, dcut = 4, scut = 3, pcut=1, binary=TRUE,

mask.lower = TRUE, collapse=TRUE, gc.first=FALSE, ncore=1, nseg.scale=1, ...)

S3 method for class 'pdb'

cmap 53

cmap(pdb, inds = NULL, verbose = FALSE, ...)

S3 method for class 'pdbs'
cmap(pdbs, rm.gaps=FALSE, all.atom=FALSE, ...)

Arguments

xyz numeric vector of xyz coordinates or a numeric matrix of coordinates with a row
per structure/frame.

grpby a vector counting connective duplicated elements that indicate the elements of
xyz that should be considered as a group (e.g. atoms from a particular residue).

dcut a cutoff distance value below which atoms are considered in contact.

scut a cutoff neighbour value which has the effect of excluding atoms that are se-
quentially within this value.

pcut a cutoff probability of structures/frames showing a contact, above which atoms
are considered in contact with respect to the ensemble. Ignored if binary=FALSE.

binary logical, if FALSE the raw matrix containing fraction of frames that two residues
are in contact is returned.

mask.lower logical, if TRUE the lower matrix elements (i.e. those below the diagonal) are
returned as NA.

collapse logical, if FALSE an array of contact maps for all frames is returned.

gc.first logical, if TRUE will call gc() first before calculation of distance matrix. This is
to solve the memory overload problem when ncore > 1 and xyz has many rows,
with a bit sacrifice on speed.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

pdb a structure object of class "pdb", obtained from read.pdb.

inds a list object of ATOM and XYZ indices as obtained from atom.select.

verbose logical, if TRUE details of the selection are printed.

pdbs a ‘pdbs’ object as returned by read.fasta.pdb, read.all, or pdbaln.

rm.gaps logical, if TRUE gapped positions are removed in the returned value.

all.atom logical, if TRUE all-atom coordinates from read.all are used.

... arguments passed to and from functions.

Details

A contact map is a simplified distance matrix. See the distance matrix function dm for further details.

Function "cmap.pdb" is a wrapper for "cmap.xyz" which selects all ‘notwater’ atoms and calcu-
lates the contact matrix grouped by residue number.

54 cmap

Value

Returns a N by N numeric matrix composed of zeros and ones, where one indicates a contact
between selected atoms.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

dm, dccm, dist, dist.xyz

Examples

##- Read PDB file
pdb <- read.pdb(system.file("examples/hivp.pdb", package="bio3d"))

Atom Selection indices
inds <- atom.select(pdb, "calpha")

Reference contact map
ref.cont <- cmap(pdb$xyz[inds$xyz], dcut=6, scut=3)
plot.cmap(ref.cont)

Not run:
##- Read Traj file
trj <- read.dcd(system.file("examples/hivp.dcd", package="bio3d"))
For each frame of trajectory
sum.cont <- NULL
for(i in 1:nrow(trj)) {

Contact map for frame 'i'
cont <- cmap(trj[i,inds$xyz], dcut=6, scut=3)

Product with reference
prod.cont <- ref.cont * cont
sum.cont <- c(sum.cont, sum(prod.cont,na.rm=TRUE))

}

plot(sum.cont, typ="l")

End(Not run)

cna 55

cna Protein Dynamic Correlation Network Construction and Community
Analysis.

Description

This function builds both residue-based and community-based undirected weighted network graphs
from an input correlation matrix, as obtained from the functions ‘dccm’, ‘dccm.nma’, and ‘dccm.enma’.
Community detection/clustering is performed on the initial residue based network to determine the
community organization and network structure of the community based network.

Usage

cna(cij, ...)
S3 method for class 'dccm'

cna(cij, cutoff.cij=0.4, cm=NULL, vnames=colnames(cij),
cluster.method="btwn", collapse.method="max",
cols=vmd_colors(), minus.log=TRUE, ...)

S3 method for class 'ensmb'
cna(cij, ..., ncore = NULL)

Arguments

cij A numeric array with 2 dimensions (nXn) containing atomic correlation values,
where "n" is the residue number. The matrix elements should be in between
0 and 1 (atomic correlations). Can be also a set of correlation matrices for
ensemble network analysis. See ‘dccm’ function in bio3d package for further
details.

... Additional arguments passed to the methods cna.dccm and cna.ensmb.

cutoff.cij Numeric element specifying the cutoff on cij matrix values. Coupling below
cutoff.cij are set to 0.

cm (optinal) A numeric array with 2 dimensions (nXn) containing binary contact
values, where "n" is the residue number. The matrix elements should be 1 if two
residues are in contact and 0 if not in contact. See the ‘cmap’ function in bio3d
package for further details.

vnames A vector of names for each column in the input cij. This will be used for refer-
encing residues in a similar way to residue numbers in later analysis.

cluster.method A character string specifying the method for community determination. Sup-
ported methods are:
btwn="Girvan-Newman betweenness"
walk="Random walk"
greed="Greedy algorithm for modularity optimization"
infomap="Infomap algorithm for community detection"

56 cna

collapse.method

A single element character vector specifing the ‘cij’ collapse method, can be one
of ‘max’, ‘median’, ‘mean’, or ‘trimmed’. By defualt the ‘max’ method is used
to collapse the input residue based ‘cij’ matrix into a smaller community based
network by taking the maximium ‘abs(cij)’ value between communities as the
comunity-to-community cij value for clustered network construction.

cols A vector of colors assigned to network nodes.

minus.log Logical, indicating whether ‘-log(abs(cij))’ values should be used for network
construction.

ncore Number of CPU cores used to do the calculation. By default, use all available
cores.

Details

The input to this function should be a correlation matrix as obtained from the ‘dccm’, ‘dccm.mean’
or ‘dccm.nma’ and related functions. Optionally, a contact map ‘cm’ may also given as input to
filter the correlation matrix resulting in the exclusion of network edges between non-contacting
atom pairs (as defined in the contact map).

Internally this function calls the igraph package functions ‘graph.adjacency’, ‘edge.betweenness.community’,
‘walktrap.community’, ‘fastgreedy.community’, and ‘infomap.community’. The first constructs an
undirected weighted network graph. The second performs Girvan-Newman style clustering by cal-
culating the edge betweenness of the graph, removing the edge with the highest edge betweenness
score, calculates modularity (i.e. the difference between the current graph partition and the parti-
tion of a random graph, see Newman and Girvan, Physical Review E (2004), Vol 69, 026113), then
recalculating edge betweenness of the edges and again removing the one with the highest score,
etc. The returned community partition is the one with the highest overall modularity value. ‘walk-
trap.community’ implements the Pons and Latapy algorithm based on the idea that random walks
on a graph tend to get "trapped" into densely connected parts of it, i.e. a community. The random
walk process is used to determine a distance between nodes. Nodes with low distance values are
joined in the same community. ‘fastgreedy.community’ instead determines the community structure
based on the optimization of the modularity. In the starting state each node is isolated and belongs
to a separated community. Communities are then joined together (according to the network edges)
in pairs and the modularity is calculated. At each step the join resulting in the highest increase
of modularity is chosen. This process is repeated until a single community is obtained, then the
partitioning with the highest modularity score is selected. ‘infomap.community’ finds community
structure that minimizes the expected description length of a random walker trajectory.

Value

Returns a list object that includes igraph network and community objects with the following com-
ponents:

network An igraph residue-wise graph object. See below for more details.

communities An igraph residue-wise community object. See below for more details.

communitiy.network

An igraph community-wise graph object. See below for more details.

cna 57

community.cij Numeric square matrix containing the absolute values of the atomic correlation
input matrix for each community as obtained from ‘cij’ via application of ‘col-
lapse.method’.

cij Numeric square matrix containing the absolute values of the atomic correlation
input matrix.

If an ensemble of correlation matrices is provided, a list of ‘cna’ object, of the ‘ecna’ class, will be
returned.

Author(s)

Guido Scarabelli and Barry Grant

See Also

plot.cna, summary.cna, vmd.cna, graph.adjacency, edge.betweenness.community, walktrap.community,
fastgreedy.community, infomap.community

Examples

PDB server connection required - testing excluded

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

try({

##-- Build a correlation network from NMA results
Read example PDB
pdb <- read.pdb("4Q21")

Perform NMA
modes <- nma(pdb)
#plot(modes, sse=pdb)

Calculate correlations
cij <- dccm(modes)
#plot(cij, sse=pdb)

Build, and betweenness cluster, a network graph
net <- cna(cij, cutoff.cij=0.35)
#plot(net, pdb)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

within VMD set 'coloring method' to 'Chain' and 'Drawing method' to Tube
#vmd.cna(net, trim.pdb(pdb, atom.select(pdb,"calpha")), launch=TRUE)

58 cnapath

##-- Build a correlation network from MD results
Read example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

select residues 24 to 27 and 85 to 90 in both chains
inds <- atom.select(pdb, resno=c(24:27,85:90), elety='CA')

lsq fit of trj on pdb
xyz <- fit.xyz(pdb$xyz, trj, fixed.inds=inds$xyz, mobile.inds=inds$xyz)

calculate dynamical cross-correlation matrix
cij <- dccm(xyz)

Build, and betweenness cluster, a network graph
net <- cna(cij)

Plot coarse grained network based on dynamically coupled communities
xy <- plot.cna(net)
plot.dccm(cij, margin.segments=net$communities$membership)

##-- Begin to examine network structure - see CNA vignette for more details
net
summary(net)
attributes(net)
table(net$communities$members)

}

cnapath Suboptimal Path Analysis for Correlation Networks

Description

Find k shortest paths between a pair of nodes, source and sink, in a correlation network.

Usage

cnapath(cna, from, to=NULL, k=10, collapse=TRUE, ncore=NULL, ...)
S3 method for class 'cnapath'
summary(object, ..., pdb = NULL, label = NULL, col = NULL,

plot = FALSE, concise = FALSE, cutoff = 0.1, normalize = TRUE, weight = FALSE)
S3 method for class 'cnapath'
print(x, ...)

cnapath 59

S3 method for class 'cnapath'
plot(x, ...)
S3 method for class 'ecnapath'
plot(x, ...)

Arguments

cna A ‘cna’ object or a list of ‘cna’ objects obtained from cna.

from Integer vector or matrix indicating node id(s) of source. If is matrix and to is
NULL, the first column represents source and the second sink.

to Integer vector indicating node id(s) of sink. All combinations of from and to
values will be used as source/sink pairs.

k Integer, number of suboptimal paths to identify.

collapse Logical, if TRUE results from all source/sink pairs are merged with a single
‘cnapath’ object returned.

ncore Number of CPU cores used to do the calculation. By default (NULL), use all
detected CPU cores.

object A ‘cnapath’ class of object obtained from cnapath. Multiple ‘object’ input is
allowed for comparing paths from different networks.

pdb A ‘pdb’ class of object obtained from read.pdb and is used as the reference
for node residue ids (in summary.cnapath) or for molecular visulaization with
VMD (in vmd.cnapath).

label Character, label for paths identified from different networks.

col Colors for plotting statistical results for paths identified from different networks.

plot Logical, if TRUE path length distribution and node degeneracy will be plotted.

concise Logical, if TRUE only ‘on path’ residues will be displayed in the node degener-
acy plot.

cutoff Numeric, nodes with node degeneracy larger than cutoff are shown in the out-
put.

normalize Logical, if TRUE node degeneracy is divided by the total (weighted) number of
paths.

weight Logical, if TRUE each path is weighted by path length in calculating the node
degeneracty.

x A ’cnapath’ class object, or a list of such objects, as obtained from function
cnapath.

... Additional arguments passed to igraph function get.shortest.paths (in the
function cnapath), passed to summary.cnapath (in print.cnapath), as addi-
tional paths for comparison (in summary.cnapath).

Value

The function cnapath returns a (or a list of) ‘cnapath’ class of list containing following three com-
ponents:

60 cnapath

path a list object containing all identified suboptimal paths. Each entry of the list is a
sequence of node ids for the path.

epath a list object containing all identified suboptimal paths. Each entry of the list is a
sequence of edge ids for the path.

dist a numeric vector of all path lengths.

The function summary.cnapath returns a matrix of (normalized) node degeneracy for ‘on path’
residues.

Author(s)

Xin-Qiu Yao

References

Yen, J.Y. (1971) Management Science 17, 712–716.

See Also

cna, cna.dccm, vmd.cna, vmd.cnapath, get.shortest.paths.

Examples

Redundant testing excluded

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

attach(transducin)
inds = match(c("1TND_A", "1TAG_A"), pdbs$id)

npdbs <- trim(pdbs, row.inds=inds)
gaps.res <- gap.inspect(npdbs$ali)

modes <- nma(npdbs)
cij <- dccm(modes)
net <- cna(cij, cutoff.cij=0.3)

get paths
pa1 <- cnapath(net[[1]], from = 314, to=172, k=50)
pa2 <- cnapath(net[[2]], from = 314, to=172, k=50)

print the information of a path
pa1

print two paths simultaneously
pas <- list(pa1, pa2)
names(pas) <- c("GTP", "GDP")
print.cnapath(pas)

Or, for the same effect,

com 61

summary(pa1, pa2, label=c("GTP", "GDP"))

try({

replace node numbers with residue name and residue number in the PDB file
pdb <- read.pdb("1tnd")
pdb <- trim.pdb(pdb, atom.select(pdb, chain="A", resno=npdbs$resno[1, gaps.res$f.inds]))
print.cnapath(pas, pdb=pdb)

plot path length distribution and node degeneracy
print.cnapath(pas, pdb = pdb, col=c("red", "darkgreen"), plot=TRUE)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

View paths in 3D molecular graphic with VMD
#vmd.cnapath(pa1, pdb, launch = TRUE)
#vmd.cnapath(pa1, pdb, colors = 7, launch = TRUE)
#vmd.cnapath(pa1, pdb, spline=TRUE, colors=c("pink", "red"), launch = TRUE)
#pdb2 <- read.pdb("1tag")
#pdb2 <- trim.pdb(pdb2, atom.select(pdb2, chain="A", resno=npdbs$resno[2, gaps.res$f.inds]))
#vmd.cnapath(pa2, pdb2, launch = TRUE)

detach(transducin)

}

com Center of Mass

Description

Calculate the center of mass of a PDB object.

Usage

com(...)

S3 method for class 'pdb'
com(pdb, inds=NULL, use.mass=TRUE, ...)

S3 method for class 'xyz'
com(xyz, mass=NULL, ...)

62 com

Arguments

pdb an object of class pdb as obtained from function read.pdb.

inds atom and xyz coordinate indices obtained from atom.select that selects the
elements of pdb upon which the calculation should be based.

use.mass logical, if TRUE the calculation will be mass weighted (center of mass).

... additional arguments to atom2mass.

xyz a numeric vector or matrix of Cartesian coordinates (e.g. an object of type xyz).

mass a numeric vector containing the masses of each atom in xyz.

Details

This function calculates the center of mass of the provided PDB structure / Cartesian coordiantes.
Atom names found in standard amino acids in the PDB are mapped to atom elements and their
corresponding relative atomic masses.

In the case of an unknown atom name elety.custom and mass.custom can be used to map an
atom to the correct atomic mass. See examples for more details.

Alternatively, the atom name will be mapped automatically to the element corresponding to the first
character of the atom name. Atom names starting with character H will be mapped to hydrogen
atoms.

Value

Returns the Cartesian coordinates at the center of mass.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, atom2mass

Examples

PDB server connection required - testing excluded
try({

Stucture of PKA:
pdb <- read.pdb("3dnd")

Center of mass:
com(pdb)

Center of mass of a selection

combine.select 63

inds <- atom.select(pdb, chain="I")
com(pdb, inds)

using XYZ Cartesian coordinates
xyz <- pdb$xyz[, inds$xyz]
com.xyz(xyz)

with mass weighting
com.xyz(xyz, mass=atom2mass(pdb$atom[inds$atom, "elety"]))

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
Unknown atom names
pdb <- read.pdb("3dnd")
inds <- atom.select(pdb, resid="LL2")
mycom <- com(pdb, inds, rescue=TRUE)
#warnings()

Map atom names manually
pdb <- read.pdb("3RE0")
inds <- atom.select(pdb, resno=201)

myelety <- data.frame(name = c("CL2","PT1","N1","N2"), symb = c("Cl","Pt","N","N"))
mymasses <- data.frame(symb = c("Cl","Pt"), mass = c(35.45, 195.08))
mycom <- com(pdb, inds, elety.custom=myelety, mass.custom=mymasses)

End(Not run)

combine.select Combine Atom Selections From PDB Structure

Description

Do "and", "or", or "not" set operations between two or more atom selections made by atom.select

Usage

combine.select(sel1=NULL, sel2=NULL, ..., operator="AND", verbose=TRUE)

Arguments

sel1 an atom selection object of class "select", obtained from atom.select.

sel2 a second atom selection object of class "select", obtained from atom.select.

64 combine.select

... more select objects for the set operation.

operator name of the set operation.

verbose logical, if TRUE details of the selection combination are printed.

Details

The value of operator should be one of following: (1) "AND", "and", or "&" for set intersect, (2)
"OR", "or", "|", or "+" for set union, (3) "NOT", "not", "!", or "-" for set difference sel1 - sel2 -
sel3

Value

Returns a list of class "select" with components:

atom atom indices of selected atoms.

xyz xyz indices of selected atoms.

call the matched call.

Author(s)

Xin-Qiu Yao

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

atom.select, as.select read.pdb, trim.pdb

Examples

Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

- Build atom selections to be operated
Select C-alpha atoms of entire system
ca.global.inds <- atom.select(pdb, "calpha")

Select C-beta atoms of entire protein
cb.global.inds <- atom.select(pdb, "protein", elety="CB")

Select backbone atoms of entire system
bb.global.inds <- atom.select(pdb, "backbone")

Select all atoms with residue number from 46 to 50
aa.local.inds <- atom.select(pdb, resno=46:50)

Do set intersect:

community.aln 65

- Return C-alpha atoms with residue number from 46 to 50
ca.local.inds <- combine.select(ca.global.inds, aa.local.inds)
print(pdb$atom[ca.local.inds$atom,])

Do set subtract:
- Return side-chain atoms with residue number from 46 to 50
sc.local.inds <- combine.select(aa.local.inds, bb.global.inds, operator="-")
print(pdb$atom[sc.local.inds$atom,])

Do set union:
- Return C-alpha and side-chain atoms with residue number from 46 to 50
casc.local.inds <- combine.select(ca.local.inds, sc.local.inds, operator="+")
print(pdb$atom[casc.local.inds$atom,])

More than two selections:
- Return side-chain atoms (but not C-beta) with residue number from 46 to 50
sc2.local.inds <- combine.select(aa.local.inds, bb.global.inds, cb.global.inds, operator="-")
print(pdb$atom[sc2.local.inds$atom,])

community.aln Align communities from two or more networks

Description

Find equivalent communities from two or more networks and re-assign colors to them in a consistent
way across networks. A ‘new.membership’ vector is also generated for each network, which maps
nodes to community IDs that are renumbered according to the community equivalency.

Usage

community.aln(x, ..., aln = NULL)

Arguments

x, ... two or more objects of class cna (if the numbers of nodes are different, an align-
ment ‘fasta’ object is required for the aln argument; See below) as obtained
from function cna. Alternatively, a list of cna objects can be given to x.

aln alignment for comparing networks with different numbers of nodes.

Details

This function facilitates the inspection on the variance of the community partition in a group of
similar networks. The original community numbering (and so the colors of communities in the
output of plot.cna and vmd.cna) can be inconsistent across networks, i.e. equivalent communities
may display different colors, impeding network comparison. The function calculates the dissimi-
larity between all communities and clusters communities with ‘hclust’ funciton. In each cluster, 0
or 1 community per network is included. The color attribute of communities is then re-assigned
according to the clusters through all networks. In addition, a ‘new.membership’ vector is generated

66 community.aln

for each network, which mapps nodes to new community IDs that are numbered consistently across
networks.

Value

Returns a list of updated cna objects.

See Also

cna, plot.cna, vmd.cna

Examples

Needs MUSCLE installed - testing excluded
if(check.utility("muscle")) {

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

Fetch PDB files and split to chain A only PDB files
ids <- c("1tnd_A", "1tag_A")
files <- get.pdb(ids, split = TRUE, path = tempdir())

Sequence Alignement
pdbs <- pdbaln(files, outfile = tempfile())

Normal mode analysis on aligned data
modes <- nma(pdbs, rm.gaps=TRUE)

Dynamic Cross Correlation Matrix
cijs <- dccm(modes)$all.dccm

Correlation Network
nets <- cna(cijs, cutoff.cij=0.3)

Align network communities
nets.aln <- community.aln(nets)

plot all-residue and coarse-grained (community) networks
pdb <- pdbs2pdb(pdbs, inds=1, rm.gaps=TRUE)[[1]]
op <- par(no.readonly=TRUE)

before alignment
par(mar=c(0.1, 0.1, 0.1, 0.1), mfrow=c(2,2))
invisible(lapply(nets, function(x)

plot(x, layout=layout.cna(x, pdb=pdb, k=3, full=TRUE)[, 1:2],
full=TRUE)))

invisible(lapply(nets, function(x)
plot(x, layout=layout.cna(x, pdb=pdb, k=3)[, 1:2])))

after alignment

community.tree 67

par(mar=c(0.1, 0.1, 0.1, 0.1), mfrow=c(2,2))
invisible(lapply(nets.aln, function(x)

plot(x, layout=layout.cna(x, pdb=pdb, k=3, full=TRUE)[, 1:2],
full=TRUE)))

invisible(lapply(nets.aln, function(x)
plot(x, layout=layout.cna(x, pdb=pdb, k=3)[, 1:2])))

par(op)

}
}

community.tree Reconstruction of the Girvan-Newman Community Tree for a CNA
Class Object.

Description

This function reconstructs the community tree of the community clustering analysis performed by
the ‘cna’ function. It allows the user to explore different network community partitions.

Usage

community.tree(x, rescale=FALSE)

Arguments

x A protein network graph object as obtained from the ‘cna’ function.

rescale Logical, indicating whether to rescale the community names starting from 1. If
FALSE, the community names will start from N+1, where N is the number of
nodes.

Details

The input of this function should be a ‘cna’ class object containing ‘network’ and ‘communities’
attributes.

This function reconstructs the community residue memberships for each modularity value. The
purpose is to facilitate inspection of alternate community partitioning points, which in practice
often corresponds to a value close to the maximum of the modularity, but not the maximum value
itself.

Value

Returns a list object that includes the following components:

modularity A numeric vector containing the modularity values.

68 community.tree

tree A numeric matrix containing in each row the community residue memberships
corresponding to a modularity value. The rows are ordered according to the
‘modularity’ object.

num.of.comms A numeric vector containing the number of communities per modularity value.
The vector elements are ordered according to the ‘modularity’ object.

Author(s)

Guido Scarabelli

See Also

cna, network.amendment, summary.cna

Examples

PDB server connection required - testing excluded

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

try({

###-- Build a CNA object
pdb <- read.pdb("4Q21")
modes <- nma(pdb)
cij <- dccm(modes)
net <- cna(cij, cutoff.cij=0.2)

##-- Reconstruct the community membership vector for each clustering step.
tree <- community.tree(net, rescale=TRUE)

Plot modularity vs number of communities
plot(tree$num.of.comms, tree$modularity)

Inspect the maximum modularity value partitioning
max.mod.ind <- which.max(tree$modularity)

Number of communities (k) at max modularity
tree$num.of.comms[max.mod.ind]

Membership vector at this partition point
tree$tree[max.mod.ind,]

Should be the same as that contained in the original CNA network object
net$communities$membership == tree$tree[max.mod.ind,]

Inspect a new membership partitioning (at k=7)
memb.k7 <- tree$tree[tree$num.of.comms == 7,]

consensus 69

Produce a new k=7 community network
net.7 <- network.amendment(net, memb.k7)
plot(net.7, pdb)
#view.cna(net.7, trim.pdb(pdb, atom.select(pdb,"calpha")), launch=TRUE)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}
}

consensus Sequence Consensus for an Alignment

Description

Determines the consensus sequence for a given alignment at a given identity cutoff value.

Usage

consensus(alignment, cutoff = 0.6)

Arguments

alignment an alignment object created by the read.fasta function or an alignment char-
acter matrix.

cutoff a numeric value beteen 0 and 1, indicating the minimum sequence identity
threshold for determining a consensus amino acid. Default is 0.6, or 60 per-
cent residue identity.

Value

A vector containing the consensus sequence, where ‘-’ represents positions with no consensus (i.e.
under the cutoff)

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta

70 conserv

Examples

#-- Read HIV protease alignment
aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))

Generate consensus
con <- consensus(aln)
print(con$seq)

Plot residue frequency matrix
##png(filename = "freq.png", width = 1500, height = 780)
col <- mono.colors(32)
aa <- rev(rownames(con$freq))

image(x=1:ncol(con$freq),
y=1:nrow(con$freq),
z=as.matrix(rev(as.data.frame(t(con$freq)))),
col=col, yaxt="n", xaxt="n",
xlab="Alignment Position", ylab="Residue Type")

Add consensus along the axis
axis(side=1, at=seq(0,length(con$seq),by=5))
axis(side=2, at=c(1:22), labels=aa)
axis(side=3, at=c(1:length(con$seq)), labels =con$seq)
axis(side=4, at=c(1:22), labels=aa)
grid(length(con$seq), length(aa))
box()

Add consensus sequence
for(i in 1:length(con$seq)) {

text(i, which(aa==con$seq[i]),con$seq[i],col="white")
}

Add lines for residue type separation
abline(h=c(2.5,3.5, 4.5, 5.5, 3.5, 7.5, 9.5,

12.5, 14.5, 16.5, 19.5), col="gray")

conserv Score Residue Conservation At Each Position in an Alignment

Description

Quantifies residue conservation in a given protein sequence alignment by calculating the degree of
amino acid variability in each column of the alignment.

Usage

conserv(x, method = c("similarity","identity","entropy22","entropy10"),
sub.matrix = c("bio3d", "blosum62", "pam30", "other"),
matrix.file = NULL, normalize.matrix = TRUE)

conserv 71

Arguments

x an alignment list object with id and ali components, similar to that generated
by read.fasta.

method the conservation assesment method.

sub.matrix a matrix to score conservation.

matrix.file a file name of an arbitary user matrix.
normalize.matrix

logical, if TRUE the matrix is normalized pior to assesing conservation.

Details

To assess the level of sequence conservation at each position in an alignment, the “similarity”,
“identity”, and “entropy” per position can be calculated.

The “similarity” is defined as the average of the similarity scores of all pairwise residue comparisons
for that position in the alignment, where the similarity score between any two residues is the score
value between those residues in the chosen substitution matrix “sub.matrix”.

The “identity” i.e. the preference for a specific amino acid to be found at a certain position, is
assessed by averaging the identity scores resulting from all possible pairwise comparisons at that
position in the alignment, where all identical residue comparisons are given a score of 1 and all
other comparisons are given a value of 0.

“Entropy” is based on Shannons information entropy. See the entropy function for further details.

Note that the returned scores are normalized so that conserved columns score 1 and diverse columns
score 0.

Value

Returns a numeric vector of scores

Note

Each of these conservation scores has particular strengths and weaknesses. For example, entropy
elegantly captures amino acid diversity but fails to account for stereochemical similarities. By
employing a combination of scores and taking the union of their respective conservation signals we
expect to achieve a more comprehensive analysis of sequence conservation (Grant, 2007).

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. Grant, B.J. et al. (2007) J. Mol. Biol. 368,
1231–1248.

See Also

read.fasta, read.fasta.pdb

72 convert.pdb

Examples

Read an example alignment
aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))

Score conservation
conserv(x=aln$ali, method="similarity", sub.matrix="bio3d")
##conserv(x=aln$ali,method="entropy22", sub.matrix="other")

convert.pdb Renumber and Convert Between Various PDB formats

Description

Renumber and convert between CHARMM, Amber, Gromacs and Brookhaven PDB formats.

Usage

convert.pdb(pdb, type=c("original", "pdb", "charmm", "amber", "gromacs"),
renumber = FALSE, first.resno = 1, first.eleno = 1,
consecutive=TRUE, rm.h = TRUE, rm.wat = FALSE,
verbose=TRUE)

Arguments

pdb a structure object of class "pdb", obtained from read.pdb.

type output format, one of ‘original’, ‘pdb’, ‘charmm’, ‘amber’, or ‘gromacs’. The
default option of ‘original’ results in no conversion.

renumber logical, if TRUE atom and residue records are renumbered using ‘first.resno’
and ‘first.eleno’.

first.resno first residue number to be used if ‘renumber’ is TRUE.

first.eleno first element number to be used if ‘renumber’ is TRUE.

consecutive logical, if TRUE renumbering will result in consecutive residue numbers span-
ning all chains. Otherwise new residue numbers will begin at ‘first.resno’ for
each chain.

rm.h logical, if TRUE hydrogen atoms are removed.

rm.wat logical, if TRUE water atoms are removed.

verbose logical, if TRUE details of the conversion process are printed.

Details

Convert atom names and residue names, renumber atom and residue records, strip water and hydro-
gen atoms from pdb objects.

Format type can be one of “ori”, “pdb”, “charmm”, “amber” or “gromacs”.

convert.pdb 73

Value

Returns a list of class "pdb", with the following components:

atom a character matrix containing all atomic coordinate ATOM data, with a row per
ATOM and a column per record type. See below for details of the record type
naming convention (useful for accessing columns).

het a character matrix containing atomic coordinate records for atoms within “non-
standard” HET groups (see atom).

helix ‘start’, ‘end’ and ‘length’ of H type sse, where start and end are residue numbers
“resno”.

sheet ‘start’, ‘end’ and ‘length’ of E type sse, where start and end are residue numbers
“resno”.

seqres sequence from SEQRES field.

xyz a numeric vector of ATOM coordinate data.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

Note

For both atom and het list components the column names can be used as a convenient means of
data access, namely: Atom serial number “eleno” , Atom type “elety”, Alternate location indicator
“alt”, Residue name “resid”, Chain identifier “chain”, Residue sequence number “resno”, Code for
insertion of residues “insert”, Orthogonal coordinates “x”, Orthogonal coordinates “y”, Orthogonal
coordinates “z”, Occupancy “o”, and Temperature factor “b”. See examples for further details.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

See Also

atom.select, write.pdb, read.dcd, read.fasta.pdb, read.fasta

Examples

Not run:

Read a PDB file
pdb <- read.pdb("4q21")
pdb
head(pdb$atom[pdb$calpha,"resno"])

http://www.wwpdb.org/documentation/format33/v3.3.html

74 core.cmap

Convert to CHARMM format
new <- convert.pdb(pdb, type="amber", renumber=TRUE, first.resno=22)
head(new$atom[new$calpha,"resno"])

Write a PDB file
#write.pdb(new, file="tmp4amber.pdb")

End(Not run)

core.cmap Identification of Contact Map Core Positions

Description

Find core positions that have the largest number of contact with neighboring residues.

Usage

core.cmap(pdbs, write.pdb = FALSE, outfile="core.pdb",
cutoff = NULL, refine = FALSE, ncore = NULL, ...)

Arguments

pdbs an alignment data structure of class ‘pdbs’ as obtained with read.fasta.pdb or
pdbaln, or a numeric matrix of aligned C-alpha xyz Cartesian coordinates.

write.pdb logical, if TRUE core coordinate files, containing only core positions for each
iteration, are written to a location specified by outpath.

outfile character string specifying the output directory when write.pdb is ‘TRUE’.

cutoff numeric value speciyfing the inclusion criteria for core positions.

refine logical, if TRUE explore core positions determined by multiple eigenvectors.
By default only the eigenvector describing the largest variation is used.

ncore number of CPU cores used to do the calculation. By default (ncore=NULL) use
all cores detected.

... arguments passed to and from functions.

Details

This function calculates eigenvector centrality of the weighted contact network built based on input
structure data and uses it to determine the core positions.

In this context, core positions correspond to the most invariant C-alpha atom positions across an
aligned set of protein structures. Traditionally one would use the core.find function to for their
identification and then use these positions as the basis for improved structural superposition. This
more recent function utilizes a much faster approach and is thus preferred in time sensitive applica-
tions such as shiny apps.

core.find 75

Value

Returns a list of class "select" containing ‘atom’ and ‘xyz’ indices.

Author(s)

Xin-Qiu Yao

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

core.find, read.fasta.pdb, fit.xyz

Examples

Not run:
##-- Generate a small kinesin alignment and read corresponding structures
pdbfiles <- get.pdb(c("1bg2","2ncd","1i6i","1i5s"), URLonly=TRUE)
pdbs <- pdbaln(pdbfiles)

##-- Find 'core' positions
core <- core.cmap(pdbs)
xyz <- pdbfit(pdbs, core, outpath="corefit_structures")

End(Not run)

core.find Identification of Invariant Core Positions

Description

Perform iterated rounds of structural superposition to identify the most invariant region in an aligned
set of protein structures.

Usage

core.find(...)

S3 method for class 'pdbs'
core.find(pdbs, shortcut = FALSE, rm.island = FALSE,

verbose = TRUE, stop.at = 15, stop.vol = 0.5,
write.pdbs = FALSE, outpath="core_pruned",
ncore = 1, nseg.scale = 1, progress = NULL, ...)

Default S3 method:
core.find(xyz, ...)

76 core.find

S3 method for class 'pdb'
core.find(pdb, verbose=TRUE, ...)

Arguments

pdbs a numeric matrix of aligned C-alpha xyz Cartesian coordinates. For example an
alignment data structure obtained with read.fasta.pdb or pdbaln.

shortcut if TRUE, remove more than one position at a time.

rm.island remove isolated fragments of less than three residues.

verbose logical, if TRUE a “core_pruned” directory containing ‘core structures’ for each
iteraction is written to the current directory.

stop.at minimal core size at which iterations should be stopped.

stop.vol minimal core volume at which iterations should be stopped.

write.pdbs logical, if TRUE core coordinate files, containing only core positions for each
iteration, are written to a location specified by outpath.

outpath character string specifying the output directory when write.pdbs is TRUE.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

progress progress bar for use with shiny web app.

xyz a numeric matrix of xyz Cartesian coordinates, e.g. obtained from read.dcd or
read.ncdf.

pdb an object of type pdb as obtained from function read.pdb with multiple frames
(>=4) stored in its xyz component. Note that the function will attempt to identify
C-alpha and phosphate atoms (for protein and nucleic acids, respectively) in
which the calculation should be based.

... arguments passed to and from functions.

Details

This function attempts to iteratively refine an initial structural superposition determined from a mul-
tiple alignment. This involves iterated rounds of superposition, where at each round the position(s)
displaying the largest differences is(are) excluded from the dataset. The spatial variation at each
aligned position is determined from the eigenvalues of their Cartesian coordinates (i.e. the vari-
ance of the distribution along its three principal directions). Inspired by the work of Gerstein et al.
(1991, 1995), an ellipsoid of variance is determined from the eigenvalues, and its volume is taken
as a measure of structural variation at a given position.

Optional “core PDB files” containing core positions, upon which superposition is based, can be
written to a location specified by outpath by setting write.pdbs=TRUE. These files are useful for
examining the core filtering process by visualising them in a graphics program.

core.find 77

Value

Returns a list of class "core" with the following components:

volume total core volume at each fitting iteration/round.

length core length at each round.

resno residue number of core residues at each round (taken from the first aligned struc-
ture) or, alternatively, the numeric index of core residues at each round.

step.inds atom indices of core atoms at each round.

atom atom indices of core positions in the last round.

xyz xyz indices of core positions in the last round.

c1A.atom atom indices of core positions with a total volume under 1 Angstrom^3.

c1A.xyz xyz indices of core positions with a total volume under 1 Angstrom^3.

c1A.resno residue numbers of core positions with a total volume under 1 Angstrom^3.

c0.5A.atom atom indices of core positions with a total volume under 0.5 Angstrom^3.

c0.5A.xyz xyz indices of core positions with a total volume under 0.5 Angstrom^3.

c0.5A.resno residue numbers of core positions with a total volume under 0.5 Angstrom^3.

Note

The relevance of the ‘core positions’ identified by this procedure is dependent upon the number of
input structures and their diversity.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Gerstein and Altman (1995) J. Mol. Biol. 251, 161–175.

Gerstein and Chothia (1991) J. Mol. Biol. 220, 133–149.

See Also

read.fasta.pdb, plot.core, fit.xyz

Examples

Not run:
##-- Generate a small kinesin alignment and read corresponding structures
pdbfiles <- get.pdb(c("1bg2","2ncd","1i6i","1i5s"), URLonly=TRUE)
pdbs <- pdbaln(pdbfiles)

##-- Find 'core' positions
core <- core.find(pdbs)
plot(core)

78 core.find

##-- Fit on these relatively invarient subset of positions
#core.inds <- print(core, vol=1)
core.inds <- print(core, vol=0.5)
xyz <- pdbfit(pdbs, core.inds, outpath="corefit_structures")

##-- Compare to fitting on all equivalent positions
xyz2 <- pdbfit(pdbs)

Note that overall RMSD will be higher but RMSF will
be lower in core regions, which may equate to a
'better fit' for certain applications
gaps <- gap.inspect(pdbs$xyz)
rmsd(xyz[,gaps$f.inds])
rmsd(xyz2[,gaps$f.inds])

plot(rmsf(xyz[,gaps$f.inds]), typ="l", col="blue", ylim=c(0,9))
points(rmsf(xyz2[,gaps$f.inds]), typ="l", col="red")

End(Not run)

Not run:
##-- Run core.find() on a multimodel PDB file
pdb <- read.pdb('1d1d', multi=TRUE)
core <- core.find(pdb)

##-- Run core.find() on a trajectory
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

select calpha coords from a manageable number of frames
ca.ind <- atom.select(pdb, "calpha")$xyz
frames <- seq(1, nrow(trj), by=10)

core <- core.find(trj[frames, ca.ind], write.pdbs=TRUE)

have a look at the various cores "vmd -m core_pruned/*.pdb"

Lets use a 6A^3 core cutoff
inds <- print(core, vol=6)
write.pdb(xyz=pdb$xyz[inds$xyz],resno=pdb$atom[inds$atom,"resno"], file="core.pdb")

##- Fit trj onto starting structure based on core indices
xyz <- fit.xyz(fixed = pdb$xyz,

mobile = trj,
fixed.inds = inds$xyz,
mobile.inds = inds$xyz)

cov.nma 79

##write.pdb(pdb=pdb, xyz=xyz, file="new_trj.pdb")
##write.ncdf(xyz, "new_trj.nc")

End(Not run)

cov.nma Calculate Covariance Matrix from Normal Modes

Description

Calculate the covariance matrix from a normal mode object.

Usage

S3 method for class 'nma'
cov(nma)
S3 method for class 'enma'
cov(enma, ncore=NULL)

Arguments

nma an nma object as obtained from function nma.pdb.
enma an enma object as obtained from function nma.pdbs.
ncore number of CPU cores used to do the calculation. ncore>1 requires package

‘parallel’ installed.

Details

This function calculates the covariance matrix from a nma object as obtained from function nma.pdb
or covariance matrices from a enma object as obtain from function nma.pdbs.

Value

Returns the calculated covariance matrix (function cov.nma), or covariance matrices (function
cov.enma).

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. Fuglebakk, E. et al. (2013) JCTC 9,
5618–5628.

See Also

nma

80 covsoverlap

covsoverlap Covariance Overlap

Description

Calculate the covariance overlap obtained from NMA.

Usage

covsoverlap(...)

S3 method for class 'enma'
covsoverlap(enma, ncore=NULL, ...)

S3 method for class 'nma'
covsoverlap(a, b, subset=NULL, ...)

Arguments

enma an object of class "enma" obtained from function nma.pdbs.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

a a list object with elements ‘U’ and ‘L’ (e.g. as obtained from function nma)
containing the eigenvectors and eigenvalues, respectively, to be compared with
b.

b a list object with elements ‘U’ and ‘L’ (e.g. as obtained from function nma)
containing the eigenvectors and eigenvalues, respectively, to be compared with
a.

subset the number of modes to consider.

... arguments passed to associated functions.

Details

Covariance overlap is a measure for the similarity between two covariance matrices, e.g. obtained
from NMA.

Value

Returns the similarity coefficient(s).

Author(s)

Lars Skjaerven

dccm 81

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696. Romo, T.D. et al. (2011) Proteins 79, 23–34.

See Also

Other similarity measures: sip, covsoverlap, bhattacharyya.

dccm DCCM: Dynamical Cross-Correlation Matrix

Description

Determine the cross-correlations of atomic displacements.

Usage

dccm(x, ...)

Arguments

x a numeric matrix of Cartesian coordinates with a row per structure/frame which
will br passed to dccm.xyz(). Alternatively, an object of class nma as obtained
from function nma that will be passed to the dccm.nma() function, see below for
examples.

... additional arguments passed to the methods dccm.xyz, dccm.pca, dccm.nma,
and dccm.enma.

Details

dccm is a generic function calling the corresponding function determined by the class of the input
argument x. Use methods("dccm") to get all the methods for dccm generic:

dccm.xyz will be used when x is a numeric matrix containing Cartesian coordinates (e.g. trajectory
data).

dccm.pca will calculate the cross-correlations based on an pca object.

dccm.nma will calculate the cross-correlations based on an nma object. Similarly, dccm.enma will
calculate the correlation matrices based on an ensemble of nma objects (as obtained from function
nma.pdbs).

plot.dccm and pymol.dccm provides convenient functionality to plot a correlation map, and visu-
alize the correlations in the structure, respectively.

See examples for each corresponding function for more details.

Author(s)

Barry Grant, Lars Skjaerven

82 dccm.enma

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

dccm.xyz, dccm.nma, dccm.enma, dccm.pca, plot.dccm, pymol.dccm.

dccm.enma Cross-Correlation for Ensemble NMA (eNMA)

Description

Calculate the cross-correlation matrices from an ensemble of NMA objects.

Usage

S3 method for class 'enma'
dccm(x, ncore = NULL, na.rm=FALSE, ...)

Arguments

x an object of class enma as obtained from function nma.pdbs.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

na.rm logical, if FALSE the DCCM might containt NA values (applies only when the
enma object is calculated with argument ‘rm.gaps=FALSE’).

... additional arguments passed to dccm.nma.

Details

This is a wrapper function for calling dccm.nma on a collection of ‘nma’ objects as obtained from
function nma.pdbs.

See examples for more details.

Value

Returns a list with the following components:

all.dccm an array or list containing the correlation matrices for each ‘nma’ object. An
array is returned when the ‘enma’ object is calculated with ‘rm.gaps=TRUE’,
and a list is used when ‘rm.gaps=FALSE’.

avg.dccm a numeric matrix containing the average correlation matrix. The average is only
calculated when the ‘enma’ object is calculated with ‘rm.gaps=TRUE’.

Author(s)

Lars Skjaerven

dccm.gnm 83

References

Wynsberghe. A.W.V, Cui, Q. Structure 14, 1647–1653. Grant, B.J. et al. (2006) Bioinformatics 22,
2695–2696.

See Also

nma, dccm.nma, plot.dccm

Examples

Needs MUSCLE installed - testing excluded

if(check.utility("muscle")) {

Fetch PDB files and split to chain A only PDB files
ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A")
files <- get.pdb(ids, split = TRUE, path = tempdir())

Sequence/Structure Alignement
pdbs <- pdbaln(files, outfile = tempfile())

Normal mode analysis on aligned data
modes <- nma(pdbs)

Calculate all 6 correlation matrices
cij <- dccm(modes)

Plot correlations for first structure
plot.dccm(cij$all.dccm[,,1])

}

dccm.gnm Dynamic Cross-Correlation from Gaussian Network Model

Description

Calculate the cross-correlation matrix from Gaussian network model normal modes analysis.

Usage

S3 method for class 'gnm'
dccm(x, ...)

S3 method for class 'egnm'
dccm(x, ...)

84 dccm.gnm

Arguments

x an object of class ‘gnm’ or ‘egnm’ as obtained from gnm.

... additional arguments (currently ignored).

Details

This function calculates the cross-correlation matrix from Gaussian network model (GNM) normal
modes analysis (NMA) obtained from gnm. It returns a matrix of residue-wise cross-correlations
whose elements, Cij, may be displayed in a graphical representation frequently termed a dynamical
cross-correlation map, or DCCM. (See more details in help(dccm.nma)).

Value

Returns a cross-correlation matrix.

Author(s)

Xin-Qiu Yao & Lars Skjaerven

References

Bahar, I. et al. (1997) Folding Des. 2, 173.

See Also

gnm, dccm.nma, dccm.enma, plot.dccm.

Examples

if(!requireNamespace("lattice", quietly=TRUE)) {
message("Need lattice installed to run this example")

} else {

Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate normal modes
modes <- gnm(pdb)

Calculate correlation matrix
cm <- dccm(modes)

Plot correlation map
plot(cm, sse = pdb, contour = FALSE, col.regions = bwr.colors(20),

at = seq(-1, 1, 0.1))

}

dccm.nma 85

dccm.nma Dynamic Cross-Correlation from Normal Modes Analysis

Description

Calculate the cross-correlation matrix from Normal Modes Analysis.

Usage

S3 method for class 'nma'
dccm(x, nmodes = NULL, ncore = NULL, progress = NULL, ...)

Arguments

x an object of class nma as obtained from function nma.

nmodes numerical, number of modes to consider.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

progress progress bar for use with shiny web app.

... additional arguments ?

Details

This function calculates the cross-correlation matrix from Normal Modes Analysis (NMA) ob-
tained from nma of a protein structure. It returns a matrix of residue-wise cross-correlations whose
elements, Cij, may be displayed in a graphical representation frequently termed a dynamical cross-
correlation map, or DCCM.

If Cij = 1 the fluctuations of residues i and j are completely correlated (same period and same
phase), if Cij = -1 the fluctuations of residues i and j are completely anticorrelated (same period and
opposite phase), and if Cij = 0 the fluctuations of i and j are not correlated.

Value

Returns a cross-correlation matrix.

Author(s)

Lars Skjaerven

References

Wynsberghe. A.W.V, Cui, Q. Structure 14, 1647–1653. Grant, B.J. et al. (2006) Bioinformatics 22,
2695–2696.

See Also

nma, plot.dccm

86 dccm.pca

Examples

if(!requireNamespace("lattice", quietly=TRUE)) {
message("Need lattice installed to run this example")

} else {

Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate normal modes
modes <- nma(pdb)

Calculate correlation matrix
cm <- dccm.nma(modes)

Plot correlation map
plot(cm, sse = pdb, contour = FALSE, col.regions = bwr.colors(20),

at = seq(-1, 1, 0.1))

}

dccm.pca Dynamical Cross-Correlation Matrix from Principal Component
Analysis

Description

Calculate the cross-correlation matrix from principal component analysis (PCA).

Usage

S3 method for class 'pca'
dccm(x, pc = NULL, method = c("pearson", "lmi"), ncore = NULL, ...)

Arguments

x an object of class pca as obtained from function pca.xyz.

pc numerical, indices of PCs to be included in the calculation. If all negative, PCs
complementary to abs(pc) are included.

method method to calculate the cross-correlation. Currently supports Pearson and linear
mutual information (LMI).

ncore number of CPU cores used to do the calculation. By default (ncore = NULL), use
all available cores detected.

... Additional arguments to be passed (currently ignored).

dccm.pca 87

Details

This function calculates the cross-correlation matrix from principal component analysis (PCA) ob-
tained from pca.xyz of a set of protein structures. It is an alternative way to calculate correlation in
addition to the conventional way from xyz coordinates directly. But, in this new way one can freely
chooses the PCs to be included in the calculation (e.g. for filtering out PCs with small eigenvalues).

Value

Returns a cross-correlation matrix with values in a range from -1 to 1 (Pearson) or from 0 to 1
(LMI).

Author(s)

Xin-Qiu Yao

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca.xyz, plot.dccm, dccm, dccm.xyz, dccm.nma, dccm.enma.

Examples

if(!requireNamespace("lattice", quietly=TRUE)) {
message("Need lattice installed to run this example")

} else {

##-- Read example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

Select residues 24 to 27 and 85 to 90 in both chains
inds <- atom.select(pdb, resno=c(24:27,85:90), elety='CA')

lsq fit of trj on pdb
xyz <- fit.xyz(pdb$xyz, trj, fixed.inds=inds$xyz, mobile.inds=inds$xyz)

Do PCA
pca <- pca.xyz(xyz)

DCCM: only use first 10 PCs
cij <- dccm(pca, pc = c(1:10))

Plot DCCM

88 dccm.xyz

plot(cij)

DCCM: remove first 10 PCs
cij <- dccm(pca, pc = -c(1:10))

Plot DCCM
plot(cij)

}

dccm.xyz Dynamical Cross-Correlation Matrix from Cartesian Coordinates

Description

Determine the cross-correlations of atomic displacements.

Usage

S3 method for class 'xyz'
dccm(x, reference = NULL, grpby=NULL, method=c("pearson", "lmi"),

ncore=1, nseg.scale=1, ...)

Arguments

x a numeric matrix of Cartesian coordinates with a row per structure/frame.

reference The reference structure about which displacements are analysed.

grpby a vector counting connective duplicated elements that indicate the elements of
xyz that should be considered as a group (e.g. atoms from a particular residue).

method method to calculate the cross-correlation. Currently supports Pearson and linear
mutual information (LMI).

ncore number of CPU cores used to do the calculation. ncore=NULL will use all the
cores detected.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

... Additional arguments to be passed (currently ignored).

Details

The extent to which the atomic fluctuations/displacements of a system are correlated with one an-
other can be assessed by examining the magnitude of all pairwise cross-correlation coefficients (see
McCammon and Harvey, 1986).

This function returns a matrix of all atom-wise cross-correlations whose elements, Cij, may be
displayed in a graphical representation frequently termed a dynamical cross-correlation map, or
DCCM.

dccm.xyz 89

If Cij = 1 the fluctuations of atoms i and j are completely correlated (same period and same phase),
if Cij = -1 the fluctuations of atoms i and j are completely anticorrelated (same period and opposite
phase), and if Cij = 0 the fluctuations of i and j are not correlated.

Typical characteristics of DCCMs include a line of strong cross-correlation along the diagonal,
cross-correlations emanating from the diagonal, and off-diagonal cross-correlations. The high di-
agonal values occur where i = j, where Cij is always equal to 1.00. Positive correlations emanating
from the diagonal indicate correlations between contiguous residues, typically within a secondary
structure element or other tightly packed unit of structure. Typical secondary structure patterns in-
clude a triangular pattern for helices and a plume for strands. Off-diagonal positive and negative
correlations may indicate potentially interesting correlations between domains of non-contiguous
residues.

If method = "pearson", the conventional Pearson’s inner-product correlaiton calculation will be
invoked, in which only the diagnol of each atom-atom variance-covariance sub-matrix is considered.

If method = "lmi", then the linear mutual information cross-correlation will be calculated. ‘LMI’
considers both diagnol and off-diagnol entries in the sub-matrices, and so even captures the corre-
lation of atoms moving in orthognal directions.

Value

Returns a cross-correlation matrix with values in a range from -1 to 1 (Pearson) or from 0 to 1
(LMI).

Author(s)

Xin-Qiu Yao, Hongyang Li, Gisle Saelensminde, and Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

McCammon, A. J. and Harvey, S. C. (1986) Dynamics of Proteins and Nucleic Acids, Cambridge
University Press, Cambridge.

Lange, O.F. and Grubmuller, H. (2006) PROTEINS: Structure, Function, and Bioinformatics 62:1053–
1061.

See Also

cor for examining xyz cross-correlations, dccm, dccm.nma, dccm.pca, dccm.enma.

Examples

if (!requireNamespace("lattice", quietly = TRUE)) {
message('Need lattice installed to run this example')

} else {

##-- Read example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)

Read the starting PDB file to determine atom correspondence

90 deformation.nma

pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

select residues 24 to 27 and 85 to 90 in both chains
inds <- atom.select(pdb, resno=c(24:27,85:90), elety='CA')

lsq fit of trj on pdb
xyz <- fit.xyz(pdb$xyz, trj, fixed.inds=inds$xyz, mobile.inds=inds$xyz)

DCCM (slow to run so restrict to Calpha)
cij <- dccm(xyz)

Plot DCCM
plot(cij)

Or

lattice::contourplot(cij, region = TRUE, labels=FALSE, col="gray40",
at=c(-1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1),
xlab="Residue No.", ylab="Residue No.",
main="DCCM: dynamic cross-correlation map")

LMI matrix
cij <- dccm(xyz, method='lmi')

Plot LMI matrix
#plot(cij)
col.scale <- colorRampPalette(c("gray95", "cyan"))(5)
plot(cij, at=seq(0.4,1, length=5), col.regions=col.scale)

}

deformation.nma Deformation Analysis

Description

Calculate deformation energies from Normal Mode Analysis.

Usage

deformation.nma(nma, mode.inds = NULL, pfc.fun = NULL, ncore = NULL)

Arguments

nma a list object of class "nma" (obtained with nma).

mode.inds a numeric vector of mode indices in which the calculation should be based.

deformation.nma 91

pfc.fun customized pair force constant (‘pfc’) function. The provided function should
take a vector of distances as an argument to return a vector of force constants.
See nma for examples.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

Details

Deformation analysis provides a measure for the amount of local flexibility of the protein structure -
i.e. atomic motion relative to neighbouring atoms. It differs from ‘fluctuations’ (e.g. RMSF values)
which provide amplitudes of the absolute atomic motion.

Deformation energies are calculated based on the nma object. By default the first 20 non-trivial
modes are included in the calculation.

See examples for more details.

Value

Returns a list with the following components:

ei numeric matrix containing the energy contribution (E) from each atom (i; row-
wise) at each mode index (column-wise).

sums deformation energies corresponding to each mode.

Author(s)

Lars Skjaerven

References

Hinsen, K. (1998) Proteins 33, 417–429. Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

nma

Examples

Running the example takes some time - testing excluded

Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate (vibrational) normal modes
modes <- nma(pdb)

Calculate deformation energies
def.energies <- deformation.nma(modes)

Not run:

92 diag.ind

Fluctuations of first non-trivial mode
def.energies <- deformation.nma(modes, mode.inds=seq(7, 16))

write.pdb(pdb=NULL, xyz=modes$xyz,
b=def.energies$ei[,1])

End(Not run)

diag.ind Diagonal Indices of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries ’TRUE’ in the upper
triangle close to the diagonal.

Usage

diag.ind(x, n = 1, diag = TRUE)

Arguments

x a matrix.
n the number of elements from the diagonal to include.
diag logical. Should the diagonal be included?

Details

Basic function useful for masking elements close to the diagonal of a given matrix.

Value

Returns a matrix of logicals the same size of a given matrix with entries ’TRUE’ in the upper
triangle close to the diagonal.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

diag, lower.tri, upper.tri, matrix

Examples

diag.ind(matrix(,ncol=5,nrow=5), n=3)

difference.vector 93

difference.vector Difference Vector

Description

Define a difference vector between two conformational states.

Usage

difference.vector(xyz, xyz.inds=NULL, normalize=FALSE)

Arguments

xyz numeric matrix of Cartesian coordinates with a row per structure.

xyz.inds a vector of indices that selects the elements of columns upon which the calcula-
tion should be based.

normalize logical, if TRUE the difference vector is normalized.

Details

Squared overlap (or dot product) is used to measure the similiarity between a displacement vec-
tor (e.g. a difference vector between two conformational states) and mode vectors obtained from
principal component or normal modes analysis.

Value

Returns a numeric vector of the structural difference (normalized if desired).

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

overlap

Examples

attach(kinesin)

Ignore gap containing positions
gaps.pos <- gap.inspect(pdbs$xyz)

#-- Do PCA

94 dist.xyz

pc.xray <- pca.xyz(pdbs$xyz[, gaps.pos$f.inds])

Define a difference vector between two structural states
diff.inds <- c(grep("d1v8ka", pdbs$id),

grep("d1goja", pdbs$id))

Calculate the difference vector
dv <- difference.vector(pdbs$xyz[diff.inds,], gaps.pos$f.inds)

Calculate the squared overlap between the PCs and the difference vector
o <- overlap(pc.xray, dv)

detach(kinesin)

dist.xyz Calculate the Distances Between the Rows of Two Matrices

Description

Compute the pairwise euclidean distances between the rows of two matrices.

Usage

dist.xyz(a, b = NULL, all.pairs=TRUE, ncore=1, nseg.scale=1)

Arguments

a a ‘xyz’ object, numeric data matrix, or vector.

b an optional second ‘xyz’ object, data matrix, or vector.

all.pairs logical, if TRUE all pairwise distances between the rows of ‘a’ and all rows of
‘b’ are computed, if FALSE only the distances between coresponding rows of
‘a’ and ‘b’ are computed.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

Details

This function returns a matrix of euclidean distances between each row of ‘a’ and all rows of ‘b’.
Input vectors are coerced to three dimensional matrices (representing the Cartesian coordinates x, y
and z) prior to distance computation. If ‘b’ is not provided then the pairwise distances between all
rows of ‘a’ are computed.

Value

Returns a matrix of pairwise euclidean distances between each row of ‘a’ and all rows of ‘b’.

dm 95

Note

This function will choke if ‘b’ has too many rows.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

dm, dist

Examples

dist.xyz(c(1,1,1, 3,3,3), c(3,3,3, 2,2,2, 1,1,1))
dist.xyz(c(1,1,1, 3,3,3), c(3,3,3, 2,2,2, 1,1,1), all.pairs=FALSE)

dm Distance Matrix Analysis

Description

Construct a distance matrix for a given protein structure.

Usage

dm(...)

S3 method for class 'pdb'
dm(pdb, inds = NULL, grp = TRUE, verbose=TRUE, ...)
S3 method for class 'pdbs'
dm(pdbs, rm.gaps=FALSE, all.atom=FALSE,

aligned.atoms.only=NULL, ...)

S3 method for class 'xyz'
dm(xyz, grpby = NULL, scut = NULL, mask.lower = TRUE,

gc.first=FALSE, ncore=1, ...)

96 dm

Arguments

pdb a pdb structure object as returned by read.pdb or a numeric vector of ‘xyz’
coordinates.

inds atom and xyz coordinate indices obtained from atom.select that selects the
elements of pdb upon which the calculation should be based.

grp logical, if TRUE atomic distances will be grouped according to their residue
membership. See ‘grpby’.

verbose logical, if TRUE possible warnings are printed.

pdbs a ‘pdbs’ object as returned by read.fasta.pdb, read.all, or pdbaln.

rm.gaps logical, if TRUE gapped positions are removed in the returned value.

all.atom logical, if TRUE all-atom coordinates from read.all are used.

aligned.atoms.only

logical, if TRUE only equivalent (aligned) atoms are considered. Only mean-
ingful when all.atom=TRUE. Default: FALSE.

xyz a numeric vector or matrix of Cartesian coordinates.

grpby a vector counting connective duplicated elements that indicate the elements of
xyz that should be considered as a group (e.g. atoms from a particular residue).

scut a cutoff neighbour value which has the effect of excluding atoms, or groups, that
are sequentially within this value.

mask.lower logical, if TRUE the lower matrix elements (i.e. those below the diagonal) are
returned as NA.

gc.first logical, if TRUE will call gc() first before calculation of distance matrix. This
is to solve the memory overload problem when ncore > 1 and xyz has many
rows/columns, with a bit sacrifice on speed.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

... arguments passed to and from functions.

Details

Distance matrices, also called distance plots or distance maps, are an established means of describ-
ing and comparing protein conformations (e.g. Phillips, 1970; Holm, 1993).

A distance matrix is a 2D representation of 3D structure that is independent of the coordinate ref-
erence frame and, ignoring chirality, contains enough information to reconstruct the 3D Cartesian
coordinates (e.g. Havel, 1983).

Value

Returns a numeric matrix of class "dmat", with all N by N distances, where N is the number of
selected atoms. With multiple frames the output is provided in a three dimensional array.

dm 97

Note

The input selection can be any character string or pattern interpretable by the function atom.select.
For example, shortcuts "calpha", "back", "all" and selection strings of the form /segment/chain/residue
number/residue name/element number/element name/; see atom.select for details.

If a coordinate vector is provided as input (rather than a pdb object) the selection option is redun-
dant and the input vector should be pruned instead to include only desired positions.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Phillips (1970) Biochem. Soc. Symp. 31, 11–28.

Holm (1993) J. Mol. Biol. 233, 123–138.

Havel (1983) Bull. Math. Biol. 45, 665–720.

See Also

plot.dmat, read.pdb, atom.select

Examples

PDB server connection required - testing excluded
try({

##--- Distance Matrix Plot
pdb <- read.pdb("4q21")
k <- dm(pdb,inds="calpha")
filled.contour(k, nlevels = 10)

NOTE: FOLLOWING EXAMPLE NEEDS MUSCLE INSTALLED
if(check.utility("muscle")) {

##--- DDM: Difference Distance Matrix
Downlaod and align two PDB files
pdbs <- pdbaln(get.pdb(c("4q21", "521p"), path = tempdir()), outfile = tempfile())

Get distance matrix
a <- dm.xyz(pdbs$xyz[1,])
b <- dm.xyz(pdbs$xyz[2,])

Calculate DDM
c <- a - b

Plot DDM
plot(c,key=FALSE, grid=FALSE)

plot(c, axis.tick.space=10,

98 dssp

resnum.1=pdbs$resno[1,],
resnum.2=pdbs$resno[2,],
grid.col="black",
xlab="Residue No. (4q21)", ylab="Residue No. (521p)")

}

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
##-- Residue-wise distance matrix based on the
minimal distance between all available atoms
l <- dm.xyz(pdb$xyz, grpby=pdb$atom[,"resno"], scut=3)

End(Not run)

dssp Secondary Structure Analysis with DSSP or STRIDE

Description

Secondary structure assignment according to the method of Kabsch and Sander (DSSP) or the
method of Frishman and Argos (STRIDE).

Usage

dssp(...)

S3 method for class 'pdb'
dssp(pdb, exefile = "dssp", resno=TRUE, full=FALSE, verbose=FALSE, ...)

S3 method for class 'pdbs'
dssp(pdbs, ...)

S3 method for class 'xyz'
dssp(xyz, pdb, ...)

stride(pdb, exefile = "stride", resno=TRUE)

S3 method for class 'sse'
print(x, ...)

dssp 99

Arguments

pdb a structure object of class "pdb", obtained from read.pdb.

exefile file path to the ‘DSSP’ or ‘STRIDE’ program on your system (i.e. how is ‘DSSP’
or ‘STRIDE’ invoked).

resno logical, if TRUE output is in terms of residue numbers rather than residue index
(position in sequence).

full logical, if TRUE bridge pairs and hbonds columns are parsed.

verbose logical, if TRUE ‘DSSP’ warning and error messages are printed.

pdbs a list object of class "pdbs" (obtained with pdbaln or read.fasta.pdb).

xyz a trajectory object of class "xyz", obtained from read.ncdf, read.dcd, read.crd.

x an sse object obtained from dssp.pdb or stride.

... additional arguments to and from functions.

Details

This function calls the ‘DSSP’ or ‘STRIDE’ program to define secondary structure and psi and phi
torsion angles.

Value

Returns a list with the following components:

helix ‘start’, ‘end’, ‘length’, ‘chain’ and ‘type’ of helix, where start and end are
residue numbers or residue index positions depending on the value of “resno”
input argument.

sheet ‘start’, ‘end’ and ‘length’ of E type sse, where start and end are residue numbers
“resno”.

turn ‘start’, ‘end’ and ‘length’ of T type sse, where start and end are residue numbers
“resno”.

phi a numeric vector of phi angles.

psi a numeric vector of psi angles.

acc a numeric vector of solvent accessibility.

sse a character vector of secondary structure type per residue.

hbonds a 10 or 16 column matrix containing the bridge pair records as well as backbone
NH–>O and O–>NH H-bond records. (Only available for dssp

Note

A system call is made to the ‘DSSP’ or ‘STRIDE’ program, which must be installed on your system
and in the search path for executables. See http://thegrantlab.org/bio3d/articles/online/
install_vignette/Bio3D_install.html for instructions of how to install these programs.

For the hbonds list component the column names can be used as a convenient means of data access,
namely:
Bridge pair 1 “BP1”,

http://thegrantlab.org/bio3d/articles/online/install_vignette/Bio3D_install.html
http://thegrantlab.org/bio3d/articles/online/install_vignette/Bio3D_install.html

100 dssp

Bridge pair 2 “BP2”,
Backbone H-bond (NH–>O) “NH-O.1”,
H-bond energy of NH–>O “E1”,
Backbone H-bond (O–>NH) “O-HN.1”,
H-bond energy of O–>NH “E2”,
Backbone H-bond (NH–>O) “NH-O.2”,
H-bond energy of NH–>O “E3”,
Backbone H-bond (O–>NH) “O-HN.2”,
H-bond energy of O–>NH “E4”.

If ‘resno=TRUE’ the following additional columns are included:
Chain ID of resno “BP1”: “ChainBP1”,
Chain ID of resno “BP2”: “ChainBP2”,
Chain ID of resno “O-HN.1”: “Chain1”,
Chain ID of resno “NH-O.2”: “Chain2”,
Chain ID of resno “O-HN.1”: “Chain3”,
Chain ID of resno “NH-O.2”: “Chain4”.

Author(s)

Barry Grant, Lars Skjaerven (dssp.pdbs)

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘DSSP’ is the work of Kabsch and Sander: Kabsch and Sander (1983) Biopolymers. 12, 2577–2637.

For information on obtaining ‘DSSP’, see:
https://swift.cmbi.umcn.nl/gv/dssp/.

‘STRIDE’ is the work of Frishman and Argos: Frishman and Argos (1995) Proteins. 3, 566–579.

For information on obtaining the ‘STRIDE’ program, see:
https://webclu.bio.wzw.tum.de/stride/install.html, or copy it from an installation of VMD.

See Also

read.pdb, torsion.pdb, torsion.xyz, plot.bio3d,

read.ncdf, read.dcd, read.prmtop, read.crd,

Examples

Not run:
##- PDB example
Read a PDB file
pdb <- read.pdb("1bg2")
sse <- dssp(pdb)
sse2 <- stride(pdb)

Short summary
sse

https://swift.cmbi.umcn.nl/gv/dssp/
https://webclu.bio.wzw.tum.de/stride/install.html

elements 101

sse2

Helix data
sse$helix

Precent SSE content
sum(sse$helix$length)/sum(pdb$calpha) * 100
sum(sse$sheet$length)/sum(pdb$calpha) * 100

##- PDBs example
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))
pdbs <- read.fasta.pdb(aln)

Aligned PDB defined secondary structure
pdbs$sse

Aligned DSSP defined secondary structure
sse <- dssp(pdbs)

##- XYZ Trajectory
pdb <- read.pdb("2mda", multi=TRUE)
dssp.xyz(pdb$xyz, pdb)

Note. for large MD trajectories you may want to skip some frames, e.g.
xyz <- rbind(pdbxyz, pdbxyz) ## dummy trajectory
frames <- seq(1, to=nrow(xyz), by=4) ## frame numbers to examine
ss <- dssp.xyz(xyz[frames,], pdb) ## matrix of sse frame x residue

End(Not run)

elements Periodic Table of the Elements

Description

This data set gives various information on chemical elements.

Usage

elements

Format

A data frame containing for each chemical element the following information.

num atomic number

102 elements

symb elemental symbol

areneg Allred and Rochow electronegativity (0.0 if unknown)

rcov covalent radii (in Angstrom) (1.6 if unknown)

rbo "bond order" radii

rvdw van der Waals radii (in Angstrom) (2.0 if unknown)

maxbnd maximum bond valence (6 if unknown)

mass IUPAC recommended atomic masses (in amu)

elneg Pauling electronegativity (0.0 if unknown)

ionization ionization potential (in eV) (0.0 if unknown)

elaffinity electron affinity (in eV) (0.0 if unknown)

red red value for visualization

green green value for visualization

blue blue value for visualization

name element name

Source

Open Babel (2.3.1) file: element.txt

Created from the Blue Obelisk Cheminformatics Data Repository
Direct Source: http://www.blueobelisk.org/
http://www.blueobelisk.org/repos/blueobelisk/elements.xml includes furhter bibliographic citation
information

- Allred and Rochow Electronegativity from http://www.hull.ac.uk/chemistry/electroneg.php?type=Allred-
Rochow
- Covalent radii from http://dx.doi.org/10.1039/b801115j
- Van der Waals radii from http://dx.doi.org/10.1021/jp8111556

Examples

data(elements)
elements

Get the mass of some elements
symb <- c("C","O","H")
elements[match(symb,elements[,"symb"]),"mass"]

Get the van der Waals radii of some elements
symb <- c("C","O","H")
elements[match(symb,elements[,"symb"]),"rvdw"]

entropy 103

entropy Shannon Entropy Score

Description

Calculate the sequence entropy score for every position in an alignment.

Usage

entropy(alignment)

Arguments

alignment sequence alignment returned from read.fasta or an alignment character ma-
trix.

Details

Shannon’s information theoretic entropy (Shannon, 1948) is an often-used measure of residue di-
versity and hence residue conservation.

Value

Returns a list with five components:

H standard entropy score for a 22-letter alphabet.

H.10 entropy score for a 10-letter alphabet (see below).

H.norm normalized entropy score (for 22-letter alphabet), so that conserved (low en-
tropy) columns (or positions) score 1, and diverse (high entropy) columns score
0.

H.10.norm normalized entropy score (for 10-letter alphabet), so that conserved (low en-
tropy) columns score 1 and diverse (high entropy) columns score 0.

freq residue frequency matrix containing percent occurrence values for each residue
type.

Note

In addition to the standard entropy score (based on a 22-letter alphabet of the 20 standard amino-
acids, plus a gap character ‘-’ and a mask character ‘X’), an entropy score, H.10, based on a 10-letter
alphabet is also returned.

For H.10, residues from the 22-letter alphabet are classified into one of 10 types, loosely follow-
ing the convention of Mirny and Shakhnovich (1999): Hydrophobic/Aliphatic [V,I,L,M], Aromatic
[F,W,Y], Ser/Thr [S,T], Polar [N,Q], Positive [H,K,R], Negative [D,E], Tiny [A,G], Proline [P],
Cysteine [C], and Gaps [-,X].

The residue code ‘X’ is useful for handling non-standard aminoacids.

104 entropy

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Shannon (1948) The System Technical J. 27, 379–422.

Mirny and Shakhnovich (1999) J. Mol. Biol. 291, 177–196.

See Also

consensus, read.fasta

Examples

Read HIV protease alignment
aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))

Entropy and consensus
h <- entropy(aln)
con <- consensus(aln)

names(h$H)=con$seq
print(h$H)

Entropy for sub-alignment (positions 1 to 20)
h.sub <- entropy(aln$ali[,1:20])

Plot entropy and residue frequencies (excluding positions >=60 percent gaps)
H <- h$H.norm
H[apply(h$freq[21:22,],2,sum)>=0.6] = 0

col <- mono.colors(32)
aa <- rev(rownames(h$freq))
oldpar <- par(no.readonly=TRUE)
layout(matrix(c(1,2),2,1,byrow = TRUE), widths = 7,

heights = c(2, 8), respect = FALSE)

Plot 1: entropy
par(mar = c(0, 4, 2, 2))
barplot(H, border="white", ylab = "Entropy",

space=0, xlim=c(3.7, 97.3),yaxt="n")
axis(side=2, at=c(0.2,0.4, 0.6, 0.8))
axis(side=3, at=(seq(0,length(con$seq),by=5)-0.5),

labels=seq(0,length(con$seq),by=5))
box()

Plot2: residue frequencies
par(mar = c(5, 4, 0, 2))
image(x=1:ncol(con$freq),

y=1:nrow(con$freq),

example.data 105

z=as.matrix(rev(as.data.frame(t(con$freq)))),
col=col, yaxt="n", xaxt="n",
xlab="Alignment Position", ylab="Residue Type")

axis(side=1, at=seq(0,length(con$seq),by=5))
axis(side=2, at=c(1:22), labels=aa)
axis(side=3, at=c(1:length(con$seq)), labels =con$seq)
axis(side=4, at=c(1:22), labels=aa)
grid(length(con$seq), length(aa))
box()

for(i in 1:length(con$seq)) {
text(i, which(aa==con$seq[i]),con$seq[i],col="white")

}
abline(h=c(3.5, 4.5, 5.5, 3.5, 7.5, 9.5,

12.5, 14.5, 16.5, 19.5), col="gray")

par(oldpar)

example.data Bio3d Example Data

Description

These data sets contain the results of running various Bio3D functions on example kinesin and
transducin structural data, and on a short coarse-grained MD simulation data for HIV protease. The
main purpose of including this data (which may be generated by the user by following the extended
examples documented within the various Bio3D functions) is to speed up example execution. It
should allow users to more quickly appreciate the capabilities of functions that would otherwise
require raw data download, input and processing before execution.

Note that related datasets formed the basis of the work described in (Grant, 2007) and (Yao & Grant,
2013) for kinesin and transducin examples, respectively.

Usage

data(kinesin)
data(transducin)
data(hivp)

Format

Three objects from analysis of the kinesin and transducin sequence and structure data:

1. pdbs is a list of class pdbs containing aligned PDB structure data. In the case of transducin
this is the output of running pdbaln on a set of 53 G[alpha]i structures from the PDB database
(see pdbs$id or annotation described below for details). The coordinates are fitted onto the
first structure based on "core" positions obtained from core.find and superposed using the
function pdbfit.

2. core is a list of class "core" obtained by running the function core.find on the pdbs object
as described above.

106 filter.cmap

3. annotation is a character matrix describing the nucleotide state and bound ligand species for
each structure in pdbs as obtained from the function pdb.annotate.

One object named net in the hivp example data stores the correlation network obtained from the
analysis of the MD simulation trajectory of HIV protease using the cna function. The original tra-
jectory file can be accessed by the command ‘system.file("examples/hivp.dcd", package="bio3d")’.

Source

A related but more extensive dataset formed the basis of the work described in (Grant, 2007) and
(Yao & Grant, 2013) for kinesin and transducin examples, respectively.

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Grant, B.J. et al. (2007) J. Mol. Biol. 368, 1231–1248.

Yao, X.Q. et al. (2013) Biophys. J. 105, L08–L10.

filter.cmap Contact Map Consensus Filtering

Description

This function filters a tridimensional contact matrix (NxNxZ), where N is the residue number and
Z is the simulation number) selecting only contacts present in at least P simulations.

Usage

filter.cmap(cm, cutoff.sims = NULL)

Arguments

cm An array of dimensions NxNxZ or a list of NxN matrices containing binary
contact values as obtained from cmap. Here, ‘N’ is the residue number and ‘Z’
the simulation number. The matrix elements should be 1 if two residues are in
contact and 0 if they are not in contact.

cutoff.sims A single element numeric vector corresponding to the minimum number of sim-
ulations a contact between two residues must be present. If not, it will be set to
0 in the output matrix.

Value

The output matrix is a nXn binary matrix (n = residue number). Elements equal to 1 correspond to
residues in contact, elements equal to 0 to residues not in contact.

See Also

cmap, plot.cmap

filter.dccm 107

Examples

Not run:
load example data
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile, verbose=FALSE)

split the trj example in two
num.of.frames <- dim(trj)[1]
trj1 <- trj[1:(num.of.frames/2),]
trj2 <- trj[((num.of.frames/2)+1):num.of.frames,]

Lets work with Calpha atoms only
ca.inds <- atom.select(pdb, "calpha")
#noh.inds <- atom.select(pdb, "noh")

calculate single contact map matrices
cms <- list()
cms[[1]] <- cmap(trj1[,ca.inds$xyz], pcut=0.3, scut=0, dcut=7, mask.lower=FALSE)
cms[[2]] <- cmap(trj1[,ca.inds$xyz], pcut=0.3, scut=0, dcut=7, mask.lower=FALSE)

calculate average contact matrix
cm.filter <- filter.cmap(cms, cutoff.sims=2)

plot the result
par(pty="s", mfcol=c(1,3))
plot.cmap(cms[[1]])
plot.cmap(cms[[2]])
plot.cmap(cm.filter)

End(Not run)

filter.dccm Filter for Cross-correlation Matrices (Cij)

Description

This function builds various cij matrix for correlation network analysis

Usage

filter.dccm(x, cutoff.cij = NULL, cmap = NULL, xyz = NULL, fac = NULL,
cutoff.sims = NULL, collapse = TRUE, extra.filter = NULL, ...)

108 filter.dccm

Arguments

x A matrix (nXn), a numeric array with 3 dimensions (nXnXm), a list with m
cells each containing nXn matrix, or a list with ‘all.dccm’ component, contain-
ing atomic correlation values, where "n" is the number of residues and "m" the
number of calculations. The matrix elements should be in between -1 and 1. See
‘dccm’ function in bio3d package for further details.

cutoff.cij Threshold for each individual correlation value. If NULL, a guessed value will
be used. See below for details.

cmap logical or numerical matrix indicating the contact map. If logical and TRUE,
contact map will be calculated with input xyz.

xyz XYZ coordinates, or a ‘pdbs’ object obtained from pdbaln or read.fasta.pdb,
for contact map calculations.

fac factor indicating distinct categories of input correlation matrices.

cutoff.sims Threshold for the number of simulations with observed correlation value above
cutoff.cij for the same residue/atomic pairs. See below for details.

collapse logical, if TRUE the mean matrix will be returned.

extra.filter Filter to apply in addition to the model chosen.

... extra arguments passed to function cmap.

Details

If cmap is TRUE or provided a numerical matrix, the function inspects a set of cross-correlation
matrices, or DCCM, and decides edges for correlation network analysis based on:

1. min(abs(cij)) >= cutoff.cij, or 2. max(abs(cij)) >= cutoff.cij && residues contact each other
based on results from cmap.

Otherwise, the function filters DCCMs with cutoff.cij and return the mean of correlations present
in at least cutoff.sims calculated matrices.

An internally guessed cuoff.cij is used if cutoff.cij=NULL is provided. By default, the cutoff
is determined by keeping 5% of all residue pairs connected.

Value

Returns a matrix of class "dccm" or a 3D array of filtered cross-correlations.

Author(s)

Xin-Qiu Yao, Guido Scarabelli & Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

cna, dccm, dccm.nma, dccm.xyz, cmap, plot.dccm

filter.identity 109

Examples

Not run:

Example of transducin
attach(transducin)

gaps.pos <- gap.inspect(pdbs$xyz)
modes <- nma.pdbs(pdbs, ncore=NULL)
dccms <- dccm.enma(modes, ncore=NULL)

cij <- filter.dccm(dccms, xyz=pdbs)

Example protein kinase
Select Protein Kinase PDB IDs
ids <- c("4b7t_A", "2exm_A", "1opj_A", "4jaj_A", "1a9u_A",

"1tki_A", "1csn_A", "1lp4_A")

Download and split by chain ID
files <- get.pdb(ids, path = "raw_pdbs", split=TRUE)

Alignment of structures
pdbs <- pdbaln(files) # Sequence identity
summary(c(seqidentity(pdbs)))

NMA on all structures
modes <- nma.pdbs(pdbs, ncore=NULL)

Calculate correlation matrices for each structure
cij <- dccm(modes)

Set DCCM plot panel names for combined figure
dimnames(cij$all.dccm) = list(NULL, NULL, ids)
plot.dccm(cij$all.dccm)

Filter to display only correlations present in all structures
cij.all <- filter.dccm(cij, cutoff.sims = 8, cutoff.cij = 0)
plot.dccm(cij.all, main = "Consensus Residue Cross Correlation")

detach(transducin)

End(Not run)

filter.identity Percent Identity Filter

Description

Identify and filter subsets of sequences at a given sequence identity cutoff.

110 filter.identity

Usage

filter.identity(aln = NULL, ide = NULL, cutoff = 0.6, verbose = TRUE, ...)

Arguments

aln sequence alignment list, obtained from seqaln or read.fasta, or an alignment
character matrix. Not used if ‘ide’ is given.

ide an optional identity matrix obtained from seqidentity.

cutoff a numeric identity cutoff value ranging between 0 and 1.

verbose logical, if TRUE print details of the clustering process.

... additional arguments passed to and from functions.

Details

This function performs hierarchical cluster analysis of a given sequence identity matrix ‘ide’, or the
identity matrix calculated from a given alignment ‘aln’, to identify sequences that fall below a given
identity cutoff value ‘cutoff’.

Value

Returns a list object with components:

ind indices of the sequences below the cutoff value.

tree an object of class "hclust", which describes the tree produced by the clustering
process.

ide a numeric matrix with all pairwise identity values.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, seqaln, seqidentity, entropy, consensus

Examples

attach(kinesin)

ide.mat <- seqidentity(pdbs)

Histogram of pairwise identity values
op <- par(no.readonly=TRUE)
par(mfrow=c(2,1))
hist(ide.mat[upper.tri(ide.mat)], breaks=30,xlim=c(0,1),

filter.rmsd 111

main="Sequence Identity", xlab="Identity")

k <- filter.identity(ide=ide.mat, cutoff=0.6)
ide.cut <- seqidentity(pdbs$ali[k$ind,])
hist(ide.cut[upper.tri(ide.cut)], breaks=10, xlim=c(0,1),

main="Sequence Identity", xlab="Identity")

#plot(k$tree, axes = FALSE, ylab="Sequence Identity")
#print(k$ind) # selected
par(op)
detach(kinesin)

filter.rmsd RMSD Filter

Description

Identify and filter subsets of conformations at a given RMSD cutoff.

Usage

filter.rmsd(xyz = NULL, rmsd.mat = NULL, cutoff = 0.5,
fit = TRUE, verbose = TRUE, inds = NULL, method = "complete",
...)

Arguments

xyz a numeric matrix or list object containing multiple coordinates for pairwise com-
parison, such as that obtained from read.fasta.pdb. Not used if rmsd.mat is
given.

rmsd.mat an optional matrix of RMSD values obtained from rmsd.

cutoff a numeric rmsd cutoff value.

fit logical, if TRUE coordinate superposition is performed prior to RMSD calcula-
tion.

verbose logical, if TRUE progress details are printed.

inds a vector of indices that selects the elements of xyz upon which the calculation
should be based. By default, all the non-gap sites in xyz.

method the agglomeration method to be used. See function hclust for more informa-
tion.

... additional arguments passed to and from functions.

Details

This function performs hierarchical cluster analysis of a given matrix of RMSD values ‘rmsd.mat’,
or an RMSD matrix calculated from a given coordinate matrix ‘xyz’, to identify conformers that
fall below a given RMSD cutoff value ‘cutoff’.

112 fit.xyz

Value

Returns a list object with components:

ind indices of the conformers (rows) below the cutoff value.

tree an object of class "hclust", which describes the tree produced by the clustering
process.

rmsd.mat a numeric matrix with all pairwise RMSD values.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

rmsd, read.pdb, read.fasta.pdb, read.dcd

Examples

Not run:
attach(kinesin)

k <- filter.rmsd(xyz=pdbs,cutoff=0.5)
pdbs$id[k$ind]
hclustplot(k$tree, h=0.5, ylab="RMSD")
abline(h=0.5, col="gray")

detach(kinesin)

End(Not run)

fit.xyz Coordinate Superposition

Description

Coordinate superposition with the Kabsch algorithm.

fit.xyz 113

Usage

fit.xyz(fixed, mobile,
fixed.inds = NULL,
mobile.inds = NULL,
verbose=FALSE,
prefix= "", pdbext = "",
outpath = "fitlsq", full.pdbs=FALSE,
ncore = 1, nseg.scale = 1, ...)

rot.lsq(xx, yy,
xfit = rep(TRUE, length(xx)), yfit = xfit,
verbose = FALSE)

Arguments

fixed numeric vector of xyz coordinates.

mobile numeric vector, numeric matrix, or an object with an xyz component containing
one or more coordinate sets.

fixed.inds a vector of indices that selects the elements of fixed upon which fitting should
be based.

mobile.inds a vector of indices that selects the elements of mobile upon which fitting should
be based.

full.pdbs logical, if TRUE “full” coordinate files (i.e. all atoms) are written to the location
specified by outpath.

prefix prefix to mobile$id to locate “full” input PDB files. Only required if full.pdbs
is TRUE.

pdbext the file name extension of the input PDB files.

outpath character string specifing the output directory when full.pdbs is TRUE.

xx numeric vector corresponding to the moving ‘subject’ coordinate set.

yy numeric vector corresponding to the fixed ‘target’ coordinate set.

xfit logical vector with the same length as xx, with TRUE elements corresponding
to the subset of positions upon which fitting is to be performed.

yfit logical vector with the same length as yy, with TRUE elements corresponding
to the subset of positions upon which fitting is to be performed.

verbose logical, if TRUE more details are printed.

... other parameters for read.pdb.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation.

114 fit.xyz

Details

The function fit.xyz is a wrapper for the function rot.lsq, which performs the actual coordinate
superposition. The function rot.lsq is an implementation of the Kabsch algorithm (Kabsch, 1978)
and evaluates the optimal rotation matrix to minimize the RMSD between two structures.

Since the Kabsch algorithm assumes that the number of points are the same in the two input struc-
tures, care should be taken to ensure that consistent atom sets are selected with fixed.inds and
mobile.inds.

Optionally, “full” PDB file superposition and output can be accomplished by setting
full.pdbs=TRUE. In that case, the input (mobile) passed to fit.xyz should be a list object ob-
tained with the function read.fasta.pdb, since the components id, resno and xyz are required to
establish correspondences. See the examples below.

In dealing with large vector and matrix, running on multiple cores, especially when ncore>>1, may
ask for a large portion of system memory. To avoid the overuse of memory, input data is first split
into segments (for xyz matrix, the splitting is along the row). The number of data segments is equal
to nseg.scale*nseg.base, where nseg.base is an integer determined by the dimension of the
data.

Value

Returns moved coordinates.

Author(s)

Barry Grant with rot.lsq contributions from Leo Caves

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Kabsch Acta Cryst (1978) A34, 827–828.

See Also

rmsd, read.pdb, read.fasta.pdb, read.dcd

Examples

PDB server connection required - testing excluded
try({

##--- Read an alignment & Fit aligned structures
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))
pdbs <- read.fasta.pdb(aln)

gaps <- gap.inspect(pdbs$xyz)

xyz <- fit.xyz(fixed = pdbs$xyz[1,],
mobile = pdbs$xyz,
fixed.inds = gaps$f.inds,
mobile.inds = gaps$f.inds)

fluct.nma 115

#rmsd(xyz[, gaps$f.inds])
#rmsd(pdbs$xyz[, gaps$f.inds])

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
##-- Superpose again this time outputing PDBs
xyz <- fit.xyz(fixed = pdbs$xyz[1,],

mobile = pdbs,
fixed.inds = gaps$f.inds,
mobile.inds = gaps$f.inds,
outpath = "rough_fit",
full.pdbs = TRUE)

End(Not run)

try({

##--- Fit two PDBs
A <- read.pdb("1bg2")
A.ind <- atom.select(A, resno=c(256:269), elety='CA')

B <- read.pdb("2kin")
B.ind <- atom.select(B, resno=c(257:270), elety='CA')

xyz <- fit.xyz(fixed=A$xyz, mobile=B$xyz,
fixed.inds=A.ind$xyz,
mobile.inds=B.ind$xyz)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
Write out moved PDB
C <- B; C$xyz = xyz
write.pdb(pdb=C, file = "moved.pdb")

End(Not run)

fluct.nma NMA Fluctuations

Description

Calculates the atomic fluctuations from normal modes analysis.

116 fluct.nma

Usage

fluct.nma(nma, mode.inds=NULL)

Arguments

nma a list object of class "nma" (obtained with nma).

mode.inds a numeric vector containing the the mode numbers in which the calculation
should be based.

Details

Atomic fluctuations are calculated based on the nma object. By default all modes are included in the
calculation.

See examples for more details.

Value

Returns a numeric vector of atomic fluctuations.

Author(s)

Lars Skjaerven

References

Hinsen, K. et al. (2000) Chemical Physics 261, 25–37. Grant, B.J. et al. (2006) Bioinformatics 22,
2695–2696.

See Also

nma

Examples

Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate (vibrational) normal modes
modes <- nma(pdb)

Fluctuations
f <- fluct.nma(modes)

Fluctuations of first non-trivial mode
f <- fluct.nma(modes, mode.inds=c(7,8))

formula2mass 117

formula2mass Chemical Formula to Mass Converter

Description

Compute the molar mass associated to a chemical formula.

Usage

formula2mass(form, sum.mass = TRUE)

Arguments

form a character string containing a chemical formula on the form: ’C3 H5 N O1’.

sum.mass logical, should the mass of each element be summed.

Details

Compute the molar mass (in g.mol-1) associated to a chemical formula.

Value

Return a single element numeric vector containing the mass corresponding to a given chemical
formula.

Author(s)

Lars Skjaerven

See Also

atom2ele, atom2mass

Examples

#formula2mass("C5 H6 N O3")

118 gap.inspect

gap.inspect Alignment Gap Summary

Description

Report the number of gaps per sequence and per position for a given alignment.

Usage

gap.inspect(x)

Arguments

x a matrix or an alignment data structure obtained from read.fasta or read.fasta.pdb.

Details

Reports the number of gap characters per row (i.e. sequence) and per column (i.e. position) for
a given alignment. In addition, the indices for gap and non-gap containing coloums are returned
along with a binary matrix indicating the location of gap positions.

Value

Returns a list object with the following components:

row a numeric vector detailing the number of gaps per row (i.e. sequence).

col a numeric vector detailing the number of gaps per column (i.e. position).

t.inds indices for gap containing coloums

f.inds indices for non-gap containing coloums

bin a binary numeric matrix with the same dimensions as the alignment, with 0 at
non-gap positions and 1 at gap positions.

Note

During alignment, gaps are introduced into sequences that are believed to have undergone deletions
or insertions with respect to other sequences in the alignment. These gaps, often referred to as
indels, can be represented with ‘NA’, a ‘-’ or ‘.’ character.

This function gives an overview of gap occurrence and may be useful when considering positions
or sequences that could/should be excluded from further analysis.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

geostas 119

See Also

read.fasta, read.fasta.pdb

Examples

aln <- read.fasta(system.file("examples/hivp_xray.fa",
package = "bio3d"))

gap.stats <- gap.inspect(aln$ali)
gap.stats$row # Gaps per sequence
gap.stats$col # Gaps per position
##gap.stats$bin # Binary matrix (1 for gap, 0 for aminoacid)
##aln[,gap.stats$f.inds] # Alignment without gap positions

plot(gap.stats$col, typ="h", ylab="No. of Gaps")

geostas GeoStaS Domain Finder

Description

Identifies geometrically stable domains in biomolecules

Usage

geostas(...)

Default S3 method:
geostas(...)

S3 method for class 'xyz'
geostas(xyz, amsm = NULL, k = 3, pairwise = TRUE,

clustalg = "kmeans", fit = TRUE, ncore = NULL, verbose=TRUE, ...)

S3 method for class 'nma'
geostas(nma, m.inds = 7:11, verbose=TRUE, ...)

S3 method for class 'enma'
geostas(enma, pdbs = NULL, m.inds = 1:5, verbose=TRUE, ...)

S3 method for class 'pdb'
geostas(pdb, inds = NULL, verbose=TRUE, ...)

S3 method for class 'pdbs'
geostas(pdbs, verbose=TRUE, ...)

amsm.xyz(xyz, ncore = NULL)

120 geostas

S3 method for class 'geostas'
print(x, ...)

Arguments

... arguments passed to and from functions, such as kmeans, and hclust which are
called internally in geostas.xyz.

xyz numeric matrix of xyz coordinates as obtained e.g. by read.ncdf, read.dcd,
or mktrj.

amsm a numeric matrix as obtained by amsm.xyz (convenient e.g. for re-doing only
the clustering analysis of the ‘AMSM’ matrix).

k an integer scalar or vector with the desired number of groups.

pairwise logical, if TRUE use pairwise clustering of the atomic movement similarity ma-
trix (AMSM), else columnwise.

clustalg a character string specifing the clustering algorithm. Allowed values are ‘kmeans’
and ‘hclust’.

fit logical, if TRUE coordinate superposition on identified core atoms is performed
prior to the calculation of the AMS matrix.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

verbose logical, if TRUE details of the geostas calculations are printed to screen.

nma an ‘nma’ object as obtained from function nma. Function mktrj is used inter-
nally to generate a trajectory based on the normal modes.

m.inds the mode number(s) along which trajectory should be made (see function mktrj).

enma an ‘enma’ object as obtained from function nma.pdbs. Function mktrj is used
internally to generate a trajectory based on the normal modes.

pdbs a ‘pdbs’ object as obtained from function pdbaln or read.fasta.pdb.

pdb a ‘pdb’ object as obtained from function read.pdb.

inds a ‘select’ object as obtained from function atom.select giving the atomic in-
dices at which the calculation should be based. By default the function will
attempt to locate C-alpha atoms using function atom.select.

x a ‘geostas’ object as obtained from function geostas.

Details

This function attempts to identify rigid domains in a protein (or nucleic acid) structure based on
an structural ensemble, e.g. obtained from NMR experiments, molecular dynamics simulations, or
normal mode analysis.

The algorithm is based on a geometric approach for comparing pairwise traces of atomic motion
and the search for their best superposition using a quaternion representation of rotation. The result
is stored in a NxN atomic movement similarity matrix (AMSM) describing the correspondence
between all pairs of atom motion. Rigid domains are obtained by clustering the elements of the

geostas 121

AMS matrix (pairwise=TRUE), or alternatively, the columns similarity (pairwise=FALSE), using
either K-means (kmeans) or hierarchical (hclust) clustering.

Compared to the conventional cross-correlation matrix (see function dccm) the “geostas” approach
provide functionality to also detect domains involved in rotational motions (i.e. two atoms located
on opposite sides of a rotating domain will appear as anti-correlated in the cross-correlation matrix,
but should obtain a high similarity coefficient in the AMS matrix).

See examples for more details.

Value

Returns a list object of type ‘geostas’ with the following components:

amsm a numeric matrix of atomic movement similarity (AMSM).

fit.inds a numeric vector of xyz indices used for fitting.

grps a numeric vector containing the domain assignment per residue.

atomgrps a numeric vector containing the domain assignment per atom (only provided for
geostas.pdb).

inds a list of atom ‘select’ objects with indices to corresponding to the identified
domains.

Note

The current implementation in Bio3D uses a different fitting and clustering approach than the orig-
inal Java implementation. The results will therefore differ.

Author(s)

Julia Romanowska and Lars Skjaerven

References

Romanowska, J. et al. (2012) JCTC 8, 2588–2599. Skjaerven, L. et al. (2014) BMC Bioinformatics
15, 399. Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

plot.geostas, read.pdb, mktrj, read.ncdf, read.dcd, nma, dccm.

Examples

PDB server connection required - testing excluded
try({

NMR-ensemble example
Read a multi-model PDB file
pdb <- read.pdb("1d1d", multi=TRUE)

Find domains and write PDB
gs <- geostas(pdb, fit=TRUE)

122 geostas

Plot a atomic movement similarity matrix
plot.geostas(gs, contour=FALSE)

Fit all frames to the 'first' domain
domain.inds <- gs$inds[[1]]

xyz <- pdbfit(pdb, inds=domain.inds)

#write.pdb(pdb, xyz=xyz, chain=gs$atomgrps)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
NMA example
Fetch stucture
pdb <- read.pdb("1crn")

Calculate (vibrational) normal modes
modes <- nma(pdb)

Find domains
gs <- geostas(modes, k=2)

Write NMA trajectory with domain assignment
mktrj(modes, mode=7, chain=gs$grps)

Redo geostas domain clustering
gs <- geostas(modes, amsm=gs$amsm, k=5)

Trajectory example
Read inn DCD trajectory file, fit coordinates
dcdfile <- system.file("examples/hivp.dcd", package = "bio3d")
trj <- read.dcd(dcdfile)
xyz <- fit.xyz(trj[1,], trj)

Find domains
gs <- geostas(xyz, k=3, fit=FALSE)

Principal component analysis
pc.md <- pca.xyz(xyz)

Visualize PCs with colored domains (chain ID)
mktrj(pc.md, pc=1, chain=gs$grps)

get.pdb 123

X-ray ensemble GroEL subunits
Define the ensemble PDB-ids
ids <- c("1sx4_[A,B,H,I]", "1xck_[A-B]", "1sx3_[A-B]", "4ab3_[A-B]")

Download and split PDBs by chain ID
raw.files <- get.pdb(ids, path = "raw_pdbs", gzip = TRUE)
files <- pdbsplit(raw.files, ids, path = "raw_pdbs/split_chain/")

Align structures
pdbs <- pdbaln(files)

Find domains
gs <- geostas(pdbs, k=4, fit=TRUE)

Superimpose to core region
pdbs$xyz <- pdbfit(pdbs, inds=gs$fit.inds)

Principal component analysis
pc.xray <- pca(pdbs)

Visualize PCs with colored domains (chain ID)
mktrj(pc.xray, pc=1, chain=gs$grps)

##- Same, but more manual approach
gaps.pos <- gap.inspect(pdbs$xyz)

Find core region
core <- core.find(pdbs)

Fit to core region
xyz <- fit.xyz(pdbs$xyz[1, gaps.pos$f.inds],

pdbs$xyz[, gaps.pos$f.inds],
fixed.inds=core$xyz,
mobile.inds=core$xyz)

Find domains
gs <- geostas(xyz, k=4, fit=FALSE)

Perform PCA
pc.xray <- pca.xyz(xyz)

Make trajectory
mktrj(pc.xray, pc=1, chain=gs$grps)

End(Not run)

get.pdb Download PDB Coordinate Files

124 get.pdb

Description

Downloads PDB coordinate files from the RCSB Protein Data Bank.

Usage

get.pdb(ids, path = ".", URLonly=FALSE, overwrite = FALSE, gzip = FALSE,
split = FALSE, format = "pdb", verbose = TRUE, ncore = 1, ...)

Arguments

ids A character vector of one or more 4-letter PDB codes/identifiers or 6-letter
PDB-ID_Chain-ID of the files to be downloaded, or a ‘blast’ object containing
‘pdb.id’.

path The destination path/directory where files are to be written.

URLonly logical, if TRUE a character vector containing the URL path to the online file is
returned and files are not downloaded. If FALSE the files are downloaded.

overwrite logical, if FALSE the file will not be downloaded if it alread exist.

gzip logical, if TRUE the gzipped PDB will be downloaded and extracted locally.

split logical, if TRUE pdbsplit funciton will be called to split pdb files into sepa-
rated chains.

format format of the data file: ‘pdb’ or ‘cif’ for PDB and mmCIF file formats, respec-
tively.

verbose print details of the reading process.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

... extra arguments passed to pdbsplit function.

Details

This is a basic function to automate file download from the PDB.

Value

Returns a list of successfully downloaded files. Or optionally if URLonly is TRUE a list of URLs
for said files.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

http://www.wwpdb.org/documentation/format33/v3.3.html

get.seq 125

See Also

read.pdb, write.pdb, atom.select, read.fasta.pdb, read.fasta, pdbsplit

Examples

PDB server connection required - testing excluded
try({

PDB file paths
get.pdb(c("1poo", "1moo"), URLonly=TRUE)

These URLs can be used by 'read.pdb'
pdb <- read.pdb(get.pdb("5p21", URL=TRUE))
summary(pdb)

Download PDB file
get.pdb("5p21")

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

get.seq Download FASTA Sequence Files

Description

Downloads FASTA sequence files from the NCBI nr, SWISSPROT/UNIPROT, OR RCSB PDB
databases.

Usage

get.seq(ids, outfile = "seqs.fasta", db = "nr", verbose = FALSE)

Arguments

ids A character vector of one or more appropriate database codes/identifiers of the
files to be downloaded.

outfile A single element character vector specifying the name of the local file to which
sequences will be written.

db A single element character vector specifying the database from which sequences
are to be obtained.

verbose logical, if TRUE URL details of the download process are printed.

126 get.seq

Details

This is a basic function to automate sequence file download from the databases including NCBI nr,
SWISSPROT/UNIPROT, and RCSB PDB.

Value

If all files are successfully downloaded a list object with two components is returned:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

ids sequence names as identifiers.

This is similar to that returned by read.fasta. However, if some files were not successfully down-
loaded then a vector detailing which ids were not found is returned.

Note

For a description of FASTA format see: https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.
shtml. When reading alignment files, the dash ‘-’ is interpreted as the gap character.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

blast.pdb, read.fasta, read.fasta.pdb, get.pdb

Examples

Not run:
Sequence identifiers (GI or PDB codes e.g. from blast.pdb etc.)
get.seq(c("P01112", "Q61411", "P20171"))

#aa <-get.seq(c("4q21", "5p21"))
#aa$id
#aa$ali

End(Not run)

https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml

gnm 127

gnm Gaussian Network Model

Description

Perform Gaussian network model (GNM) based normal mode analysis (NMA) for a protein struc-
ture.

Usage

gnm(x, ...)

S3 method for class 'pdb'
gnm(x, inds = NULL, temp = 300, keep = NULL,
outmodes = NULL, gamma = 1, cutoff = 8, check.connect = TRUE, ...)

S3 method for class 'pdbs'
gnm(x, fit = TRUE, full = FALSE, subspace = NULL,
rm.gaps = TRUE, gc.first = TRUE, ncore = NULL, ...)

Arguments

x an object of class pdb as obtained from function read.pdb.

... (in gnm.pdbs) additional arguments passed to gnm.pdb.

inds atom and xyz coordinate indices obtained from atom.select that selects the
elements of pdb upon which the calculation should be based. If not provided the
function will attempt to select all calpha atoms automatically.

temp numerical, temperature for which the amplitudes for scaling the atomic displace-
ment vectors are calculated. Set ‘temp=NULL’ to avoid scaling.

keep numerical, final number of modes to be stored. Note that all subsequent analyses
are limited to this subset of modes. This option is useful for very large structures
and cases where memory may be limited.

outmodes atom indices as obtained from atom.select specifying the atoms to include in
the resulting mode object.

gamma numerical, global scale of the force constant.

cutoff numerical, distance cutoff for pair-wise interactions.

check.connect logical, if TRUE check chain connectivity.

fit logical, if TRUE C-alpha coordinate based superposition is performed prior to
normal mode calculations.

full logical, if TRUE return the complete, full structure, ‘nma’ objects.

subspace number of eigenvectors to store for further analysis.

rm.gaps logical, if TRUE obtain the hessian matrices for only atoms in the aligned po-
sitions (non-gap positions in all aligned structures). Thus, gap positions are
removed from output.

128 gnm

gc.first logical, if TRUE will call gc() first before mode calculation for each structure.
This is to avoid memory overload when ncore > 1.

ncore number of CPU cores used to do the calculation.

Details

This function builds a Gaussian network model (an isotropic elastic network model) for C-alpha
atoms and performs subsequent normal mode analysis (NMA). The model employs a distance cutoff
for the network construction: Atom pairs with distance falling within the cutoff have a harmonic
interaction with a uniform force constant; Otherwise atoms have no interaction. Output contains
N-1 (N, the number of residues) non-trivial modes (i.e. the degree of freedom is N-1), which can
then be used to calculate atomic fluctuations and covariance.

Value

Returns an object of class ‘gnm’ with the following components:

force.constants

numeric vector containing the force constants corresponding to each mode.

fluctuations numeric vector of atomic fluctuations.

U numeric matrix with columns containing the raw eigenvectors.

L numeric vector containing the raw eigenvalues.

xyz numeric matrix of class xyz containing the Cartesian coordinates in which the
calculation was performed.

temp numerical, temperature for which the amplitudes for scaling the atomic displace-
ment vectors are calculated.

triv.modes number of trivial modes.

natoms number of C-alpha atoms.

call the matched call.

Author(s)

Xin-Qiu Yao & Lars Skjaerven

References

Bahar, I. et al. (1997) Folding Des. 2, 173.

See Also

gnm.pdbs

hclustplot 129

Examples

Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate normal modes
modes <- gnm(pdb)

Print modes
print(modes)

Plot modes
plot(modes)

hclustplot Dendrogram with Clustering Annotation

Description

Draw a standard dendrogram with clustering annotation in the marginal regions and colored labels.

Usage

hclustplot(hc, k = NULL, h = NULL, colors = NULL, labels = NULL,
fillbox = FALSE, heights = c(1, .3), mar = c(1, 1, 0, 1), ...)

Arguments

hc an object of the type produced by hclust.

k an integer scalar or vector with the desired number of groups. Redirected to
function cutree.

h numeric scalar or vector with heights where the tree should be cut. Redirected
to function cutree. At least one of ‘k’ or ‘h’ must be specified.

colors a numerical or character vector with the same length as ‘hc’ specifying the colors
of the labels.

labels a character vector with the same length as ‘hc’ containing the labels to be writ-
ten.

fillbox logical, if TRUE clustering annotation will be drawn as filled boxes below the
dendrogram.

heights numeric vector of length two specifying the values for the heights of rows on
the device. See function layout.

mar a numerical vector of the form ‘c(bottom, left, top, right)’ which gives the num-
ber of lines of margin to be specified on the four sides of the plot. If left at
default the margins will be adjusted upon adding arguments ‘main’, ‘ylab’, etc.

... other graphical parameters passed to functions plot.dendrogram, mtext, and
par. Note that certain arguments will be ignored.

130 hclustplot

Details

This function adds extended visualization of cluster membership to a standard dendrogram. If ‘k’
or ‘h’ is provided a call to cutree will provide cluster membership information. Alternatively a
vector of colors or cluster membership information can be provided through argument ‘colors’.

See examples for further details on usage.

Value

Called for its effect.

Note

Argument ‘horiz=TRUE’ currently not supported.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

plot.hclust, plot.dendrogram, hclust, cutree.

Examples

Redundant testing excluded

attach(transducin)

##- perform RMSD clustering
rd <- rmsd(pdbs, fit=TRUE)
hc <- hclust(as.dist(rd))

##- draw dendrogram
hclustplot(hc, k=3)

##- draw dendrogram with manual clustering annotation
#hclustplot(hc, colors=annotation[, "color"], labels=pdbs$id)

detach(transducin)

hmmer 131

hmmer HMMER Sequence Search

Description

Perform a HMMER search against the PDB, NR, swissprot or other sequence and structure databases.

Usage

hmmer(seq, type="phmmer", db = NULL, verbose = TRUE, timeout = 90)

Arguments

seq a multi-element character vector containing the query sequence. Alternatively
a ‘fasta’ object as obtained from functions get.seq or read.fasta can be pro-
vided.

type character string specifying the ‘HMMER’ job type. Current options are ‘phm-
mer’, ‘hmmscan’, ‘hmmsearch’, and ‘jackhmmer’.

db character string specifying the database to search. Current options are ‘pdb’,
‘nr’, ‘swissprot’, ‘pfam’, etc. See ‘details’ for a complete list.

verbose logical, if TRUE details of the download process is printed.

timeout integer specifying the number of seconds to wait for the blast reply before a time
out occurs.

Details

This function employs direct HTTP-encoded requests to the HMMER web server. HMMER can be
used to search sequence databases for homologous protein sequences. The HMMER server imple-
ments methods using probabilistic models called profile hidden Markov models (profile HMMs).

There are currently four types of HMMER search to perform:

- ‘phmmer’: protein sequence vs protein sequence database.
(input argument seq must be a sequence).

Allowed options for type includes: ‘env_nr’, ‘nr’, ‘refseq’, ‘pdb’, ‘rp15’, ‘rp35’, ‘rp55’, ‘rp75’,
‘swissprot’, ‘unimes’, ‘uniprotkb’, ‘uniprotrefprot’, ‘pfamseq’.

- ‘hmmscan’: protein sequence vs profile-HMM database.
(input argument seq must be a sequence).

Allowed options for type includes: ‘pfam’, ‘gene3d’, ‘superfamily’, ‘tigrfam’.

- ‘hmmsearch’: protein alignment/profile-HMM vs protein sequence database.
(input argument seq must be an alignment).

Allowed options for type includes: ‘pdb’, ‘swissprot’.

- ‘jackhmmer’: iterative search vs protein sequence database.
(input argument seq must be an alignment). ‘jackhmmer’ functionality incomplete!!

132 hmmer

Allowed options for type includes: ‘env_nr’, ‘nr’, ‘refseq’, ‘pdb’, ‘rp15’, ‘rp35’, ‘rp55’, ‘rp75’,
‘swissprot’, ‘unimes’, ‘uniprotkb’, ‘uniprotrefprot’, ‘pfamseq’.

More information can be found at the HMMER website:
http://hmmer.org

Value

A list object with components ‘hit.tbl’ and ‘url’. ‘hit.tbl’ is a data frame with multiple components
depending on the selected job ‘type’. Frequently reported fields include:

name a character vector containing the name of the target.

acc a character vector containing the accession identifier of the target.

acc2 a character vector containing secondary accession of the target.

pdb.id same as ‘acc’.

id a character vector containing Identifier of the target

desc a character vector containing entry description.

score a numeric vector containing bit score of the sequence (all domains, without cor-
rection).

bitscore same as ‘score’.

pvalue a numeric vector containing the P-value of the score.

evalue a numeric vector containing the E-value of the score.

mlog.evalue a numeric vector containing minus the natural log of the E-value.

nregions a numeric vector containing Number of regions evaluated.

nenvelopes a numeric vector containing the number of envelopes handed over for domain
definition, null2, alignment, and scoring.

ndom a numeric vector containing the total number of domains identified in this se-
quence.

nreported a numeric vector containing the number of domains satisfying reporting thresh-
olding.

nincluded a numeric vector containing the number of domains satisfying inclusion thresh-
olding.

taxid a character vector containing The NCBI taxonomy identifier of the target (if
applicable).

species a character vector containing the species name.

kg a character vector containing the kingdom of life that the target belongs to -
based on placing in the NCBI taxonomy tree.

More details can be found at the HMMER website:
https://www.ebi.ac.uk/Tools/hmmer/help/api

http://hmmer.org
https://www.ebi.ac.uk/Tools/hmmer/help/api

hmmer 133

Note

Note that the chained ‘pdbs’ HMMER field (used for redundant PDBs) is included directly into the
result list (applies only when db='pdb'). In this case, the ‘name’ component of the target contains
the parent (non redundant) entry, and the ‘acc’ component the chained PDB identifiers. The search
results will therefore provide duplicated PDB identifiers for component $name, while $acc should
be unique.

Note

Online access is required to query HMMER services.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Finn, R.D. et al. (2011) Nucl. Acids Res. 39, 29–37. Eddy, S.R. (2011) PLoS Comput Biol 7(10):
e1002195.

See also the ‘HMMER’ website:
http://hmmer.org

See Also

blast.pdb, plot.blast, seqaln, get.seq, pfam, uniprot

Examples

Not run:
HMMER server connection required - testing excluded

##- PHMMER
seq <- get.seq("2abl_A", outfile=tempfile())
res <- hmmer(seq, db="pdb")

##- HMMSCAN
fam <- hmmer(seq, type="hmmscan", db="pfam")
pfam.aln <- pfam(fam$hit.tbl$acc[1])

##- HMMSEARCH
hmm <- hmmer(pfam.aln, type="hmmsearch", db="pdb")
unique(hmm$hit.tbl$species)
hmm$hit.tbl$acc

End(Not run)

http://hmmer.org

134 identify.cna

identify.cna Identify Points in a CNA Protein Structure Network Plot

Description

‘identify.cna’ reads the position of the graphics pointer when the (first) mouse button is pressed. It
then searches the coordinates given in ‘x’ for the point closest to the pointer. If this point is close
enough to the pointer, its index and community members will be returned as part of the value of the
call and the community members will be added as labels to the plot.

Usage

S3 method for class 'cna'
identify(x, labels=NULL, cna=NULL, ...)

Arguments

x A numeric matrix with Nx2 dimensions, where N is equal to the number of ob-
jects in a 2D CNA plot such as obtained from the ‘plot.cna’ and various ‘layout’
functions.

labels An optional character vector giving labels for the points. Will be coerced using
‘as.character’, and recycled if necessary to the length of ‘x’. Excess labels will
be discarded, with a warning.

cna A network object as returned from the ‘cna’ function.

... Extra options passed to ‘identify’ function.

Details

This function calls the ‘identify’ and ‘summary.cna’ functions to query and label 2D CNA protein
structure network plots produced by the ‘plot.cna’ function. Clicking with the mouse on plot points
will add the corresponding labels and them to the plot and returned list object. A click with the right
mouse button will stop the function.

Value

If ‘labels’ or ‘cna’ inputs are provided then a membership vector will be returned with the selected
community ids and their members. Otherwise a vector with the ids of the selected communities will
be returned.

Author(s)

Guido Scarabelli and Barry Grant

See Also

plot.cna, identify, plot.igraph, plot.communities, igraph.plotting

inner.prod 135

Examples

Not run:

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

attach(hivp)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

Plot the network
xy <- plot.cna(net)

Use identify.cna on the communities
d <- identify.cna(xy, cna=net)

Right click to end the function...
d <- identify(xy, summary(net)$members)

detach(hivp)

}

End(Not run)

inner.prod Mass-weighted Inner Product

Description

Inner product of vectors (mass-weighted if requested).

Usage

inner.prod(x, y, mass=NULL)

Arguments

x a numeric vector or matrix.
y a numeric vector or matrix.
mass a numeric vector containing the atomic masses for weighting.

Details

This function calculates the inner product between two vectors, or alternatively, the column-wise
vector elements of matrices. If atomic masses are provided, the dot products will be mass-weighted.

See examples for more details.

136 inspect.connectivity

Value

Returns the inner product(s).

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

nma , normalize.vector

Examples

Matrix operations
x <- 1:3
y <- diag(x)
z <- matrix(1:9, ncol = 3, nrow = 3)

inner.prod(x,y)
inner.prod(y,z)

Application to normal modes
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate (vibrational) normal modes
modes <- nma(pdb)

Check for orthogonality
inner.prod(modes$U[,7], modes$U[,8])

inspect.connectivity Check the Connectivity of Protein Structures

Description

Investigate protein coordinates to determine if the structure has missing residues.

Usage

inspect.connectivity(pdbs, cut=4.)

inspect.connectivity 137

Arguments

pdbs an object of class 3daling as obtained from function pdbaln or read.fasta.pdb;
a xyz matrix containing the cartesian coordinates of C-alpha atoms; or a ‘pdb’
object as obtained from function read.pdb.

cut cutoff value to determine residue connectvitiy.

Details

Utility function for checking if the PDB structures in a ‘pdbs’ object contains missing residues
inside the structure.

Value

Returns a vector.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

dm, gap.inspect

Examples

Not run:
Fetch PDB files and split to chain A only PDB files
ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A")
raw.files <- get.pdb(ids, path = "raw_pdbs")
files <- pdbsplit(raw.files, ids, path = "raw_pdbs/split_chain")

Sequence Alignement, and connectivity check
pdbs <- pdbaln(files)

cons <- inspect.connectivity(pdbs)

omit files with missing residues
files = files[cons]

End(Not run)

138 is.gap

is.gap Gap Characters

Description

Test for the presence of gap characters.

Usage

is.gap(x, gap.char = c("-", "."))

Arguments

x an R object to be tested. Typically a sequence vector or sequence/structure align-
ment object as returned from seqaln, pdbaln etc.

gap.char a character vector containing the gap character types to test for.

Value

Returns a logical vector with the same length as the input vector, or the same length as the number
of columns present in an alignment input object ‘x’. In the later case TRUE elements corresponding
to ‘gap.char’ matches in any alignment column (i.e. gap containing columns).

Note

During alignment, gaps are introduced into sequences that are believed to have undergone deletions
or insertions with respect to other sequences in the alignment. These gaps, often referred to as
indels, can be represented with ‘NA’, ‘-’ or ‘.’ characters.

This function provides a simple test for the presence of such characters, or indeed any set of user
defined characters set by the ‘gap.char’ argument.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

gap.inspect, read.fasta, read.fasta.pdb, seqaln, pdbaln

is.mol2 139

Examples

is.gap(c("G",".","X","-","G","K","S","T"))

Not run:
aln <- read.fasta(system.file("examples/kif1a.fa",

package = "bio3d"))

##- Print only non-gap positions (i.e. no gaps in any sequence)
aln$ali[, !is.gap(aln)]

##- Mask any existing gaps with an "X"
xaln <- aln
xaln$ali[is.gap(xaln$ali)]="X"

##- Read a new PDB and align its sequence to the existing masked alignment
pdb <- read.pdb("1mkj")
seq2aln(pdbseq(pdb), xaln, id = "1mkj")

End(Not run)

is.mol2 Is an Object of Class ‘mol2’?

Description

Checks whether its argument is an object of class ‘mol2’.

Usage

is.mol2(x)

Arguments

x an R object.

Details

Tests if the object ‘x’ is of class ‘mol2’ (is.mol2), i.e. if ‘x’ has a “class” attribute equal to mol2.

Value

TRUE if x is an object of class ‘mol2’ and FALSE otherwise

See Also

read.mol2

140 is.pdb

Examples

Read a PDB file
mol <- read.mol2(system.file("examples/aspirin.mol2", package="bio3d"))
is.mol2(mol)

is.pdb Is an Object of Class ‘pdb(s)’?

Description

Checks whether its argument is an object of class ‘pdb’ or ‘pdbs’.

Usage

is.pdb(x)
is.pdbs(x)

Arguments

x an R object.

Details

Tests if the object ‘x’ is of class ‘pdb’ (is.pdb) or ‘pdbs’ (is.pdbs), i.e. if ‘x’ has a “class” attribute
equal to pdb or pdbs.

Value

TRUE if x is an object of class ‘pdb(s)’ and FALSE otherwise

See Also

read.pdb, read.fasta.pdb, pdbaln

Examples

Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
is.pdb(pdb)

is.select 141

is.select Is an Object of Class ‘select’?

Description

Checks whether its argument is an object of class ‘select’.

Usage

is.select(x)

Arguments

x an R object to be tested.

Details

Tests if x is an object of class ‘select’, i.e. if x has a “class” attribute equal to select.

Value

TRUE if x is an object of class ‘select’ and FALSE otherwise

Author(s)

Julien Ide

See Also

atom.select

Examples

Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Print structure summary
atom.select(pdb)

Select all C-alpha atoms with residues numbers between 43 and 54
ca.inds <- atom.select(pdb, "calpha", resno=43:54)
is.select(ca.inds)

142 layout.cna

is.xyz Is an Object of Class ‘xyz’?

Description

Checks whether its argument is an object of class ‘xyz’.

Usage

is.xyz(x)
as.xyz(x)

Arguments

x an R object to be tested

Details

Tests if x is an object of class ‘xyz’, i.e. if x has a “class” attribute equal to xyz.

Value

TRUE if x is an object of class ‘xyz’ and FALSE otherwise

See Also

read.pdb, read.ncdf, read.dcd, fit.xyz

Examples

Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
is.xyz(pdb$xyz)

layout.cna Protein Structure Network Layout

Description

Determine protein structure network layout in 2D and 3D from the geometric center of each com-
munity.

Usage

layout.cna(x, pdb, renumber=TRUE, k=2, full=FALSE)

layout.cna 143

Arguments

x A protein structure network object as obtained from the ‘cna’ function.

pdb A pdb class object as obtained from the ‘read.pdb’ function.

renumber Logical, if TRUE the input ‘pdb’ will be re-numbered starting at residue number
one before community coordinate averages are calculated.

k A single element numeric vector between 1 and 3 specifying the returned coor-
dinate dimensions.

full Logical, if TRUE the full all-Calpha atom network coordinates will be returned
rather than the default clustered network community coordinates.

Details

This function calculates the geometric center for each community from the atomic position of it’s
Calpha atoms taken from a corresponding PDB file. Care needs to be taken to ensure the PDB
residue numbers and the community vector names/length match.

The community residue membership are typically taken from the input network object but can be
supplied as a list object with ’x$communities$membership’.

Value

A numeric matrix of Nxk, where N is the number of communities and k the number of dimensions
requested.

Author(s)

Guido Scarabelli and Barry Grant

See Also

plot.cna, plot.communities, igraph.plotting, plot.igraph

Examples

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

Load the correlation network
attach(hivp)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

Plot will be slow
#xy <- plot.cna(net)
#plot3d.cna(net, pdb)

layout.cna(net, pdb, k=3)

144 load.enmff

layout.cna(net, pdb)

can be used as input to plot.cna and plot3d.cna....
plot.cna(net, layout=layout.cna(net, pdb))
plot3d.cna(net, pdb, layout=layout.cna(net, pdb, k=3))

detach(hivp)

}

lbio3d List all Functions in the bio3d Package

Description

A simple shortcut for ls("package:bio3d").

Usage

lbio3d()

Value

A character vector of function names from the bio3d package.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

load.enmff ENM Force Field Loader

Description

Load force field for elastic network normal mode calculation.

Usage

load.enmff(ff = 'calpha')
ff.calpha(r, rmin=2.9, ...)
ff.anm(r, cutoff=15, gamma=1, ...)
ff.pfanm(r, cutoff=NULL, ...)
ff.sdenm(r, atom.id, pdb, ...)
ff.reach(r, atom.id, ...)
ff.aaenm(r, ...)
ff.aaenm2(r, atom.id, pdb, ...)

load.enmff 145

Arguments

ff a character string specifying the force field to use: ‘calpha’, ‘anm’, ‘pfanm’,
‘reach’, or ‘sdenm’.

r a numeric vector of c-alpha distances.

rmin lowest allowed atom-atom distance for the force constant calculation. The de-
fault of 2.9A is based on an evaluation of 24 high-resolution X-ray structures (<
1A).

cutoff numerical, cutoff for pair-wise interactions.

gamma numerical, global scaling factor.

atom.id atomic index.

pdb a pdb object as obtained from function read.pdb.

... additional arguments passed to and from functions.

Details

This function provides a collection of elastic network model (ENM) force fields for normal modes
analysis (NMA) of protein structures. It returns a function for calculating the residue-residue spring
force constants.

The ‘calpha’ force field - originally developed by Konrad Hinsen - is the recommended one for
most applications. It employs a spring force constant differentiating between nearest-neighbour
pairs along the backbone and all other pairs. The force constant function was parameterized by
fitting to a local minimum of a crambin model using the AMBER94 force field.

The implementation of the ‘ANM’ (Anisotropic Network Model) force field originates from the
lab of Ivet Bahar. It uses a simplified (step function) spring force constant based on the pair-wise
distance. A variant of this from the Jernigan lab is the so-called ‘pfANM’ (parameter free ANM)
with interactions that fall off with the square of the distance.

The ‘sdENM’ (by Dehouck and Mikhailov) employs residue specific spring force constants. It has
been parameterized through a statistical analysis of a total of 1500 NMR ensembles.

The ‘REACH’ force field (by Moritsugu and Smith) is parameterized based on variance-covariance
matrices obtained from MD simulations. It employs force constants that fall off exponentially with
distance for non-bonded pairs.

The all-atom ENM force fields (‘aaenm’ and ‘aaenm2’) was obtained by fitting to a local energy
minimum of a crambin model derived from the AMBER99SB force field (same approach as in
Hinsen et al 2000). It employs a pair force constant function which falls as r^-6. ‘aanma2’ employs
additonally specific force constants for covalent and intra-residue atom pairs. See also aanma for
more details.

See references for more details on the individual force fields.

Value

‘load.enmff’ returns a function for calculating the spring force constants. The ‘ff’ functions returns
a numeric vector of residue-residue spring force constants.

146 mask

Note

The arguments ‘atom.id’ and ‘pdb’ are used from within function ‘build.hessian’ for functions that
are not simply a function of the pair-wise distance. e.g. the force constants in the ‘sdENM’ model
computes the force constants based on a function of the residue types and calpha distance.

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Hinsen, K. et al. (2000) Chemical Physics
261, 25–37. Atilgan, A.R. et al. (2001) Biophysical Journal 80, 505–515. Dehouck Y. & Mikhailov
A.S. (2013) PLoS Comput Biol 9:e1003209. Moritsugu K. & Smith J.C. (2008) Biophysical Journal
95, 1639–1648. Yang, L. et al. (2009) PNAS 104, 12347-52. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696.

See Also

nma, build.hessian

Examples

Load the c-alpha force field
pfc.fun <- load.enmff('calpha')

Calculate the pair force constant for a set of C-alpha distances
force.constants <- pfc.fun(seq(4,8, by=0.5))

Calculate the complete spring force constant matrix
Fetch PDB
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Fetch only c-alpha coordinates
ca.inds <- atom.select(pdb, 'calpha')
xyz <- pdb$xyz[ca.inds$xyz]

Calculate distance matrix
dists <- dm.xyz(xyz, mask.lower=FALSE)

all pair-wise spring force constants
fc.matrix <- apply(dists, 1, pfc.fun)

mask Mask a Subset of Atoms in a DCCM Object.

Description

Produce a new DCCM object with selected atoms masked.

mask 147

Usage

mask(...)

S3 method for class 'dccm'
mask(dccm, pdb = NULL, a.inds = NULL, b.inds = NULL, ...)

Arguments

dccm a DCCM structure object obtained from function dccm.

pdb a PDB structure object obtained from read.pdb. Must match the dimensions of
dccm.

a.inds a numeric vector containing the indices of the elements of the DCCM matrix in
which should not be masked. Alternatively, if pdb is provided a selection object
(as obtained from atom.select) can be provided.

b.inds a numeric vector containing the indices of the elements of the DCCM matrix in
which should not be masked.

... arguments not passed anywhere.

Details

This is a basic utility function for masking a DCCM object matrix to highlight user-selected regions
in the correlation network.

When both a.inds and b.inds are provided only their intersection is retained. When only a.inds
is provided then the corresponding region to everything else is retained.

Note: The current version assumes that the input PDB corresponds to the input DCCM. In many
cases this will correspond to a PDB object containing only CA atoms.

Value

Returns a matrix list of class "dccm" with the indices/atoms not corresponding to the selection
masked.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

dccm, atom.select

148 mktrj

Examples

if(!requireNamespace("lattice", quietly=TRUE)) {
message("Need lattice installed to run this example")

} else {

Calculate DCCM
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
cij <- dccm(nma(pdb))

Mask DCCM matrix according to matrix indices
cijm <- mask(cij, a.inds=40:50, b.inds=80:90)
plot(cijm)

Retain only 40:50 to everything else
cijm <- mask(cij, a.inds=40:50)
plot(cijm)

Mask DCCM matrix according PDB selection
pdb.ca <- trim(pdb, "calpha")
a.inds <- atom.select(pdb.ca, resno=40:50)
b.inds <- atom.select(pdb.ca, resno=80:90)

Provide pdb object correspoding to input dccm
cijm <- mask(cij, pdb.ca, a.inds, b.inds)
plot(cijm)
}

mktrj PCA / NMA Atomic Displacement Trajectory

Description

Make a trajectory of atomic displacments along a given principal component / normal mode.

Usage

mktrj(...)

S3 method for class 'pca'
mktrj(pca = NULL, pc = 1, mag = 1, step = 0.125, file =
NULL, pdb = NULL, rock=TRUE, ...)

S3 method for class 'nma'
mktrj(nma = NULL, mode = 7, mag = 10, step = 1.25, file = NULL,

pdb = NULL, rock=TRUE, ...)

S3 method for class 'enma'
mktrj(enma = NULL, pdbs = NULL, s.inds = NULL, m.inds = NULL,

mag = 10, step = 1.25, file = NULL, rock = TRUE, ncore = NULL, ...)

mktrj 149

Arguments

pca an object of class "pca" as obtained with function pca.xyz or pca.

nma an object of class "nma" as obtained with function nma.pdb.

enma an object of class "enma" as obtained with function nma.pdbs.

pc the PC number along which displacements should be made.

mag a magnification factor for scaling the displacements.

step the step size by which to increment along the pc/mode.

file a character vector giving the output PDB file name.

pdb an object of class "pdb" as obtained from read.pdb or class "pdbs" as obtained
from read.fasta.pdb. If not NULL, used as reference to write the PDB file.

rock logical, if TRUE the trajectory rocks.

mode the mode number along which displacements should be made.

pdbs a list object of class "pdbs" (obtained with pdbaln or read.fasta.pdb) which
corresponds to the "enma" object.

s.inds index or indices pointing to the structure(s) in the enma object for which the
trajectory shall be generated.

m.inds the mode number(s) along which displacements should be made.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

... additional arguments passed to and from functions (e.g. to function write.pdb).

Details

Trajectory frames are built from reconstructed Cartesian coordinates produced by interpolating from
the mean structure along a given pc or mode, in increments of step.

An optional magnification factor can be used to amplify displacements. This involves scaling by
mag-times the standard deviation of the conformer distribution along the given pc (i.e. the square
root of the associated eigenvalue).

Note

Molecular graphics software such as VMD or PyMOL is useful for viewing trajectories see e.g:
http://www.ks.uiuc.edu/Research/vmd/.

Author(s)

Barry Grant, Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca, nma, nma.pdbs, pymol.modes.

http://www.ks.uiuc.edu/Research/vmd/

150 motif.find

Examples

Not run:

##- PCA example
attach(transducin)

Calculate principal components
pc.xray <- pca(pdbs, fit=TRUE)

Write PC trajectory of pc=1
outfile = tempfile()
a <- mktrj(pc.xray, file = outfile)
outfile

detach(transducin)

##- NMA example
Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate (vibrational) normal modes
modes <- nma(pdb)

Visualize modes
outfile = file.path(tempdir(), "mode_7.pdb")
mktrj(modes, mode=7, pdb=pdb, file = outfile)
outfile

End(Not run)

motif.find Find Sequence Motifs.

Description

Return Position Indices of a Short Sequence Motif Within a Larger Sequence.

Usage

motif.find(motif, sequence)

Arguments

motif a character vector of the short sequence motif.

sequence a character vector of the larger sequence.

mustang 151

Details

The sequence and the motif can be given as a either a multiple or single element character vector.
The dot character and other valid regexpr characters are allowed in the motif, see examples.

Value

Returns a vector of position indices within the sequence where the motif was found, see examples.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

regexpr, read.fasta, pdbseq

Examples

PDB server connection required - testing excluded
try({

aa.seq <- pdbseq(read.pdb(get.pdb("4q21", URLonly=TRUE)))
motif = c("G....GKS")
motif.find(motif, aa.seq)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

mustang Structure-based Sequence Alignment with MUSTANG

Description

Create a multiple sequence alignment from a bunch of PDB files.

Usage

mustang(files, exefile="mustang", outfile="aln.mustang.fa",
cleanpdb=FALSE, cleandir="mustangpdbs", verbose=TRUE)

152 mustang

Arguments

files a character vector of PDB file names.

exefile file path to the ‘MUSTANG’ program on your system (i.e. how is ‘MUSTANG’
invoked).

outfile name of ‘FASTA’ output file to which alignment should be written.

cleanpdb logical, if TRUE iterate over the PDB files and map non-standard residues to
standard residues (e.g. SEP->SER..) to produce ‘clean’ PDB files.

cleandir character string specifying the directory in which the ‘clean’ PDB files should
be written.

verbose logical, if TRUE ‘MUSTANG’ warning and error messages are printed.

Details

Structure-based sequence alignment with ‘MUSTANG’ attempts to arrange and align the sequences
of proteins based on their 3D structure.

This function calls the ‘MUSTANG’ program, to perform a multiple structure alignment, which
MUST BE INSTALLED on your system and in the search path for executables.

Note that non-standard residues are mapped to “Z” in MUSTANG. As a workaround the bio3d
‘mustang’ function will attempt to map any non-standard residues to standard residues (e.g. SEP-
>SER, etc). To avoid this behaviour use ‘cleanpdb=FALSE’.

Value

A list with two components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid.

ids sequence names as identifers.

Note

A system call is made to the ‘MUSTANG’ program, which must be installed on your system and in
the search path for executables.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘MUSTANG’ is the work of Konagurthu et al: Konagurthu, A.S. et al. (2006) Proteins 64(3):559–
74.

More details of the ‘MUSTANG’ algorithm, along with download and installation instructions can
be obtained from:
https://lcb.infotech.monash.edu/mustang/.

https://lcb.infotech.monash.edu/mustang/

network.amendment 153

See Also

read.fasta, read.fasta.pdb, pdbaln, plot.fasta, seqaln

Examples

Not run:

if(!check.utility('mustang')) {
message('Need MUSTANG installed to run this example')

} else {

Fetch PDB files and split to chain A only PDB files
ids <- c("1a70_A", "1czp_A", "1frd_A")
files <- get.pdb(ids, split = TRUE, path = tempdir())

##-- Or, read a folder/directory of existing PDB files
#pdb.path <- "my_dir_of_pdbs"
#files <- list.files(path=pdb.path ,
pattern=".pdb",
full.names=TRUE)

##-- Align these PDB sequences
aln <- mustang(files)

##-- Read Aligned PDBs storing coordinate data
pdbs <- read.fasta.pdb(aln)

}

End(Not run)

network.amendment Amendment of a CNA Network According To A Input Community
Membership Vector.

Description

This function changes the ‘communities’ attribute of a ‘cna’ class object to match a given member-
ship vector.

Usage

network.amendment(x, membership, minus.log=TRUE)

Arguments

x A protein network graph object as obtained from the ‘cna’ function.

membership A numeric vector containing the new community membership.

minus.log Logical. Whether to use the minus.log on the cij values.

154 network.amendment

Details

This function is useful, in combination with ‘community.tree’, for inspecting different community
partitioning options of a input ‘cna’ object. See examples.

Value

Returns a ‘cna’ class object with the attributes changed according to the membership vector pro-
vided.

Author(s)

Guido Scarabelli

See Also

cna, community.tree, summary.cna

Examples

PDB server connection required - testing excluded

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

try({

##-- Build a CNA object
pdb <- read.pdb("4Q21")
modes <- nma(pdb)
cij <- dccm(modes)
net <- cna(cij, cutoff.cij=0.2)

##-- Community membership vector for each clustering step
tree <- community.tree(net, rescale=TRUE)

Produce a new k=7 membership vector and CNA network
memb.k7 <- tree$tree[tree$num.of.comms == 7,]
net.7 <- network.amendment(net, memb.k7)

plot(net.7, pdb)

print(net)
print(net.7)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}
}

nma 155

nma Normal Mode Analysis

Description

Perform normal mode analysis (NMA) on either a single or an ensemble of protein structures.

Usage

nma(...)

Arguments

... arguments passed to the methods nma.pdb, or nma.pdbs.
For function nma.pdb this will include an object of class pdb as obtained from
function read.pdb.
For function nma.pdbs an object of class pdbs as obtained from function pdbaln
or read.fasta.pdb.

Details

Normal mode analysis (NMA) is a computational approach for studying and characterizing protein
flexibility. Current functionality entails normal modes calculation on either a single protein structure
or an ensemble of aligned protein structures.

This generic nma function calls the corresponding methods for the actual calculation, which is de-
termined by the class of the input argument:

Function nma.pdb will be used when the input argument is of class pdb. The function calculates the
normal modes of a C-alpha model of a protein structure.

Function nma.pdbs will be used when the input argument is of class pdbs. The function will
perform normal mode analysis of each PDB structure stored in the pdbs object (‘ensemble NMA’).

See documentation and examples for each corresponding function for more details.

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696.

See Also

nma.pdb, nma.pdbs, pca.

156 nma.pdb

Examples

##- Singe structure NMA
Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate normal modes
modes <- nma(pdb)

Print modes
print(modes)

Plot modes
plot(modes)

Visualize modes
#m7 <- mktrj.nma(modes, mode=7, file="mode_7.pdb")

Needs MUSCLE installed - testing excluded

##- Ensemble NMA
if(check.utility("muscle")) {

try({

Fetch PDB files and split to chain A only PDB files
ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A")
files <- get.pdb(ids, split = TRUE, path = tempdir())

Sequence Alignement
pdbs <- pdbaln(files, outfile = tempfile())

Normal mode analysis on aligned data
modes <- nma(pdbs, rm.gaps=FALSE)

Plot fluctuation data
plot(modes, pdbs=pdbs)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}
}

nma.pdb Normal Mode Analysis

Description

Perform elastic network model (ENM) C-alpha normal modes calculation of a protein structure.

nma.pdb 157

Usage

S3 method for class 'pdb'
nma(pdb, inds = NULL, ff = 'calpha', pfc.fun = NULL,

mass = TRUE, temp = 300.0, keep = NULL, hessian = NULL,
outmodes = NULL, ...)

build.hessian(xyz, pfc.fun, fc.weights = NULL, pdb = NULL, ...)

S3 method for class 'nma'
print(x, nmodes=6, ...)

Arguments

pdb an object of class pdb as obtained from function read.pdb.

inds atom and xyz coordinate indices obtained from atom.select that selects the
elements of pdb upon which the calculation should be based. If not provided the
function will attempt to select the calpha atoms automatically (based on function
atom.select).

ff character string specifying the force field to use: ‘calpha’, ‘anm’, ‘pfanm’,
‘reach’, or ‘sdenm’.

pfc.fun customized pair force constant (‘pfc’) function. The provided function should
take a vector of distances as an argument to return a vector of force constants. If
provided, ’pfc.fun’ will override argument ff. See examples below.

mass logical, if TRUE the Hessian will be mass-weighted.

temp numerical, temperature for which the amplitudes for scaling the atomic displace-
ment vectors are calculated. Set ‘temp=NULL’ to avoid scaling.

keep numerical, final number of modes to be stored. Note that all subsequent analyses
are limited to this subset of modes. This option is useful for very large structures
and cases where memory may be limiting.

hessian hessian matrix as obtained from build.hessian. For internal purposes and
generally not intended for public use.

outmodes atom indices as obtained from atom.select) specifying the atoms to include in
the resulting mode object.

xyz a numeric vector of Cartesian coordinates.

fc.weights a numeric matrix of size NxN (where N is the number of calpha atoms) containg
scaling factors for the pariwise force constants. See examples below.

x an nma object obtained from nma.pdb.

nmodes numeric, number of modes to be printed.

... additional arguments to build.hessian, aa2mass, pfc.fun, and print. One
useful option here for dealing with unconventional residues is ‘mass.custom’,
see the aa2mass function for details.

158 nma.pdb

Details

This function calculates the normal modes of a C-alpha model of a protein structure. A number of
force fields are implemented all of whhich employ the elastic network model (ENM).

The ‘calpha’ force field - originally developed by Konrad Hinsen - is the recommended one for
most applications. It employs a spring force constant differentiating between nearest-neighbour
pairs along the backbone and all other pairs. The force constant function was parameterized by
fitting to a local minimum of a crambin model using the AMBER94 force field.

See load.enmff for details of the different force fields.

By default nma.pdb will diagonalize the mass-weighted Hessian matrix. The resulting mode vectors
are moreover scaled by the thermal fluctuation amplitudes.

The implementation under default arguments reproduces the calculation of normal modes (Vibra-
tionalModes) in the Molecular Modeling Toolkit (MMTK) package. To reproduce ANM modes set
ff='anm', mass=FALSE, and temp=NULL.

Value

Returns an object of class ‘nma’ with the following components:

modes numeric matrix with columns containing the normal mode vectors. Mode vec-
tors are converted to unweighted Cartesian coordinates when mass=TRUE. Note
that the 6 first trivial eigenvectos appear in columns one to six.

frequencies numeric vector containing the vibrational frequencies corresponding to each
mode (for mass=TRUE).

force.constants

numeric vector containing the force constants corresponding to each mode (for
mass=FALSE)).

fluctuations numeric vector of atomic fluctuations.

U numeric matrix with columns containing the raw eigenvectors. Equals to the
modes component when mass=FALSE and temp=NULL.

L numeric vector containing the raw eigenvalues.

xyz numeric matrix of class xyz containing the Cartesian coordinates in which the
calculation was performed.

mass numeric vector containing the residue masses used for the mass-weighting.

temp numerical, temperature for which the amplitudes for scaling the atomic displace-
ment vectors are calculated.

triv.modes number of trivial modes.

natoms number of C-alpha atoms.

call the matched call.

Note

The current version provides an efficent implementation of NMA with execution time comparable
to similar software (when the entire Hessian is diagonalized).

nma.pdb 159

The main (speed related) bottleneck is currently the diagonalization of the Hessian matrix which
is performed with the core R function eigen. For computing a few (5-20) approximate modes the
user can consult package ‘irlba’.

NMA is memory extensive and users should be cautions when running larger proteins (>3000
residues). Use ‘keep’ to reduce the amount of memory needed to store the final ‘nma’ object (the
full 3Nx3N Hessian matrix still needs to be allocated).

We thank Edvin Fuglebakk for valuable discussions on the implementation as well as for contribut-
ing with testing.

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696. Hinsen, K. et al. (2000) Chemical Physics 261, 25–37.

See Also

fluct.nma, mktrj.nma, dccm.nma, overlap, rmsip, load.enmff.

Examples

Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate normal modes
modes <- nma(pdb)

Print modes
print(modes)

Plot modes
plot(modes)

Visualize modes
#m7 <- mktrj.nma(modes, mode=7, file="mode_7.pdb")

Not run:
Use Anisotropic Network Model
modes <- nma(pdb, ff="anm", mass=FALSE, temp=NULL, cutoff=15)

Use SSE information and SS-bonds
sse <- dssp(pdb, resno=FALSE, full=TRUE)
ss.bonds <- matrix(c(76,94, 64,80, 30,115, 6,127),

ncol=2, byrow=TRUE)

User defined energy function
Note: Must take a vector of distances

160 nma.pdbs

"my.ff" <- function(r) {
ifelse(r>15, 0, 1)

}

Modes with a user defined energy function
modes <- nma(pdb, pfc.fun=my.ff)

A more manual approach
sele <- atom.select(pdb, chain='A', elety='CA')
xyz <- pdb$xyz[sele$xyz]

hessian <- build.hessian(xyz, my.ff)
modes <- eigen(hessian)

Dealing with unconventional residues
pdb <- read.pdb("1xj0")

nma(pdb)
#modes <- nma(pdb, mass.custom=list(CSX=121.166))

End(Not run)

nma.pdbs Ensemble Normal Mode Analysis

Description

Perform normal mode analysis (NMA) on an ensemble of aligned protein structures.

Usage

S3 method for class 'pdbs'
nma(pdbs, fit = TRUE, full = FALSE, subspace = NULL,

rm.gaps = TRUE, varweight=FALSE,
outpath = NULL, ncore = 1, progress = NULL, ...)

S3 method for class 'enma'
print(x, ...)

Arguments

pdbs a numeric matrix of aligned C-alpha xyz Cartesian coordinates. For example an
alignment data structure obtained with read.fasta.pdb or pdbaln.

fit logical, if TRUE coordinate superposition is performed prior to normal mode
calculations.

full logical, if TRUE return the complete, full structure, ‘nma’ objects.

subspace number of eigenvectors to store for further analysis.

nma.pdbs 161

rm.gaps logical, if TRUE obtain the hessian matrices for only atoms in the aligned po-
sitions (non-gap positions in all aligned structures). Thus, gap positions are
removed from output.

varweight logical, if TRUE perform weighing of the pair force constants. Alternatively,
provide a NxN matrix containing the weights. See function var.xyz.

outpath character string specifing the output directory to which the PDB structures should
be written.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

x an enma object obtained from nma.pdbs.

progress progress bar for use with shiny web app.

... additional arguments to nma, aa2mass, and print.

Details

This function performs normal mode analysis (NMA) on a set of aligned protein structures ob-
tained with function read.fasta.pdb or pdbaln. The main purpose is to provide aligned atomic
fluctuations and mode vectors in an automated fashion.

The normal modes are calculated on the full structures as provided by object ‘pdbs’. With the input
argument ‘full=TRUE’ the full ‘nma’ objects are returned together with output ‘U.subs’ providing
the aligned mode vectors. When ‘rm.gaps=TRUE’ the unaligned atoms are ommited from output.
With default arguments ‘rmsip’ provides RMSIP values for all pairwise structures.

See examples for more details.

Value

Returns an ‘enma’ object with the following components:

fluctuations a numeric matrix containing aligned atomic fluctuations with one row per input
structure.

rmsip a numeric matrix of pair wise RMSIP values (only the ten lowest frequency
modes are included in the calculation).

U.subspace a three-dimensional array with aligned eigenvectors (corresponding to the sub-
space defined by the first N non-trivial eigenvectors (‘U’) of the ‘nma’ object).

L numeric matrix containing the raw eigenvalues with one row per input structure.

xyz an object of class ‘xyz’ containing the Cartesian coordinates in which the calcu-
lation was performed. Coordinates are superimposed to the first structure of the
pdbs object when ‘fit=TRUE’.

full.nma a list with a nma object for each input structure.

Author(s)

Lars Skjaerven

162 nma.pdbs

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696.

See Also

For normal mode analysis on single structure PDB: nma.pdb

For the analysis of the resulting ‘eNMA’ object: mktrj.enma, dccm.enma, plot.enma, cov.enma.

Similarity measures: sip, covsoverlap, bhattacharyya, rmsip.

Related functionality: pdbaln, read.fasta.pdb.

Examples

Needs MUSCLE installed - testing excluded

if(check.utility("muscle")) {

try({

Fetch PDB files and split to chain A only PDB files
ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A")
files <- get.pdb(ids, split = TRUE, path = tempdir())

Sequence Alignement
pdbs <- pdbaln(files, outfile = tempfile())

Normal mode analysis on aligned data
modes <- nma(pdbs, rm.gaps=FALSE)

Plot fluctuation data
plot(modes, pdbs=pdbs)

Cluster on Fluctuation similariy
sip <- sip(modes)
hc <- hclust(dist(sip))
col <- cutree(hc, k=3)

Plot fluctuation data
plot(modes, pdbs=pdbs, col=col)

Remove gaps from output
modes <- nma(pdbs, rm.gaps=TRUE)

RMSIP is pre-calculated
heatmap(1-modes$rmsip)

Bhattacharyya coefficient
bc <- bhattacharyya(modes)
heatmap(1-bc)

}, silent=TRUE)

normalize.vector 163

if(inherits(.Last.value, "try-error")) {
message("Need internet to run the example")

}
}

normalize.vector Mass-Weighted Normalized Vector

Description

Normalizes a vector (mass-weighted if requested).

Usage

normalize.vector(x, mass=NULL)

Arguments

x a numeric vector or matrix to be normalized.

mass a numeric vector containing the atomic masses for weighting.

Details

This function normalizes a vector, or alternatively, the column-wise vector elements of a matrix. If
atomic masses are provided the vector is mass-weigthed.

See examples for more details.

Value

Returns the normalized vector(s).

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

nma , inner.prod

164 orient.pdb

Examples

x <- 1:3
y <- matrix(1:9, ncol = 3, nrow = 3)

normalize.vector(x)
normalize.vector(y)

Application to normal modes
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate (vibrational) normal modes
modes <- nma(pdb)

Returns a vector
nv <- normalize.vector(modes$modes[,7])

Returns a matrix
nv <- normalize.vector(modes$modes[,7:10])

Mass-weighted
nv <- normalize.vector(modes$modes[,7], mass=modes$mass)

orient.pdb Orient a PDB Structure

Description

Center, to the coordinate origin, and orient, by principal axes, the coordinates of a given PDB
structure or xyz vector.

Usage

orient.pdb(pdb, atom.subset = NULL, verbose = TRUE)

Arguments

pdb a pdb data structure obtained from read.pdb or a vector of ‘xyz’ coordinates.

atom.subset a subset of atom positions to base orientation on.

verbose print dimension details.

Value

Returns a numeric vector of re-oriented coordinates.

Note

Centering and orientation can be restricted to a atom.subset of atoms.

overlap 165

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, write.pdb, fit.xyz, rot.lsq , atom.select

Examples

PDB server connection required - testing excluded
try({

pdb <- read.pdb("1bg2")
xyz <- orient.pdb(pdb)
#write.pdb(pdb, xyz = xyz, file = "mov1.pdb")

Based on C-alphas
inds <- atom.select(pdb, "calpha")
xyz <- orient.pdb(pdb, atom.subset=inds$atom)
#write.pdb(pdb, xyz = xyz, file = "mov2.pdb")

Based on a central Beta-strand
inds <- atom.select(pdb, resno=c(224:232), elety='CA')
xyz <- orient.pdb(pdb, atom.subset=inds$atom)
#write.pdb(pdb, xyz = xyz, file = "mov3.pdb")

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

overlap Overlap analysis

Description

Calculate the squared overlap between sets of vectors.

Usage

overlap(modes, dv, nmodes=20)

166 overlap

Arguments

modes an object of class "pca" or "nma" as obtained from function pca.xyz or nma.
Alternatively a 3NxM matrix of eigenvectors can be provided.

dv a displacement vector of length 3N.

nmodes the number of modes in which the calculation should be based.

Details

Squared overlap (or dot product) is used to measure the similiarity between a displacement vec-
tor (e.g. a difference vector between two conformational states) and mode vectors obtained from
principal component or normal modes analysis.

By definition the cumulative sum of the overlap values equals to one.

Structure modes$U (or alternatively, the 3NxM matrix of eigenvectors) should be of same length
(3N) as dv.

Value

Returns a list with the following components:

overlap a numeric vector of the squared dot products (overlap values) between the (nor-
malized) vector (dv) and each mode in mode.

overlap.cum a numeric vector of the cumulative squared overlap values.

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2011) Proteins 79, 232–243. Grant, B.J. et al. (2006) Bioinformatics 22,
2695–2696.

See Also

rmsip, pca.xyz, nma, difference.vector

Examples

attach(kinesin)

Ignore gap containing positions
##gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect(pdbs$xyz)

#-- Do PCA
pc.xray <- pca.xyz(pdbs$xyz[, gaps.pos$f.inds])

Define a difference vector between two structural states
diff.inds <- c(grep("d1v8ka", pdbs$id),

pairwise 167

grep("d1goja", pdbs$id))

dv <- difference.vector(pdbs$xyz[diff.inds,], gaps.pos$f.inds)

Calculate the squared overlap between the PCs and the difference vector
o <- overlap(pc.xray, dv)
o <- overlap(pc.xray$U, dv)

Plot results
plot(o$overlap, type='h', ylim=c(0,1))
points(o$overlap)
lines(o$overlap.cum, type='b', col='red')

detach(kinesin)

Not run:
Calculate overlap from NMA
pdb.a <- read.pdb("1cmk")
pdb.b <- read.pdb("3dnd")

Fetch CA coordinates
sele.a <- atom.select(pdb.a, chain='E', resno=c(15:350), elety='CA')
sele.b <- atom.select(pdb.b, chain='A', resno=c(1:350), elety='CA')

xyz <- rbind(pdb.a$xyz[sele.a$xyz],
pdb.b$xyz[sele.b$xyz])

Superimpose
xyz[2,] <- fit.xyz(xyz[1,], xyz[2,], 1:ncol(xyz))

The difference between the two conformations
dv <- difference.vector(xyz)

Calculate normal modes
modes <- nma(pdb.a, inds=sele.a)

Calculate the squared overlap between the normal modes
and the difference vector
o <- overlap(modes, dv)

End(Not run)

pairwise Pair Indices

Description

A utility function to determine indices for pairwise comparisons.

168 pca

Usage

pairwise(N)

Arguments

N a single numeric value representing the total number of things to undergo pair-
wise comparison.

Value

Returns a two column numeric matrix giving the indices for all pairs.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

seqidentity

Examples

pairwise(3)
pairwise(20)

pca Principal Component Analysis

Description

Performs principal components analysis (PCA) on biomolecular structure data.

Usage

pca(...)

Arguments

... arguments passed to the methods pca.xyz, pca.pdbs, etc. Typically this in-
cludes either a numeric matrix of Cartesian coordinates with a row per struc-
ture/frame (function pca.xyz()), or an object of class pdbs as obtained from
function pdbaln or read.fasta.pdb (function pca.pdbs()).

pca.array 169

Details

Principal component analysis can be performed on any structure dataset of equal or unequal se-
quence composition to capture and characterize inter-conformer relationships.

This generic pca function calls the corresponding methods function for actual calculation, which
is determined by the class of the input argument x. Use methods("pca") to list all the current
methods for pca generic. These will include:

pca.xyz, which will be used when x is a numeric matrix containing Cartesian coordinates (e.g.
trajectory data).

pca.pdbs, which will perform PCA on the Cartesian coordinates of a input pdbs object (as obtained
from the ‘read.fasta.pdb’ or ‘pdbaln’ functions).

Currently, function pca.tor should be called explicitly as there are currently no defined ‘tor’ object
classes.

See the documentation and examples for each individual function for more details and worked
examples.

Author(s)

Barry Grant, Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca.xyz, pca.pdbs, pdbaln.

pca.array Principal Component Analysis of an array of matrices

Description

Calculate the principal components of an array of correlation or covariance matrices.

Usage

S3 method for class 'array'
pca(x, use.svd = TRUE, rm.gaps=TRUE, ...)

170 pca.pdbs

Arguments

x an array of matrices, e.g. correlation or covariance matrices as obtained from
functions dccm or enma2covs.

use.svd logical, if TRUE singular value decomposition (SVD) is called instead of eigen-
value decomposition.

rm.gaps logical, if TRUE gap cells (with missing coordinate data in any input matrix) are
removed before calculation. This is equivalent to removing NA cells from x.

... .

Details

This function performs PCA of symmetric matrices, such as distance matrices from an ensemble of
crystallographic structures, residue-residue cross-correlations or covariance matrices derived from
ensemble NMA or MD simulation replicates, and so on. The ‘upper triangular’ region of the matrix
is regarded as a long vector of random variables. The function returns M eigenvalues and eigenvec-
tors with each eigenvector having the dimension N(N-1)/2, where M is the number of matrices and
N the number of rows/columns of matrices.

Value

Returns a list with components equivalent to the output from pca.xyz.

Author(s)

Xin-Qiu Yao, Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca.xyz

pca.pdbs Principal Component Analysis

Description

Performs principal components analysis (PCA) on an ensemble of PDB structures.

Usage

S3 method for class 'pdbs'
pca(pdbs, core.find = FALSE, fit = FALSE, ...)

pca.pdbs 171

Arguments

pdbs an object of class pdbs as obtained from function pdbaln or read.fasta.pdb.

core.find logical, if TRUE core.find() function will be called to find core positions and
coordinates of PDB structures will be fitted based on cores.

fit logical, if TRUE coordinates of PDB structures will be fitted based on all CA
atoms.

... additional arguments passed to the method pca.xyz.

Details

The function pca.pdbs is a wrapper for the function pca.xyz, wherein more details of the PCA
procedure are documented.

Value

Returns a list with the following components:

L eigenvalues.

U eigenvectors (i.e. the variable loadings).

z.u scores of the supplied data on the pcs.

sdev the standard deviations of the pcs.

mean the means that were subtracted.

Author(s)

Barry Grant, Lars Skjaerven and Xin-Qiu Yao

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca, pca.xyz, pdbaln, nma.

Examples

attach(transducin)

#-- Do PCA ignoring gap containing positions
pc.xray <- pca(pdbs)

Plot results (conformer plots & scree plot)
plot(pc.xray, col=annotation[, "color"])

detach(transducin)

172 pca.tor

pca.tor Principal Component Analysis

Description

Performs principal components analysis (PCA) on torsion angle data.

Usage

S3 method for class 'tor'
pca(data, ...)

Arguments

data numeric matrix of torsion angles with a row per structure.

... additional arguments passed to the method pca.xyz.

Value

Returns a list with the following components:

L eigenvalues.

U eigenvectors (i.e. the variable loadings).

z.u scores of the supplied data on the pcs.

sdev the standard deviations of the pcs.

mean the means that were subtracted.

Author(s)

Barry Grant and Karim ElSawy

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

torsion.xyz, plot.pca, plot.pca.loadings, pca.xyz

Examples

##-- PCA on torsion data for multiple PDBs
attach(kinesin)

gaps.pos <- gap.inspect(pdbs$xyz)
tor <- t(apply(pdbs$xyz[, gaps.pos$f.inds], 1, torsion.xyz, atm.inc=1))
pc.tor <- pca.tor(tor[,-c(1,233,234,235)])

pca.xyz 173

#plot(pc.tor)
plot.pca.loadings(pc.tor)

detach(kinesin)

Not run:
##-- PCA on torsion data from an MD trajectory
trj <- read.dcd(system.file("examples/hivp.dcd", package="bio3d"))
tor <- t(apply(trj, 1, torsion.xyz, atm.inc=1))
gaps <- gap.inspect(tor)
pc.tor <- pca.tor(tor[,gaps$f.inds])
plot.pca.loadings(pc.tor)

End(Not run)

pca.xyz Principal Component Analysis

Description

Performs principal components analysis (PCA) on a xyz numeric data matrix.

Usage

S3 method for class 'xyz'
pca(xyz, subset = rep(TRUE, nrow(as.matrix(xyz))),

use.svd = FALSE, rm.gaps=FALSE, mass = NULL, ...)

S3 method for class 'pca'
print(x, nmodes=6, ...)

Arguments

xyz numeric matrix of Cartesian coordinates with a row per structure.
subset an optional vector of numeric indices that selects a subset of rows (e.g. experi-

mental structures vs molecular dynamics trajectory structures) from the full xyz
matrix. Note: the full xyz is projected onto this subspace.

use.svd logical, if TRUE singular value decomposition (SVD) is called instead of eigen-
value decomposition.

rm.gaps logical, if TRUE gap positions (with missing coordinate data in any input struc-
ture) are removed before calculation. This is equivalent to removing NA cols
from xyz.

x an object of class pca, as obtained from function pca.xyz.
nmodes numeric, number of modes to be printed.
mass a ‘pdb’ object or numeric vector of residue/atom masses. By default (mass=NULL),

mass is ignored. If provided with a ‘pdb’ object, masses of all amino acids ob-
tained from aa2mass are used.

... additional arguments to fit.xyz (for pca.xyz) or to print (for print.pca).

174 pca.xyz

Value

Returns a list with the following components:

L eigenvalues.

U eigenvectors (i.e. the x, y, and z variable loadings).

z scores of the supplied xyz on the pcs.

au atom-wise loadings (i.e. xyz normalized eigenvectors).

sdev the standard deviations of the pcs.

mean the means that were subtracted.

Note

If mass is provided, mass weighted coordinates will be considered, and iteration of fitting onto the
mean structure is performed internally. The extra fitting process is to remove external translation
and rotation of the whole system. With this option, a direct comparison can be made between PCs
from pca.xyz and vibrational modes from nma.pdb, with the fact that

A = kBTF
−1

, where A is the variance-covariance matrix, F the Hessian matrix, kB the Boltzmann’s constant,
and T the temperature.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca, pca.pdbs, plot.pca, mktrj.pca, pca.tor, project.pca

Examples

Not run:
#-- Read transducin alignment and structures
aln <- read.fasta(system.file("examples/transducin.fa",package="bio3d"))
pdbs <- read.fasta.pdb(aln)

Find core
core <- core.find(pdbs,

#write.pdbs = TRUE,
verbose=TRUE)

rm(list=c("pdbs", "core"))

End(Not run)

pca.xyz 175

#-- OR for demo purposes just read previously saved transducin data
attach(transducin)

Previously fitted coordinates based on sub 1.0A^3 core. See core.find() function.
xyz <- pdbs$xyz

#-- Do PCA ignoring gap containing positions
pc.xray <- pca.xyz(xyz, rm.gaps=TRUE)

Plot results (conformer plots & scree plot overview)
plot(pc.xray, col=annotation[, "color"])

Plot a single conformer plot of PC1 v PC2
plot(pc.xray, pc.axes=1:2, col=annotation[, "color"])

Plot atom wise loadings
plot.bio3d(pc.xray$au[,1], ylab="PC1 (A)")

PDB server connection required - testing excluded
try({

Plot loadings in relation to reference structure 1TAG
pdb <- read.pdb("1tag")
ind <- grep("1TAG", pdbs$id) ## location in alignment

resno <- pdbs$resno[ind, !is.gap(pdbs)] ## non-gap residues
tpdb <- trim.pdb(pdb, resno=resno)

op <- par(no.readonly=TRUE)
par(mfrow = c(3, 1), cex = 0.6, mar = c(3, 4, 1, 1))
plot.bio3d(pc.xray$au[,1], resno, ylab="PC1 (A)", sse=tpdb)
plot.bio3d(pc.xray$au[,2], resno, ylab="PC2 (A)", sse=tpdb)
plot.bio3d(pc.xray$au[,3], resno, ylab="PC3 (A)", sse=tpdb)
par(op)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
Write PC trajectory
resno = pdbs$resno[1, !is.gap(pdbs)]
resid = aa123(pdbs$ali[1, !is.gap(pdbs)])

a <- mktrj.pca(pc.xray, pc=1, file="pc1.pdb",
resno=resno, resid=resid)

b <- mktrj.pca(pc.xray, pc=2, file="pc2.pdb",
resno=resno, resid=resid)

176 pdb.annotate

c <- mktrj.pca(pc.xray, pc=3, file="pc3.pdb",
resno=resno, resid=resid)

End(Not run)

detach(transducin)

pdb.annotate Get Customizable Annotations From PDB Or PFAM Databases

Description

Get customizable annotations for query results from PDB or PFAM.

Usage

pdb.annotate(ids, anno.terms = NULL, unique = FALSE, verbose = FALSE,
extra.terms = NULL)

pdb.pfam(ids, best.only = TRUE, compact = TRUE)

Arguments

ids A charater vector of one or more 4-letter PDB codes/identifiers of the files for
query, or a ‘blast’ object containing ‘pdb.id’.

anno.terms Terms can be used for query. The "anno.terms" can be "structureId", "chainId",
"macromoleculeType", "chainLength", "experimentalTechnique", "resolution",
"scopDomain", "pfam", "ligandId", "ligandName", "source", "structureTitle",
"citation", "rObserved", "rFree", "rWork", and "spaceGroup". If anno.terms=NULL,
all information would be returned.

unique logical, if TRUE only unique PDB entries are returned. Alternatively data for
each chain ID is provided.

verbose logical, if TRUE more details are printed.

extra.terms Additional annotation terms to retrieve from PDB. Currently not supported.

best.only logical, if TRUE only the lowest eValue match for a given input id will be re-
ported. Otherwise all significant matches will be returned.

compact logical, if TRUE only a subset of annotation terms are returned. Otherwise full
match details are reported (see examples).

Details

Given a list of PDB IDs (and query terms for the pdb.annotate function), these functions will down-
load annotation information from the RCSB PDB and PFAM databases.

pdb2aln 177

Value

Returns a data frame of query results with a row for each PDB record, and annotation terms column-
wise.

Author(s)

Hongyang Li, Barry Grant, Lars Skjaerven, Xin-Qiu Yao

Examples

PDB server connection required - testing excluded
try({

Fetch all annotation terms
ids <- c("6Q21_B", "1NVW", "1P2U_A")
anno <- pdb.annotate(ids)

Access terms, e.g. ligand names:
anno$ligandName

only unique PDB IDs
anno <- pdb.annotate(ids, unique=TRUE)

Fetch only specific terms
pdb.annotate(ids, anno.terms = c("pfam", "ligandId", "citation"))

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
PFAM server connection required - testing excluded

Find PFAM annotations of PDB entries
pdb.pfam(c("6Q21_A", "1NVW", "1P2U_A"))

More details and a not fond entry warning
pdb.pfam(c("1P2U_A", "6Q21_B"), compact=FALSE)

End(Not run)

pdb2aln Align a PDB structure to an existing alignment

Description

Extract sequence from a PDB object and align it to an existing multiple sequence alignment that
you wish keep intact.

178 pdb2aln

Usage

pdb2aln(aln, pdb, id="seq.pdb", aln.id=NULL, file="pdb2aln.fa", ...)

Arguments

aln an alignment list object with id and ali components, similar to that generated
by read.fasta, read.fasta.pdb, and seqaln.

pdb the PDB object to be added to aln.

id name for the PDB sequence in the generated new alignment.

aln.id id of the sequence in aln that is close to the sequence from pdb.

file output file name for writing the generated new alignment.

... additional arguments passed to seqaln.

Details

The basic effect of this function is to add a PDB sequence to an existing alignement. In this case,
the function is simply a wrapper of seq2aln.

The more advanced (and also more useful) effect is giving complete mappings from the column
indices of the original alignment (aln$ali) to atomic indices of equivalent C-alpha atoms in the
pdb. These mappings are stored in the output list (see below ’Value’ section). This feature is better
illustrated in the function pdb2aln.ind, which calls pdb2aln and directly returns atom selections
given a set of alignment positions. (See pdb2aln.ind for details.)

When aln.id is provided, the function will do pairwise alignment between the sequence from pdb
and the sequence in aln with id matching aln.id. This is the best way to use the function if the
protein has an identical or very similar sequence to one of the sequences in aln.

Value

Return a list object of the class ’fasta’ containing three components:

id sequence names as identifers.

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

ref an integer 2xN matrix, where N is the number of columns of the new align-
ment ali. The first row contains the column indices of the original alignment
aln$ali. The second row contains atomic indices of equivalent C-alpha atoms
in pdb. Gaps in the new alignement are indicated by NAs.

Author(s)

Xin-Qiu Yao & Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

pdb2aln.ind 179

See Also

seqaln, seq2aln, seqaln.pair, pdb2aln.ind

Examples

Not run:
##--- Read aligned PDB coordinates (CA only)
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))
pdbs <- read.fasta.pdb(aln)

##--- Read PDB coordinate for a new structure (all atoms)
id <- get.pdb("2kin", URLonly=TRUE)
pdb <- read.pdb(id)

add pdb to the alignment
naln <- pdb2aln(aln=pdbs, pdb=pdb, id=id)
naln

End(Not run)

pdb2aln.ind Mapping from alignment positions to PDB atomic indices

Description

Find the best alignment between a PDB structure and an existing alignment. Then, given a set of
column indices of the original alignment, returns atom selections of equivalent C-alpha atoms in
the PDB structure.

Usage

pdb2aln.ind(aln, pdb, inds = NULL, ...)

Arguments

aln an alignment list object with id and ali components, similar to that generated
by read.fasta, read.fasta.pdb, pdbaln, and seqaln.

pdb the PDB object to be aligned to aln.

inds a numeric vector containing a subset of column indices of aln. If NULL, non-
gap positions of aln$ali are used.

... additional arguments passed to pdb2aln.

180 pdb2aln.ind

Details

Call pdb2aln to align the sequence of pdb to aln. Then, find the atomic indices of C-alpha atoms
in pdb that are equivalent to inds, the subset of column indices of aln$ali.

The function is a rountine utility in a combined analysis of molecular dynamics (MD) simulation
trajectories and crystallographic structures. For example, a typical post-analysis of MD simulation
is to compare the principal components (PCs) derived from simulation trajectories with those de-
rived from crystallographic structures. The C-alpha atoms used to fit trajectories and do PCA must
be the same (or equivalent) to those used in the analysis of crystallographic structures, e.g. the
’non-gap’ alignment positions. Call pdb2aln.ind with providing relevant alignment positions, one
can easily get equivalent atom selections (’select’ class objects) for the simulation topology (PDB)
file and then do proper trajectory analysis.

Value

Returns a list containing two "select" objects:

a atom and xyz indices for the alignment.

b atom and xyz indices for the PDB.

Note that if any element of inds has no corresponding CA atom in the PDB, the output a$atom and
b$atom will be shorter than inds, i.e. only indices having equivalent CA atoms are returned.

Author(s)

Xin-Qiu Yao, Lars Skjaerven & Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

seq2aln, seqaln.pair, pdb2aln

Examples

Not run:
##--- Read aligned PDB coordinates (CA only)
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))
pdbs <- read.fasta.pdb(aln)

##--- Read the topology file of MD simulations
##--- For illustration, here we read another pdb file (all atoms)
pdb <- read.pdb("2kin")

#--- Map the non-gap positions to PDB C-alpha atoms
#pc.inds <- gap.inspect(pdbs$ali)
#npc.inds <- pdb2aln.ind(aln=pdbs, pdb=pdb, inds=pc.inds$f.inds)

#npc.inds$a

pdb2sse 181

#npc.inds$b

#--- Or, map the non-gap positions with a known close sequence in the alignment
#npc.inds <- pdb2aln.ind(aln=pdbs, pdb=pdb, aln.id="1bg2", inds=pc.inds$f.inds)

#--- Map core positions
core <- core.find(pdbs)
core.inds <- pdb2aln.ind(aln=pdbs, pdb=pdb, inds = core$c1A.atom)

core.inds$a
core.inds$b

##--- Fit simulation trajectories to one of the X-ray structures based on
##--- core positions
#xyz <- fit.xyz(pdbs$xyz[1,], pdb$xyz, core.indsaxyz, core.indsbxyz)

##--- Do PCA of trajectories based on non-gap positions
#pc.traj <- pca(xyz[, npc.indsbxyz])

End(Not run)

pdb2sse Obtain An SSE Sequence Vector From A PDB Object

Description

Results are similar to that returned by stride(pdb)$sse and dssp(pdb)$sse.

Usage

pdb2sse(pdb, verbose = TRUE)

Arguments

pdb an object of class pdb as obtained from function read.pdb.

verbose logical, if TRUE warnings and other messages will be printed.

Details

call for its effects.

Value

a character vector indicating SSE elements for each amino acide residue. The ’names’ attribute of
the vector contains ’resno’, ’chain’, ’insert’, and ’SSE segment number’, seperated by the character
’_’.

182 pdbaln

Author(s)

Barry Grant & Xin-Qiu Yao

See Also

dssp, stride, bounds.sse

Examples

#PDB server connection required - testing excluded
try({

pdb <- read.pdb("1a7l")
sse <- pdb2sse(pdb)
sse

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

pdbaln Sequence Alignment of PDB Files

Description

Create multiple sequences alignments from a list of PDB files returning aligned sequence and struc-
ture records.

Usage

pdbaln(files, fit = FALSE, pqr = FALSE, ncore = 1,
nseg.scale = 1, progress = NULL, ...)

Arguments

files a character vector of PDB file names. Alternatively, a list of pdb objects can be
provided.

fit logical, if TRUE coordinate superposition is performed on the input structures.

pqr logical, if TRUE the input structures are assumed to be in PQR format.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

progress progress bar for use with shiny web app.

... extra arguments passed to seqaln function.

pdbaln 183

Details

This wrapper function calls the underlying functions read.pdb, pdbseq, seqaln and read.fasta.pdb
returning a list of class "pdbs" similar to that returned by read.fasta.pdb.

As these steps are often error prone it is recomended for most cases that the individual underlying
functions are called in sequence with checks made on the valadity of their respective outputs to
ensure sensible results.

Value

Returns a list of class "pdbs" with the following five components:

xyz numeric matrix of aligned C-alpha coordinates.
resno character matrix of aligned residue numbers.
b numeric matrix of aligned B-factor values.
chain character matrix of aligned chain identifiers.
id character vector of PDB sequence/structure names.
ali character matrix of aligned sequences.
call the matched call.

Note

See recommendation in details section above.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, pdbseq, seqaln, read.fasta,read.fasta.pdb, core.find, fit.xyz, read.all, pymol.pdbs

Examples

Not run:
##- Align PDBs (from vector of filenames)
#files <- get.pdb(c("4q21","5p21"), URLonly=TRUE)
files <- get.pdb(c("4q21","5p21"), path=tempdir(), overwrite=TRUE)
pdbaln(files)

##- Align PDBs (from list of existing PDB objects)
pdblist <- list(read.pdb(files[1]), read.pdb(files[2]))
pdbaln(pdblist)

End(Not run)

184 pdbfit

pdbfit PDB File Coordinate Superposition

Description

Protein Databank Bank file coordinate superposition with the Kabsch algorithm.

Usage

pdbfit(...)

S3 method for class 'pdb'
pdbfit(pdb, inds = NULL, ...)

S3 method for class 'pdbs'
pdbfit(pdbs, inds = NULL, outpath = NULL, ...)

Arguments

pdb a multi-model pdb object of class "pdb", as obtained from read.pdb.

pdbs a list of class "pdbs" containing PDB file data, as obtained from read.fasta.pdb
or pdbaln.

inds a list object with a ‘xyz’ component with indices that selects the coordinate
positions (in terms of x, y and z elements) upon which fitting should be based.
This defaults to all equivalent non-gap positions for function pdbfit.pdbs, and
to all calpha atoms for function pdbfit.pdb.

outpath character string specifing the output directory for optional coordinate file output.
Note that full files (i.e. all atom files) are written, seebelow.

... extra arguments passed to fit.xyz function.

Details

The function pdbfit is a wrapper for the function fit.xyz, wherein full details of the superposition
procedure are documented.

Input to pdbfit.pdbs should be a list object obtained with the function read.fasta.pdb or pdbaln.
See the examples below.

For function pdbfit.pdb the input should be a multi-model pdb object with multiple (>1) frames
in the ‘xyz’ component.

The reference frame for supperposition (i.e. the fixed structure to which others are superposed) is
the first entry in the input "pdbs" object. For finer control use fit.xyz.

Value

Returns moved coordinates.

pdbs2pdb 185

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Kabsch Acta Cryst (1978) A34, 827–828.

See Also

pdbaln, read.fasta.pdb, fit.xyz, rmsd, read.pdb

Examples

Not run:
#files <- get.pdb(c("4q21","5p21"), URLonly=TRUE)
files <- get.pdb(c("4q21","5p21"), path=tempdir(), overwrite=TRUE)
pdbs <- pdbaln(files)
xyz <- pdbfit(pdbs)

Superpose again this time outputing all-atom PDBs to disc
#xyz <- pdbfit(pdbs, outpath="fitted")

End(Not run)

pdbs2pdb PDBs to PDB Converter

Description

Convert a list of PDBs from an "pdbs" object to a list of pdb objects.

Usage

pdbs2pdb(pdbs, inds = NULL, rm.gaps = FALSE, all.atom=FALSE, ncore=NULL)

Arguments

pdbs a list of class "pdbs" containing PDB file data, as obtained from read.fasta.pdb,
pdbaln, or read.all.

inds a vector of indices that selects the PDB structures to convert.

rm.gaps logical, if TRUE atoms in gap containing columns are removed in the output
pdb objects.

all.atom logical, if TRUE all atom data are converted (the ‘pdbs’ object must be obtained
from read.all or pdbs$id refers to existing PDB files).

ncore number of CPU cores used to do the calculation.

186 pdbs2pdb

Details

This function will generate a list of pdb objects from a "pdbs" class.

See examples for more details/

Value

Returns a list of pdb objects.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, pdbaln, read.fasta.pdb.

Examples

Not run:
Fetch PDBs
pdb.ids <- c("1YX5_B", "3NOB", "1P3Q_U")
#outdir <- paste(tempdir(), "/raw_pdbs", sep="")
outdir = "raw_pdbs"
raw.files <- get.pdb(pdb.ids, path = outdir)

Split PDBs by chain ID and multi-model records
all.files <- pdbsplit(raw.files, pdb.ids,

path =paste(outdir, "/split_chain", sep=""))

Align and fit
pdbs <- pdbaln(all.files, fit=TRUE)

Convert back to PDB objects
all.pdbs <- pdbs2pdb(pdbs)

Access the first PDB object
all.pdbs[[1]]

Return PDB objects consisting of only
atoms in non-gap positions
all.pdbs <- pdbs2pdb(pdbs, rm.gaps=TRUE)

End(Not run)

pdbs2sse 187

pdbs2sse SSE annotation for a PDBs Object

Description

Returns secondary structure element (SSE) annotation ("sse" object) for a structure in the provided
"pdbs" object.

Usage

pdbs2sse(pdbs, ind = NULL, rm.gaps = TRUE, resno = TRUE, pdb = FALSE, ...)

Arguments

pdbs a list of class "pdbs" containing PDB file data, as obtained from read.fasta.pdb
or pdbaln.

ind numeric index pointing to the PDB in which the SSE should be provided. If
ind=NULL, then the consensus SSE is returned.

rm.gaps logical, if TRUE SSEs spanning gap containing columns are omitted from the
output in the resulting sse object.

resno logical, if TRUE output is in terms of residue numbers rather than residue index
(position in sequence).

pdb logical, if TRUE function dssp will be called on the corresponding pdb object
rather than to use pdbs$sse to obtain the SSE object.

... arguments passed to function dssp.

Details

This function provides a "sse" list object containing secondary structure elements (SSE) annotation
data for a particular structure in the provided "pdbs" object. Residue numbers are provided relative
to the alignment in the "pdbs" object.

When ind=NULL the function will attemt to return the consensus SSE annotation, i.e. where there
are SSEs across all structures. This will only work SSE data is found in the "pdbs" object.

See examples for more details.

Value

Returns a list object of class sse.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

188 pdbseq

See Also

dssp, pdbaln, read.fasta.pdb.

Examples

Not run:
attach(transducin)

calculate RMSF
rf <- rmsf(pdbs$xyz)

Fetch SSE annotation, output in terms of alignment index
sse <- pdbs2sse(pdbs, ind=1, rm.gaps=FALSE, resno=FALSE)

Add SSE annotation to plot
plotb3(rf, sse=sse)

Calculate RMSF only for non-gap columns
gaps.pos <- gap.inspect(pdbs$xyz)
rf <- rmsf(pdbs$xyz[, gaps.pos$f.inds])

With gap columns removed, output in terms of residue number
sse <- pdbs2sse(pdbs, ind=1, rm.gaps=TRUE, resno=TRUE)
gaps.res <- gap.inspect(pdbs$ali)
plotb3(rf, sse=sse, resno=pdbs$resno[1, gaps.res$f.inds])

detach(transducin)

End(Not run)

pdbseq Extract The Aminoacid Sequence From A PDB Object

Description

Return a vector of the one-letter IUPAC or three-letter PDB style aminoacid codes from a given
PDB object.

Usage

pdbseq(pdb, inds = NULL, aa1 = TRUE)

Arguments

pdb a PDB structure object obtained from read.pdb.

inds a list object of ATOM and XYZ indices as obtained from atom.select.

aa1 logical, if TRUE then the one-letter IUPAC sequence is returned. IF FALSE
then the three-letter PDB style sequence is returned.

pdbsplit 189

Details

See the examples below and the functions atom.select and aa321 for further details.

Value

A character vector of aminoacid codes.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of IUPAC one-letter codes see:
https://www.insdc.org/documents/feature_table.html#7.4.3

For more information on PDB residue codes see:
http://ligand-expo.rcsb.org/ld-search.html

See Also

read.pdb, atom.select, aa321, read.fasta

Examples

Not run:
pdb <- read.pdb("5p21")
pdbseq(pdb)

#pdbseq(pdb, inds=atom.select(pdb, resno=5:15, elety="CA"), aa1=FALSE)

End(Not run)

pdbsplit Split a PDB File Into Separate Files, One For Each Chain.

Description

Split a Protein Data Bank (PDB) coordinate file into new separate files with one file for each chain.

Usage

pdbsplit(pdb.files, ids = NULL, path = "split_chain", overwrite=TRUE,
verbose = FALSE, mk4=FALSE, ncore = 1, progress = NULL, ...)

https://www.insdc.org/documents/feature_table.html#7.4.3
http://ligand-expo.rcsb.org/ld-search.html

190 pdbsplit

Arguments

pdb.files a character vector of PDB file names.

ids a character vector of PDB and chain identifiers (of the form: ‘pdbId_chainId’,
e.g. ‘1bg2_A’). Used for filtering chain IDs for output (in the above example
only chain A would be produced).

path output path for chain-split files.

overwrite logical, if FALSE the PDB structures will not be read and written if split files
already exist.

verbose logical, if TRUE details of the PDB header and chain selections are printed.

mk4 logical, if TRUE output filenames will use only the first four characters of the
input filename (see basename.pdb for details).

ncore number of CPU cores used for the calculation. ncore>1 requires package ‘par-
allel’ be installed.

progress progress bar for use with shiny web app.

... additional arguments to read.pdb. Useful e.g. for parsing multi model PDB
files, including ALT records etc. in the output files.

Details

This function will produce single chain PDB files from multi-chain input files. By default all sepa-
rate filenames are returned. To return only a subset of select chains the optional input ‘ids’ can be
provided to filter the output (e.g. to fetch only chain C, of a PDB object with additional chains A+B
ignored). See examples section for further details.

Note that multi model atom records will only split into individual PDB files if multi=TRUE, else
they are omitted. See examples.

Value

Returns a character vector of chain-split file names.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

See Also

read.pdb, atom.select, write.pdb, get.pdb.

http://www.wwpdb.org/documentation/format33/v3.3.html

pfam 191

Examples

Not run:
Save separate PDB files for each chain of a local or on-line file
pdbsplit(get.pdb("2KIN", URLonly=TRUE))

Split several PDBs by chain ID and multi-model records
raw.files <- get.pdb(c("1YX5", "3NOB") , URLonly=TRUE)
chain.files <- pdbsplit(raw.files, path=tempdir(), multi=TRUE)
basename(chain.files)

Output only desired pdbID_chainID combinations
for the last entry (1f9j), fetch all chains
ids <- c("1YX5_A", "3NOB_B", "1F9J")
raw.files <- get.pdb(ids , URLonly=TRUE)
chain.files <- pdbsplit(raw.files, ids, path=tempdir())
basename(chain.files)

End(Not run)

pfam Download Pfam FASTA Sequence Alignment

Description

Downloads FASTA sequence alignment from the Pfam database.

Usage

pfam(id, alignment = "seed", verbose = FALSE)

Arguments

id the Pfam familiy identifier (e.g ‘Piwi’) or accession (e.g. ‘PF02171’).

alignment the alignment type. Allowed values are: ‘seed’, ‘ncbi’, ‘full’, ‘metagenomics’.

verbose logical, if TRUE details of the download process is printed.

Details

This is a basic function to download a multiple sequence alignment for a protein family from the
Pfam database.

192 pfam

Value

A ‘fasta’ object with the following components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

ids sequence names as identifiers.

call the matched call.

Note

Full more information on the Pfam database:
http://pfam.xfam.org

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, hmmer, get.seq, uniprot

Examples

Not run:
PFAM server connection required - testing excluded

aln <- pfam("piwi")
aln <- pfam("PF02171")

seq <- get.seq("1rx2_A", outfile = tempfile())
hmm <- hmmer(seq, type="hmmscan", db="pfam")
aln <- pfam(hmm$hit.tbl$acc[1])

Or much more simply for RCSB PDB entries:
acc <- pdb.pfam("1rx2_A", compact=FALSE)$pfamAcc
aln <- pfam(acc)

End(Not run)

http://pfam.xfam.org

plot.bio3d 193

plot.bio3d Plots with marginal SSE annotation

Description

Draw a standard scatter plot with optional secondary structure in the marginal regions.

Usage

plotb3(x, resno = NULL, rm.gaps = FALSE, type = "h",
main = "", sub = "",
xlim = NULL, ylim = NULL, ylim2zero = TRUE,
xlab = "Residue", ylab = NULL,
axes = TRUE, ann = par("ann"), col = par("col"),
sse = NULL, sse.type="classic", sse.min.length=5,
top = TRUE, bot = TRUE,
helix.col = "gray20", sheet.col = "gray80",
sse.border = FALSE, ...)

S3 method for class 'bio3d'
plot(...)

Arguments

x a numeric vector of values to be plotted. Any reasonable way of defining these
plot coordinates is acceptable. See the function ‘xy.coords’ for details.

resno an optional vector with length equal to that of ‘x’ that will be used to annotate the
xaxis. This is typically a vector of residue numbers. If NULL residue positions
from 1 to the length of ‘x’ will be used. See examples below.

rm.gaps logical, if TRUE gaps in x, indicated by NA values, will be removed from plot.

type one-character string giving the type of plot desired. The following values are
possible, (for details, see ‘plot’): ‘p’ for points, ‘l’ for lines, ‘o’ for over-plotted
points and lines, ‘b’, ‘c’) for points joined by lines, ‘s’ and ‘S’ for stair steps and
‘h’ for histogram-like vertical lines. Finally, ‘n’ does not produce any points or
lines.

main a main title for the plot, see also ‘title’.

sub a sub-title for the plot.

xlim the x limits (x1,x2) of the plot. Note that x1 > x2 is allowed and leads to a
reversed axis.

ylim the y limits of the plot.

ylim2zero logical, if TRUE the y-limits are forced to start at zero.

xlab a label for the x axis, defaults to a description of ‘x’.

194 plot.bio3d

ylab a label for the y axis, defaults to a description of ‘y’.

axes a logical value indicating whether both axes should be drawn on the plot. Use
graphical parameter ‘xaxt’ or ‘yaxt’ to suppress just one of the axes.

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

col The colors for lines and points. Multiple colors can be specified so that each
point is given its own color. If there are fewer colors than points they are recycled
in the standard fashion. Lines are plotted in the first color specified.

sse secondary structure object as returned from dssp, stride or in certain cases
read.pdb.

sse.type single element character vector that determines the type of secondary structure
annotation drawn. The following values are possible, ‘classic’ and ‘fancy’. See
details and examples below.

sse.min.length a single numeric value giving the length below which secondary structure el-
ements will not be drawn. This is useful for the exclusion of short helix and
strand regions that can often crowd these forms of plots.

top logical, if TRUE rectangles for each sse are drawn towards the top of the plotting
region.

bot logical, if TRUE rectangles for each sse are drawn towards the bottom of the
plotting region.

helix.col The colors for rectangles representing alpha helices.

sheet.col The colors for rectangles representing beta strands.

sse.border The border color for all sse rectangles.

... other graphical parameters.

Details

This function is useful for plotting per-residue numeric vectors for a given protein structure (e.g.
results from RMSF, PCA, NMA etc.) along with a schematic representation of major secondary
structure elements.

Two forms of secondary structure annotation are available: so called ‘classic’ and ‘fancy’. The
former draws marginal rectangles and has been available within Bio3D from version 0.1. The later
draws more ‘fancy’ (and distracting) 3D like helices and arrowed strands.

See the functions ‘plot.default’, dssp and stride for further details.

Value

Called for its effect.

Note

Be sure to check the correspondence of your ‘sse’ object with the ‘x’ values being plotted as no
internal checks are performed.

plot.bio3d 195

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

plot.default, dssp, stride

Examples

PDB server connection required - testing excluded
try({

Plot of B-factor values along with secondary structure from PDB
pdb <- read.pdb("1bg2")
bfac <- pdb$atom[pdb$calpha,"b"]
plot.bio3d(bfac, sse=pdb, ylab="B-factor", col="gray")
points(bfac, typ="l")

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Not run:
Use PDB residue numbers and include short secondary structure elements
plot.bio3d(pdb$atom[pdb$calpha,"b"], sse=pdb, resno=pdb, ylab="B-factor",

typ="l", lwd=1.5, col="blue", sse.min.length=0)

Calculate secondary structure using stride() or dssp()
#sse <- stride(pdb)
sse <- dssp(pdb)

Plot of B-factor values along with calculated secondary structure
plot.bio3d(pdb$atom[pdb$calpha,"b"], sse=sse, ylab="B-factor", typ="l",
col="blue", lwd=2)

End(Not run)

PDB server connection required - testing excluded
try({

Plot 'aligned' data respecting gap positions
attach(transducin)

pdb = read.pdb("1tnd") ## Reference PDB see: pdbs$id[1]

196 plot.cmap

pdb = trim.pdb(pdb, inds=atom.select(pdb, chain="A"))

Plot of B-factor values with gaps
plot.bio3d(pdbs$b, resno=pdb, sse=pdb, ylab="B-factor")

Plot of B-factor values after removing all gaps
plot.bio3d(pdbs$b, rm.gaps=TRUE, resno = pdb, sse=pdb, ylab="B-factor")

detach(transducin)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

Fancy secondary structure elements
##plot.bio3d(pdb$atom[pdb$calpha,"b"], sse=pdb, ssetype="fancy")
Currently not implemented

plot.cmap Plot Contact Matrix

Description

Plot a contact matrix with optional secondary structure in the marginal regions.

Usage

S3 method for class 'cmap'
plot(x, col=2, pch=16, main="Contact map", sub="",

xlim=NULL, ylim=NULL, xlab = "Residue index", ylab = xlab,
axes=TRUE, ann=par("ann"), sse=NULL, sse.type="classic",
sse.min.length=5, bot=TRUE, left=TRUE,
helix.col="gray20", sheet.col="gray80", sse.border=FALSE,
add=FALSE, ...)

Arguments

x a numeric matrix of residue contacts as obtained from function cmap.

col color code or name, see par.

pch plotting ‘character’, i.e., symbol to use. This can either be a single character or
an integer code for one of a set of graphics symbols. See points.

main a main title for the plot, see also ‘title’.

sub a sub-title for the plot.

xlim the x limits (x1,x2) of the plot. Note that x1 > x2 is allowed and leads to a
reversed axis.

plot.cmap 197

ylim the y limits of the plot.
xlab a label for the x axis, defaults to a description of ‘x’.
ylab a label for the y axis, defaults to a description of ‘y’.
axes a logical value indicating whether both axes should be drawn on the plot. Use

graphical parameter ‘xaxt’ or ‘yaxt’ to suppress just one of the axes.
ann a logical value indicating whether the default annotation (title and x and y axis

labels) should appear on the plot.
sse secondary structure object as returned from dssp, stride or in certain cases

read.pdb.
sse.type single element character vector that determines the type of secondary structure

annotation drawn. The following values are possible, ‘classic’ and ‘fancy’. See
details and examples below.

sse.min.length a single numeric value giving the length below which secondary structure el-
ements will not be drawn. This is useful for the exclusion of short helix and
strand regions that can often crowd these forms of plots.

left logical, if TRUE rectangles for each sse are drawn towards the left of the plotting
region.

bot logical, if TRUE rectangles for each sse are drawn towards the bottom of the
plotting region.

helix.col The colors for rectangles representing alpha helices.
sheet.col The colors for rectangles representing beta strands.
sse.border The border color for all sse rectangles.
add logical, specifying if the contact map should be added to an already existing

plot. Note that when ‘TRUE’ only points are plotted (no annotation).
... other graphical parameters.

Details

This function is useful for plotting a residue-residue contact data for a given protein structure along
with a schematic representation of major secondary structure elements.

Two forms of secondary structure annotation are available: so called ‘classic’ and ‘fancy’. The
former draws marginal rectangles and has been available within Bio3D from version 0.1. The later
draws more ‘fancy’ (and distracting) 3D like helices and arrowed strands.

Value

Called for its effect.

Note

Be sure to check the correspondence of your ‘sse’ object with the ‘x’ values being plotted as no
internal checks are performed.

Author(s)

Lars Skjaerven, Barry Grant

198 plot.cna

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

cmap, dm, plot.dmat, plot.default, plot.bio3d, dssp, stride

Examples

##- Read PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

##- Calcualte contact map
cm <- cmap(pdb)

##- Plot contact map
plot.cmap(cm, sse=pdb)

##- Add to plot
plot.cmap(t(cm), col=3, pch=17, add=TRUE)

plot.cna Protein Structure Network Plots in 2D and 3D.

Description

Plot a protein dynamic network as obtained from the cna function.

Usage

S3 method for class 'cna'
plot(x, pdb = NULL, weights=NULL, vertex.size=NULL,

layout=NULL, col=NULL, full=FALSE, scale=TRUE, color.edge = FALSE,
interactive=FALSE, ...)

S3 method for class 'ecna'
plot(x, ...)

Arguments

x A protein network graph object (or a list of such objects) as obtained from the
‘cna’ function.

pdb A PDB structure object obtained from ‘read.pdb’. If supplied this will be used
to guide the network plot ‘layout’, see ‘layout.cna’ for details.

weights A numeric vector containing the edge weights for the network.

plot.cna 199

vertex.size A numeric vector of node/community sizes. If NULL the size will be taken from
the input network graph object ‘x’. Typically for ‘full=TRUE’ nodes will be of
an equal size and for ‘full=FALSE’ community node size will be proportional
to the residue membership of each community.

layout Either a function or a numeric matrix. It specifies how the vertices will be placed
on the plot. See ‘layout.cna’.

col A vector of colors used for node/vertex rendering. If NULL these values are
taken from the input network ‘V(x$community.network)$color’.

full Logical, if TRUE the full all-atom network rather than the clustered community
network will be plotted.

scale Logical, if TRUE weights are scaled with respect to the network.

color.edge Logical, if TRUE edges are colored with respect to their weights.

interactive Logical, if TRUE interactive graph will be drawn where users can manually
adjust the network (positions of vertices, colors of edges, etc.). Needs Tcl/Tk
support in the installed R build.

... Additional graphical parameters for ‘plot.igraph’.

Details

This function calls ‘plot.igraph’ from the igraph package to plot cna networks the way we like them.

The plot layout is user settable, we like the options of: ‘layout.cna’, ‘layout.fruchterman.reingold’,
‘layout.mds’ or ‘layout.svd’. Note that first of these uses PDB structure information to produce a
more meaningful layout.

Extensive plot modifications are possible by setting additional graphical parameters (. . .). These
options are detailed in ‘igraph.plotting’. Common parameters to alter include:

vertex.label: Node labels, V(x$network)$name. Use NA to omit.

vertex.label.color: Node label colors, see also vertex.label.cex etc.

edge.color: Edge colors, E(x$network)$color.

mark.groups: Community highlighting, a community list object, see also mark.col etc.

Value

Produces a network plot on the active graphics device. Also returns the plot layout coordinates
silently, which can be passed to the ‘identify.cna’ function.

Note

Be sure to check the correspondence of your ‘pdb’ object with your network object ‘x’, as few
internal checks are currently performed by the ‘layout.cna’ function.

Author(s)

Barry Grant and Guido Scarabelli

200 plot.core

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

plot.igraph, plot.communities, igraph.plotting

Examples

PDB server connection required - testing excluded

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

try({

##-- Build a CNA object
pdb <- read.pdb("4Q21")
modes <- nma(pdb)
cij <- dccm(modes)
net <- cna(cij, cutoff.cij=0.2)

Plot coarse grain network based on dynamically coupled communities
xy <- plot.cna(net)
#plot.dccm(cij, margin.segments=net$communities$membership)

Chose a different PDB informed layout for plot
plot.cna(net, pdb)

Play with plot layout and colors...
plot.cna(net, layout=igraph::layout.mds(net$community.network), col=c("blue","green"))

Plot full residue network colored by communities - will be slow due to number of edges!!
plot.cna(net, pdb, full=TRUE)

Alter plot settings
plot.cna(net, pdb, full=TRUE, vertex.size=3, weights=1, vertex.label=NA)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}
}

plot.core Plot Core Fitting Progress

plot.core 201

Description

Plots the total ellipsoid volume of core positions versus core size at each iteration of the core finding
process.

Usage

S3 method for class 'core'
plot(x, y = NULL, type = "h", main = "", sub = "",

xlim = NULL, ylim = NULL, xlab = "Core Size (Number of Residues)",
ylab = "Total Ellipsoid Volume (Angstrom^3)", axes = TRUE,
ann = par("ann"), col = par("col"), ...)

Arguments

x a list object obtained with the function core.find from which the ‘volume’
component is taken as the x coordinates for the plot.

y the y coordinates for the plot.

type one-character string giving the type of plot desired.

main a main title for the plot, see also ‘title’.

sub a sub-title for the plot.

xlim the x limits of the plot.

ylim the y limits of the plot.

xlab a label for the x axis.

ylab a label for the y axis.

axes a logical value indicating whether both axes should be drawn.

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

col The colors for lines and points. Multiple colours can be specified so that each
point is given its own color. If there are fewer colors than points they are recycled
in the standard fashion.

... extra plotting arguments.

Value

Called for its effect.

Note

The produced plot can be useful for deciding on the core/non-core boundary.

Author(s)

Barry Grant

202 plot.dccm

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

core.find, print.core

Examples

Not run:

##-- Generate a small kinesin alignment and read corresponding structures
pdbfiles <- get.pdb(c("1bg2","2ncd","1i6i","1i5s"), URLonly=TRUE)
pdbs <- pdbaln(pdbfiles)

##-- Find 'core' positions
core <- core.find(pdbs)
plot(core)

##-- Fit on these relatively invarient subset of positions
core.inds <- print(core)
xyz <- pdbfit(pdbs, core.inds, outpath="corefit_structures")

##-- Compare to fitting on all equivalent positions
xyz2 <- pdbfit(pdbs)

Note that overall RMSD will be higher but RMSF will
be lower in core regions, which may equate to a
'better fit' for certain applications
gaps <- gap.inspect(pdbs$xyz)
rmsd(xyz[,gaps$f.inds])
rmsd(xyz2[,gaps$f.inds])

plot(rmsf(xyz[,gaps$f.inds]), typ="l", col="blue", ylim=c(0,9))
points(rmsf(xyz2[,gaps$f.inds]), typ="l", col="red")

End(Not run)

plot.dccm DCCM Plot

Description

Plot a dynamical cross-correlation matrix.

plot.dccm 203

Usage

S3 method for class 'dccm'
plot(x, resno=NULL, sse=NULL, colorkey=TRUE,

at=c(-1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1),
main="Residue Cross Correlation",
helix.col = "gray20", sheet.col = "gray80",
inner.box=TRUE, outer.box=FALSE,
xlab="Residue No.", ylab="Residue No.",

margin.segments=NULL, segment.col=vmd_colors(), segment.min=1, ...)

Arguments

x a numeric matrix of atom-wise cross-correlations as output by the ‘dccm’ func-
tion.

resno an optional vector with length equal to that of x that will be used to annotate
the x- and y-axis. This is typically a vector of residue numbers. Can be also
provided with a ‘pdb’ object, in which ‘resno’ of all C-alpha atoms will be used.
If NULL residue positions from 1 to the length of x will be used. See examples
below.

sse secondary structure object as returned from dssp, stride or read.pdb.

colorkey logical, if TRUE a key is plotted.

at numeric vector specifying the levels to be colored.

main a main title for the plot.

helix.col The colors for rectangles representing alpha helices.

sheet.col The colors for rectangles representing beta strands.

inner.box logical, if TRUE an outer box is drawn.

outer.box logical, if TRUE an outer box is drawn.

xlab a label for the x axis.

ylab a label for the y axis.
margin.segments

a numeric vector of cluster membership as obtained from cutree() or other com-
munity detection method. This will be used for bottom and left margin annota-
tion.

segment.col a vector of colors used for each cluster group in margin.segments.

segment.min a single element numeric vector that will cause margin.segments with a length
below this value to be excluded from the plot.

... additional graphical parameters for contourplot.

Details

See the ‘contourplot’ function from the lattice package for plot customization options, and the
functions dssp and stride for further details.

204 plot.dccm

Value

Called for its effect.

Note

Be sure to check the correspondence of your ‘sse’ object with the ‘cij’ values being plotted as no
internal checks are currently performed.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

plot.bio3d, plot.dmat, filled.contour, contour, image plot.default, dssp, stride

Examples

Not run:
##-- Read example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)

Read reference PDB and trim it to match the trajectory
pdb <- trim(read.pdb("1W5Y"), 'calpha')

select residues 24 to 27 and 85 to 90 in both chains
inds <- atom.select(pdb, resno=c(24:27,85:90))

lsq fit of trj on pdb
xyz <- fit.xyz(pdb$xyz, trj, fixed.inds=inds$xyz, mobile.inds=inds$xyz)

Dynamic cross-correlations of atomic displacements
cij <- dccm(xyz)

Default plot
plot.dccm(cij)

Change the color scheme and the range of colored data levels
plot.dccm(cij, contour=FALSE, col.regions=bwr.colors(200), at=seq(-1,1,by=0.01))

Add secondary structure annotation to plot margins
plot.dccm(cij, sse=pdb)

Add additional margin annotation for chains
Also label x- and y-axis with PDB residue numbers
ch <- ifelse(pdb$atom$chain=="A", 1,2)

plot.dmat 205

plot.dccm(cij, resno=pdb, sse=pdb, margin.segments=ch)

Plot with cluster annotation from dynamic network analysis
#net <- cna(cij)
#plot.dccm(cij, margin.segments=net$raw.communities$membership)

Focus on major communities (i.e. exclude those below a certain total length)
#plot.dccm(cij, margin.segments=net$raw.communities$membership, segment.min=25)

End(Not run)

plot.dmat Plot Distance Matrix

Description

Plot a distance matrix (DM) or a difference distance matrix (DDM).

Usage

S3 method for class 'dmat'
plot(x, key = TRUE, resnum.1 = c(1:ncol(x)), resnum.2 = resnum.1,

axis.tick.space = 20, zlim = range(x, finite = TRUE),
nlevels = 20, levels = pretty(zlim, nlevels),
color.palette = bwr.colors,
col = color.palette(length(levels) - 1),
axes = TRUE, key.axes, xaxs = "i", yaxs = "i", las = 1,
grid = TRUE, grid.col = "yellow", grid.nx = floor(ncol(x)/30),
grid.ny = grid.nx, center.zero = TRUE, flip=TRUE, ...)

Arguments

x a numeric distance matrix generated by the function dm.

key logical, if TRUE a color key is plotted.

resnum.1 a vector of residue numbers for annotating the x axis.

resnum.2 a vector of residue numbers for annotating the y axis.
axis.tick.space

the separation between each axis tick mark.

zlim z limits for the distances to be plotted.

nlevels if levels is not specified, the range of ’z’ values is divided into approximately
this many levels.

levels a set of levels used to partition the range of ’z’. Must be *strictly* increasing
(and finite). Areas with ’z’ values between consecutive levels are painted with
the same color.

206 plot.dmat

color.palette a color palette function, used to assign colors in the plot.

col an explicit set of colors to be used in the plot. This argument overrides any
palette function specification.

axes logical, if TRUE plot axes are drawn.

key.axes statements which draw axes on the plot key. It overrides the default axis.

xaxs the x axis style. The default is to use internal labeling.

yaxs the y axis style. The default is to use internal labeling.

las the style of labeling to be used. The default is to use horizontal labeling.

grid logical, if TRUE overlaid grid is drawn.

grid.col color of the overlaid grid.

grid.nx number of grid cells in the x direction.

grid.ny number of grid cells in the y direction.

center.zero logical, if TRUE levels are forced to be equidistant around zero, assuming that
zlim ranges from less than to more than zero.

flip logical, indicating whether the second axis should be fliped.

... additional graphical parameters for image.

Value

Called for its effect.

Note

This function is based on the layout and legend key code in the function filled.contour by Ross
Ihaka. As with filled.contour the output is a combination of two plots: the legend and (in this
case) image (rather than a contour plot).

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.T

Much of this function is based on the filled.contour function by Ross Ihaka.

See Also

dm, filled.contour, contour, image

plot.enma 207

Examples

Read PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

DM
d <- dm(pdb,"calpha")

Plot DM
##filled.contour(d, nlevels = 4)
##plot(d)
plot(d,

resnum.1 = pdb$atom[pdb$calpha,"resno"],
color.palette = mono.colors,
xlab="Residue Number", ylab="Residue Number")

Not run:
Download and align two PDB files
pdbs <- pdbaln(get.pdb(c("4q21", "521p"), path=tempdir(), overwrite=TRUE))

Get distance matrix
a <- dm.xyz(pdbs$xyz[1,])
b <- dm.xyz(pdbs$xyz[2,])

Calculate DDM
c <- a - b

Plot DDM
plot(c,key=FALSE, grid=FALSE)

plot(c, axis.tick.space=10,
resnum.1=pdbs$resno[1,],
resnum.2=pdbs$resno[2,],
grid.col="black",
xlab="Residue No. (4q21)", ylab="Residue No. (521p)")

End(Not run)

plot.enma Plot eNMA Results

Description

Produces a plot of atomic fluctuations of aligned normal modes.

Usage

S3 method for class 'enma'
plot(x,

208 plot.enma

pdbs = NULL,
xlab = NULL,
ylab="Fluctuations", ...)

Arguments

x the results of ensemble NMA obtained with nma.pdbs. Alternatively, a matrix
in the similar format as enma$fluctuations can be provided.

pdbs an object of class ‘pdbs’ in which the ‘enma’ object x was obtained from. If
provided SSE data of the first structure of pdbs will drawn.

xlab a label for the x axis.

ylab labels for the y axes.

... extra plotting arguments passed to plot.fluct that effect the atomic fluctua-
tions plot only.

Details

plot.enma produces a fluctuation plot of aligned nma objects. If corresponding pdbs object is
provided the plot contains SSE annotation and appropriate resiude index numbering.

Value

Called for its effect.

Author(s)

Lars Skjaerven, Barry Grant

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696.

See Also

nma, plotb3, plot.fluct

Examples

Not run:
ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A")
raw.files <- get.pdb(ids, path = "raw_pdbs")
files <- pdbsplit(raw.files, ids, path = "raw_pdbs/split_chain")

Sequence/structure alignement
pdbs <- pdbaln(files)

Normal mode analysis on aligned data
modes <- nma(pdbs)

plot.fasta 209

Plot fluctuations
plot(modes, pdbs=pdbs)

Group and spread fluctuation profiles
hc <- hclust(as.dist(1-modes$rmsip))
col <- cutree(hc, k=2)
plot(modes, pdbs=pdbs, col=col, spread=TRUE)

End(Not run)

plot.fasta Plot a Multiple Sequence Alignment

Description

Produces a schematic representation of a multiple sequence alignment.

Usage

S3 method for class 'fasta'
plot(x, hc = TRUE, labels = x$id, cex.lab = 0.7,

xlab = "Alignment index",
main = "Sequence Alignment Overview",
mar4 = 4, ...)

Arguments

x multiple sequence alignement of class ‘fasta’ as obtained from seqaln.

hc logical, if TRUE plot a dendrogram on the left side. Alternatively, an object
obtained from hclust can be provided.

labels labels corresponding to each row in the alignment.

cex.lab scaling factor for the labels.

xlab label for x-axis.

main a main title for the plot.

mar4 margin size for the labels.

... additional arguments passed to function hclust.

Details

plot.fasta is a utility function for producting a schematic representation of a multiple sequence
alignment.

Value

Called for its effect.

210 plot.fluct

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

seqaln, read.fasta, entropy, aln2html.

Examples

Read alignment
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))

alignment plot
plot(aln, labels=basename.pdb(aln$id))

Works also for a 'pdbs' object
attach(transducin)
plot(pdbs)

detach(transducin)

Not run:
infile <- "http://pfam.xfam.org/family/PF00071/alignment/seed/format?format=fasta"
aln <- read.fasta(infile)
plot(aln)

End(Not run)

plot.fluct Plot Fluctuations

Description

Produces a plot of atomic fluctuations obtained from ensemble normal mode analysis or molecular
dynamics simulations.

Usage

S3 method for class 'fluct'
plot(x,

col = NULL, label = rownames(x), signif = FALSE,
p.cutoff = 0.005, q.cutoff = 0.04,
s.cutoff = 5, n.cutoff = 2, mean = FALSE, polygon = FALSE,
spread = FALSE, offset = 1,
ncore = NULL, ...)

plot.fluct 211

Arguments

x a numeric vector or matrix containing atomic fluctuation data obtained from e.g.
nma.pdbs or rmsf.

col a character vector of plotting colors. Used also to group fluctuation profiles. NA
values in col will omit the corresponding fluctuation profile in the plot.

label a character vector of plotting labels with length matching nrow(x). If mean=TRUE,
the length of label can be equal to the number of categories indicated by col.

signif logical, if TRUE significance of fluctuation difference is calculated and anno-
tated for each atomic position.

p.cutoff Cutoff of p-value to define significance.
q.cutoff Cutoff of the mean fluctuation difference to define significance.
s.cutoff Cutoff of sample size in each group to calculate the significance.
n.cutoff Cutoff of consecutive residue positions with significant fluctuation difference.

If the actual number is less than the cutoff, correponding postions will not be
annotated.

mean logical, if TRUE plot mean fluctuations of each group. Significance is still cal-
culated with the original data.

polygon logical, if TRUE a nicer plot with area under the line for the first row of x are
filled with polygons.

ncore number of CPU cores used to do the calculation. By default (ncore=NULL), use
all available CPU cores. The argument is only used when signif=TRUE.

spread logical, if TRUE the fluctuation profiles are spread - i.e. not on top of each other.
offset numerical offset value in use when ‘spread=TRUE’.
... extra plotting arguments passed to plot.bio3d.

Details

The significance calculation is performed when signif=TRUE and there are at least two groups
with sample size larger than or equal to s.cutoff. A "two-sided" student’s t-test is performed for
each atomic position (each column of x). If x contains gaps, indicated by NAs, only non-gapped
positions are considered. The position is considered significant if both p-value <= p.cutoff and
the mean value difference of the two groups, q, satisfies q >= q.cutoff. If more than two groups
are available, every pair of groups are subjected to the t-test calculation and the minimal p-value
along with the q-value for the corresponding pair are used for the significance evaluation.

Value

If significance is calculated, return a vector indicating significant positions.

Author(s)

Xin-Qiu Yao, Lars Skjaerven, Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

212 plot.geostas

See Also

plot.bio3d, rmsf, nma.pdbs, t.test, polygon.

Examples

Not run:
load transducin example data
attach(transducin)

subset of pdbs to analyze
inds = c(1:5, 16:20)
pdbs <- trim(pdbs, row.inds=inds)
gaps.res = gap.inspect(pdbs$ali)

reference RESNO and SSE for axis annotations
resno <- pdbs$resno[1, gaps.res$f.inds]
sse <- pdbs$sse[1, gaps.res$f.inds]

eNMA calculation and obtain modes of motion including atomic fluctuations
modes <- nma(pdbs, ncore=NULL)
x = modes$fluctuation

simple line plot with SSE annotation
plot.fluct(x, sse=sse, resno=resno)

group data by specifying colors of each fluctuation line; same color indicates
same group. Also do significance calculation and annotation
col = c(rep('red', 5), rep('blue', 5))
plot.fluct(x, col=col, signif=TRUE, sse=sse, resno=resno)

spread lines
plot.fluct(x, col=col, signif=TRUE, sse=sse, resno=resno, typ='l', spread=TRUE)

show only line of mean values for each group.
Nicer plot with area shaded for the first group.
plot.fluct(x, col=col, signif=TRUE, sse=sse, resno=resno, mean=TRUE,

polygon=TRUE, label=c('GTP', 'GDI'))

detach(transducin)

End(Not run)

plot.geostas Plot Geostas Results

Description

Plot an atomic movement similarity matrix with domain annotation

plot.geostas 213

Usage

S3 method for class 'geostas'
plot(x, at=seq(0, 1, 0.1), main="AMSM with Domain Assignment",

col.regions=rev(heat.colors(200)),
margin.segments=x$grps, ...)

Arguments

x an object of type geostas as obtained by the ‘geostas’ function.

at numeric vector specifying the levels to be colored.

main a main title for the plot.

col.regions color vector. See contourplot for more information.

margin.segments

a numeric vector of cluster membership as obtained from cutree() or other com-
munity detection method. This will be used for bottom and left margin annota-
tion.

... additional graphical parameters for plot.dccm and contourplot.

Details

This is a wrapper function for plot.dccm with appropriate adjustments for plotting atomic move-
ment similarity matrix obtained from function geostas.

See the plot.dccm for more details.

Value

Called for its effect.

Author(s)

Barry Grant, Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

plot.dccm, geostas

214 plot.hmmer

plot.hmmer Plot a Summary of HMMER Hit Statistics.

Description

Produces a number of basic plots that should facilitate hit selection from the match statistics of a
HMMER result.

Usage

S3 method for class 'hmmer'
plot(x, ...)

Arguments

x HMMER results as obtained from the function hmmer.

... arguments passed to plot.blast.

Details

See plot.blast for details.

Value

Produces a plot on the active graphics device and returns a three component list object:

hits an ordered matrix detailing the subset of hits with a normalized score above
the chosen cutoff. Database identifiers are listed along with their cluster group
number.

acc a character vector containing the database accession identifier of each hit above
the chosen threshold.

pdb.id a character vector containing the database accession identifier of each hit above
the chosen threshold.

inds a numeric vector containing the indices of the hits relative to the input hmmer
object.

Author(s)

Barry Grant, Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

hmmer, blast.pdb

plot.matrix.loadings 215

Examples

Not run:
HMMER server connection required - testing excluded

##- PHMMER
seq <- get.seq("2abl_A", outfile = tempfile())
res <- hmmer(seq, db="pdb")
plot.hmmer(res)

End(Not run)

plot.matrix.loadings Plot Residue-Residue Matrix Loadings

Description

Plot residue-residue matrix loadings of a particular PC that is obtained from a principal component
analysis (PCA) of cross-correlation or distance matrices.

Usage

S3 method for class 'matrix.loadings'
plot(x, pc = 1, resno = NULL, sse = NULL,
mask.n = 0, plot = TRUE, ...)

Arguments

x the results of PCA as obtained from pca.array.

pc the principal component along which the loadings will be shown.

resno numerical vector or ‘pdb’ object as obtained from read.pdb to show residue
number on the x- and y-axis.

sse a ‘sse’ object as obtained from dssp or stride, or a ‘pdb’ object as obtained
from read.pdb to show secondary structural elements along x- and y-axis.

mask.n the number of elements from the diagonal to be masked from output.

plot logical, if FALSE no plot will be shown.

... additional arguments passed to plot.dccm.

Details

The function plots loadings (the eigenvectors) of PCA performed on a set of matrices such as dis-
tance matrices from an ensemble of crystallographic structures and residue-residue cross-correlations
or covariance matrices derived from ensemble NMA or MD simulation replicates (See pca.array
for detail). Loadings are displayed as a matrix with dimension the same as the input matrices of
the PCA. Each element of loadings represents the proportion that the corresponding residue pair
contributes to the variance in a particular PC. The plot can be used to identify key regions that best
explain the variance of underlying matrices.

216 plot.nma

Value

Plot and also returns a numeric matrix containing the loadings.

Author(s)

Xin-Qiu Yao

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696.

See Also

plot.dccm, pca.array

Examples

Not run:
attach(transducin)
gaps.res <- gap.inspect(pdbs$ali)
sse <- pdbs$sse[1, gaps.res$f.inds]

calculate modes
modes <- nma(pdbs, ncore=NULL)

calculate cross-correlation matrices from the modes
cijs <- dccm(modes, ncore=NULL)$all.dccm

do PCA on cross-correlation matrices
pc <- pca.array(cijs)

plot loadings
l <- plot.matrix.loadings(pc, sse=sse)
l[1:10, 1:10]

plot loadings with elements 10-residue separated from diagonal masked
plot.matrix.loadings(pc, sse=sse, mask.n=10)

End(Not run)

plot.nma Plot NMA Results

Description

Produces eigenvalue/frequency spectrum plots and an atomic fluctuations plot.

plot.nma 217

Usage

S3 method for class 'nma'
plot(x, pch = 16, col = par("col"), cex=0.8, mar=c(6, 4, 2, 2),...)

Arguments

x the results of normal modes analysis obtained with nma.

pch a vector of plotting characters or symbols: see points.

col a character vector of plotting colors.

cex a numerical single element vector giving the amount by which plotting text and
symbols should be magnified relative to the default.

mar A numerical vector of the form c(bottom, left, top, right) which gives the number
of lines of margin to be specified on the four sides of the plot.

... extra plotting arguments passed to plot.bio3d that effect the atomic fluctua-
tions plot only.

Details

plot.nma produces an eigenvalue (or frequency) spectrum plot together with a plot of the atomic
fluctuations.

Value

Called for its effect.

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696.

See Also

nma, plot.bio3d

Examples

Fetch structure
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate modes
modes <- nma(pdb)

plot(modes, sse=pdb)

218 plot.pca

plot.pca Plot PCA Results

Description

Produces a z-score plot (conformer plot) and an eigen spectrum plot (scree plot).

Usage

S3 method for class 'pca'
plot(x, pc.axes=NULL, pch=16, col=par("col"), cex=0.8, mar=c(4, 4, 1, 1),...)

S3 method for class 'pca.scree'
plot(x, y = NULL, type = "o", pch = 18,

main = "", sub = "", xlim = c(0, 20), ylim = NULL,
ylab = "Proportion of Variance (%)",
xlab = "Eigenvalue Rank", axes = TRUE, ann = par("ann"),
col = par("col"), lab = TRUE, ...)

S3 method for class 'pca.score'
plot(x, inds=NULL, col=rainbow(nrow(x)), lab = "", ...)

Arguments

x the results of principal component analysis obtained with pca.xyz.

pc.axes an optional numeric vector of length two specifying the principal components to
be plotted. A NULL value will result in an overview plot of the first three PCs
and a scree plot. See examples.

pch a vector of plotting characters or symbols: see ‘points’.

col a character vector of plotting colors.

cex a numerical single element vector giving the amount by which plotting text and
symbols should be magnified relative to the default.

mar A numerical vector of the form c(bottom, left, top, right) which gives the number
of lines of margin to be specified on the four sides of the plot.

inds row indices of the conformers to label.

lab a character vector of plot labels.

y the y coordinates for the scree plot.

type one-character string giving the type of plot desired.

main a main title for the plot, see also ’title’.

sub a sub-title for the plot.

xlim the x limits of the plot.

ylim the y limits of the plot.

ylab a label for the y axis.

plot.pca 219

xlab a label for the x axis.

axes a logical value indicating whether both axes should be drawn.

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

... extra plotting arguments.

Details

plot.pca is a wrapper calling both plot.pca.score and plot.pca.scree resulting in a 2x2 plot
with three score plots and one scree plot.

Value

Produces a plot of PCA results in the active graphics device and invisibly returns the plotted ‘z’
coordinates along the requested ‘pc.axes’. See examples section where these coordinates are used
to identify plotted points.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca.xyz, plot.bio3d

Examples

attach(transducin)

pc.xray <- pca(pdbs$xyz, rm.gaps=TRUE)
plot(pc.xray)

Color plot by nucleotide state
vcolors <- annotation[, "color"]
plot(pc.xray, col=vcolors)

Focus on a single plot of PC1 vs PC2
x <- plot(pc.xray, pc.axes=1:2, col=vcolors)

Identify points interactively with mouse clicks
#identify(x, labels=basename.pdb(pdbs$id))

Add labels to select points
inds <- c(1,10,37)
text(x[inds,], labels=basename.pdb(pdbs$id[inds]), col="blue")

Alternative labeling method

220 plot.pca.loadings

#labs <- rownames(annotation)
#inds <- c(2,7)
#plot.pca.score(pc.xray, inds=inds, col=vcolors, lab=labs)

color by seq identity groupings
#ide <- seqidentity(pdbs$ali)
#hc <- hclust(as.dist(1-ide))
#grps <- cutree(hc, h=0.2)
#vcolors <- rainbow(max(grps))[grps]
#plot.pca.score(pc.xray, inds=inds, col=vcolors, lab=labs)

detach(transducin)

plot.pca.loadings Plot Residue Loadings along PC1 to PC3

Description

Plot residue loadings along PC1 to PC3 from a given xyz C-alpha matrix of loadings.

Usage

S3 method for class 'pca.loadings'
plot(x, resnums = seq(1, (length(x[, 1])/3), 25), ...)

Arguments

x the results of principal component analysis obtained from pca.xyz, or just the
loadings returned from pca.xyz.

resnums a numeric vector of residue numbers.

... extra plotting arguments.

Value

Called for its effect.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca.xyz, plot.pca

plot.rmsip 221

Examples

attach(transducin)

pc.xray <- pca.xyz(pdbs$xyz[, gap.inspect(pdbs$xyz)$f.inds])
plot.pca.loadings(pc.xray$U)

detach(transducin)

plot.rmsip Plot RMSIP Results

Description

Produces a heat plot of RMSIP (Root mean square inner product) for the visualization of modes
similarity.

Usage

S3 method for class 'rmsip'
plot(x, xlab = NULL, ylab = NULL, col = gray(50:0/50),

zlim=c(0,1), ...)

Arguments

x an object of class rmsip.

xlab a label for the x axis, defaults to ‘a’.

ylab a label for the y axis, defaults to ‘b’.

col a vector of colors for the RMSIP map (or overlap values).

zlim the minimum and maximum ‘z’ values for which colors should be plotted.

... additional arguments to function image.

Details

plot.rmsip produces a color image with the function image.

Value

Called for its effect.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

222 print.cna

See Also

rmsip, overlap, nma, image.

Examples

Read PDB structure
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Perform NMA
modes.a <- nma(pdb, ff="calpha")
modes.b <- nma(pdb, ff="anm")

Calculate and plot RMSIP
r <- rmsip(modes.a, modes.b)
plot(r)

print.cna Summarize and Print Features of a cna Network Graph

Description

These functions attempt to summarize and print a cna network graph to the terminal in a human
readable form.

Usage

S3 method for class 'cna'
print(x, ...)
S3 method for class 'cna'

summary(object, verbose=TRUE, ...)

Arguments

x A cna network and community object as obtained from the function ‘cna’.

object A cna network and community object as obtained from the function ‘cna’.

verbose Logical, if TRUE a community summary table is prited to screen.

... Extra arguments passed to the ‘write.table’ function.

Details

Simple summary and print methods for protein dynamic networks.

print.cna 223

Value

The function summary.cna returns a list with the following components:

id A community number/identifier vector with an element for each community.

size A numeric community size vector, with elements giving the number of nodes
within each community.

members A lst detailing the nodes within each community.

Author(s)

Guido Scarabelli and Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

cna, print.igraph, str.igraph, igraph.plotting

Examples

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

Load the correlation network
attach(hivp)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

Examine network composition
print(net)
x<- summary(net)
x$members[[2]]

detach(hivp)

}

224 print.core

print.core Printing Core Positions and Returning Indices

Description

Print method for core.find objects.

Usage

S3 method for class 'core'
print(x, vol = NULL, ...)

Arguments

x a list object obtained with the function core.find.

vol the maximal cumulative volume value at which core positions are detailed.

... additional arguments to ‘print’.

Value

Returns a three component list of indices:

atom atom indices of core positions

xyz xyz indices of core positions

resno residue numbers of core positions

Note

The produced plot.core function can be useful for deciding on the core/non-core boundary.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

core.find, plot.core

print.fasta 225

Examples

Not run:
##-- Generate a small kinesin alignment and read corresponding structures
pdbfiles <- get.pdb(c("1bg2","2ncd","1i6i","1i5s"), URLonly=TRUE)
pdbs <- pdbaln(pdbfiles)

##-- Find 'core' positions
core <- core.find(pdbs)
plot(core)

##-- Fit on these relatively invarient subset of positions
core.inds <- print(core, vol=0.5)

print(core, vol=0.7)
print(core, vol=1.0)

End(Not run)

print.fasta Printing Sequence Alignments

Description

Print method for fasta and pdbs sequence alignment objects.

Usage

S3 method for class 'fasta'
print(x, alignment=TRUE, ...)
.print.fasta.ali(x, width = NULL, col.inds = NULL, numbers = TRUE,

conservation=TRUE, ...)

Arguments

x a sequence alignment object as obtained from the functions read.fasta, read.fasta.pdb,
pdbaln, seqaln, etc.

alignment logical, if TRUE the sequence alignment will be printed to screen.
width a single numeric value giving the number of residues per printed sequence block.

By default this is determined from considering alignment identifier widths given
a standard 85 column terminal window.

col.inds an optional numeric vector that can be used to select subsets of alignment posi-
tions/columns for printing.

numbers logical, if TRUE position numbers and a tick-mark every 10 positions are printed
above and below sequence blocks.

conservation logical, if TRUE conserved and semi-conserved columns in the alignment are
marked with an ‘*’ and ‘^’, respectively.

... additional arguments to ‘.print.fasta.ali’.

226 print.xyz

Value

Called mostly for its effect but also silently returns block divided concatenated sequence strings as
a matrix.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, read.fasta.pdb, pdbaln, seqaln

Examples

file <- system.file("examples/kif1a.fa",package="bio3d")
aln <- read.fasta(file)
print(aln)

print(aln, col.inds=30:100, numbers=FALSE)

print.xyz Printing XYZ coordinates

Description

Print method for objects of class ‘xyz’.

Usage

S3 method for class 'xyz'
print(x, ...)

Arguments

x a ‘xyz’ object indicating 3-D coordinates of biological molecules.

... additional arguments passed to ‘print’.

Value

Called for its effect.

Author(s)

Barry Grant

project.pca 227

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

is.xyz, read.ncdf, read.pdb, read.dcd, fit.xyz

Examples

Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
print(pdb$xyz)

project.pca Project Data onto Principal Components

Description

Projects data onto principal components.

Usage

project.pca(data, pca, angular = FALSE, fit = FALSE, ...)
z2xyz.pca(z.coord, pca)
xyz2z.pca(xyz.coord, pca)

Arguments

data a numeric vector or row-wise matrix of data to be projected.

pca an object of class "pca" as obtained from functions pca.xyz or pca.tor.

angular logical, if TRUE the data to be projected is treated as torsion angle data.

fit logical, if TRUE the data is first fitted to pca$mean.

... other parameters for fit.xyz.

xyz.coord a numeric vector or row-wise matrix of data to be projected.

z.coord a numeric vector or row-wise matrix of PC scores (i.e. the z-scores which are
centered and rotated versions of the origional data projected onto the PCs) for
conversion to xyz coordinates.

Value

A numeric vector or matrix of projected PC scores.

Author(s)

Karim ElSawy and Barry Grant

228 prune.cna

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pca.xyz, pca.tor, fit.xyz

Examples

Not run:
attach(transducin)

gaps.pos <- gap.inspect(pdbs$xyz)

#-- Do PCA without structures 2 and 7
pc.xray <- pca.xyz(pdbs$xyz[-c(2,7), gaps.pos$f.inds])

#-- Project structures 2 and 7 onto the PC space
d <- project.pca(pdbs$xyz[c(2,7), gaps.pos$f.inds], pc.xray)

plot(pc.xray$z[,1], pc.xray$z[,2],col="gray")
points(d[,1],d[,2], col="red")

detach(transducin)

End(Not run)

prune.cna Prune A cna Network Object

Description

Remove nodes and their associated edges from a cna network graph.

Usage

prune.cna(x, edges.min = 1, size.min = 1)

Arguments

x A protein network graph object as obtained from the ‘cna’ function.

edges.min A single element numeric vector specifying the minimum number of edges that
retained nodes should have. Nodes with less than ‘edges.min’ will be pruned.

size.min A single element numeric vector specifying the minimum node size that retained
nodes should have. Nodes with less composite residues than ‘size.min’ will be
pruned.

prune.cna 229

Details

This function is useful for cleaning up cna network plots by removing, for example, small isolated
nodes. The output is a new cna object minus the pruned nodes and their associated edges. Node
naming is preserved.

Value

A cna class object, see function cna for details.

Note

Some improvements to this function are required, including a better effort to preserve the original
community structure rather than calculating a new one. Also may consider removing nodes form
the raw.network object that is returned also.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

cna, summary.cna, vmd.cna, plot.cna

Examples

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

Load the correlation network
attach(hivp)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

Plot coarse grain network based on dynamically coupled communities
par(mfcol=c(1,2), mar=c(0,0,0,0))
plot.cna(net)

Prune network
dnet <- prune.cna(net, edges.min = 1)
plot(dnet)

detach(hivp)

}

230 pymol

pymol Biomolecular Visualization with PyMOL

Description

Visualize Bio3D structure objects in PyMOL

Usage

pymol(...)

S3 method for class 'pdbs'
pymol(pdbs, col=NULL, as="ribbon", file=NULL, type="script",

exefile="pymol", user.vec=NULL, ...)

S3 method for class 'nma'
pymol(...)

S3 method for class 'pca'
pymol(...)

S3 method for class 'modes'
pymol(modes, mode=NULL, file=NULL, scale=5, dual=FALSE,

type="script", exefile="pymol", ...)

S3 method for class 'dccm'
pymol(dccm, pdb, file=NULL,

step=0.2, omit=0.2, radius = 0.15,
type="script", exefile="pymol", ...)

Arguments

pdbs aligned C-alpha Cartesian coordinates as obtained with read.fasta.pdb or
pdbaln.

col a single element character vector specifying the coloring of the structures. Op-
tions are: ‘index’, ‘index2’, ‘gaps’, ‘rmsf’, ‘user’.
Special cases: Provide a ‘core’ object as obtained by core.find to color on the
invariant core. Alternatively, provide a vector containing the color code for each
structure in the ‘pdbs’ object.

user.vec User defined vector for coloring. Only used if col="user".

as show as ‘ribbon’, ‘cartoon’, ‘lines’, ‘putty’.

file a single element character vector specifying the file name of the PyMOL ses-
sion/script file.

pymol 231

type a single element character vector specifying the output type: ‘script’ generates
a .pml script; ‘session’ generates a .pse session file; ‘launch’ launches pymol.

exefile file path to the ‘PYMOL’ program on your system (i.e. how is ‘PYMOL’ in-
voked). If NULL, use OS-dependent default path to the program.

modes an object of class nma or pca as obtained from functions nma or pca.xyz.

mode the mode number for which the vector field should be made.

scale global scaling factor.

dual logical, if TRUE mode vectors are also drawn in both direction.

dccm an object of class dccm as obtained from function dccm.

pdb an object of class pdb as obtained from function read.pdb or a numerical vector
of Cartesian coordinates.

step binning interval of cross-correlation coefficents.

omit correlation coefficents with values (0-omit, 0+omit) will be omitted from visu-
alization.

radius numeric, radius of visualized correlation cylinders in PyMol. Alternatively, a
matrix with the same dimesions as dccm can be provided, e.g. to draw cylinders
with radii associated to the pairwise correlation value.

... arguments passed to function pymol.modes for ‘nma’ and ‘pca’ objects.

Details

These functions provides a convenient approach for the visualization of Bio3D objects in PyMOL.
See examples for more details.

DCCM PyMOL visualization: This function generates a PyMOL (python) script that will draw
colored lines between (anti)correlated residues. The PyMOL script file is stored in the working
directory with filename “R.py”. PyMOL will only be launched (and opened) when using argument
‘type=’launch”. Alternatively a PDB file with CONECT records will be generated (when argument
type='pdb').

For the PyMOL version, PyMOL CGO objects are generated - each object representing a range of
correlation values (corresponding to the actual correlation values as found in the correlation matrix).
E.g. the PyMOL object with name “cor_-1_-08” would display all pairs of correlations with values
between -1 and -0.8.

NMA / PCA PyMOL vector field visualization: This function generates a PyMOL (python) script
for drawing mode vectors on a PDB structure. The PyMOL script file is stored in the working
directory with filename “R.py”.

Value

Called for its action

Author(s)

Lars Skjaerven

232 pymol

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696.

See Also

view

Examples

Not run:

##- pymol with a 'pdbs' object
attach(transducin)

build a pymol session containing all structures in the PDBs object
pymol(pdbs)

color by invariant core (
core <- core.find(pdbs)
pymol(pdbs, col=core)

color by RMSF
pymol(pdbs, col="rmsf")

color by a user defined vector
For example, colored by averaged contact density around each residue
cm <- cmap(pdbs, binary=FALSE)
vec <- rowSums(cm, na.rm=TRUE)
pymol(pdbs, col="user", user.vec=vec)

color by clustering
rd <- rmsd(pdbs$xyz)
hc <- hclust(as.dist(rd))
grps <- cutree(hc, k=3)
pymol(pdbs, col=grps)

##- pymol with a 'dccm' object
Fetch stucture
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Calculate normal modes
modes <- nma(pdb)

Calculate correlation matrix
cm <- dccm.nma(modes)

pymol(cm, modes$xyz)

read.all 233

##- pymol with a 'nma' or 'pca' object
pymol(modes, mode=7)

detach(transducin)

End(Not run)

read.all Read Aligned Structure Data

Description

Read aligned PDB structures and store their equalvalent atom data, including xyz coordinates,
residue numbers, residue type and B-factors.

Usage

read.all(aln, prefix = "", pdbext = "", sel = NULL, rm.wat=TRUE, rm.ligand=FALSE,
compact = TRUE, ncore = NULL, ...)

Arguments

aln an alignment data structure obtained with read.fasta.

prefix prefix to aln$id to locate PDB files.

pdbext the file name extention of the PDB files.

sel a selection string detailing the atom type data to store (see function store.atom)

rm.wat logical, if TRUE water atoms are removed.

rm.ligand logical, if TRUE ligand atoms are removed.

compact logical, if TRUE the number of atoms stored for each aligned residue varies
according to the amino acid type. If FALSE, the constant maximum possible
number of atoms are stored for all aligned residues.

ncore number of CPU cores used to do the calculation. By default (ncore=NULL) use
all detected CPU cores.

... other parameters for read.pdb.

Details

The input aln, produced with read.fasta, must have identifers (i.e. sequence names) that match
the PDB file names. For example the sequence corresponding to the structure file “mypdbdir/1bg2.pdb”
should have the identifer ‘mypdbdir/1bg2.pdb’ or ‘1bg2’ if input ‘prefix’ and ‘pdbext’ equal ‘mypdb-
dir/’ and ‘pdb’. See the examples below.

Sequence miss-matches will generate errors. Thus, care should be taken to ensure that the sequences
in the alignment match the sequences in their associated PDB files.

234 read.all

Value

Returns a list of class "pdbs" with the following five components:

xyz numeric matrix of aligned C-alpha coordinates.

resno character matrix of aligned residue numbers.

b numeric matrix of aligned B-factor values.

chain character matrix of aligned chain identifiers.

id character vector of PDB sequence/structure names.

ali character matrix of aligned sequences.

resid character matrix of aligned 3-letter residue names.

all numeric matrix of aligned equalvelent atom coordinates.

all.elety numeric matrix of aligned atom element types.

all.resid numeric matrix of aligned three-letter residue codes.

all.resno numeric matrix of aligned residue numbers.

all.grpby numeric vector indicating the group of atoms belonging to the same aligned
residue.

all.hetatm a list of ‘pdb’ objects for non-protein atoms.

Note

This function is still in development and is NOT part of the offical bio3d package.

The sequence character ‘X’ is useful for masking unusual or unknown residues, as it can match any
other residue type.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, read.pdb, core.find, fit.xyz

Examples

still working on speeding this guy up
Not run:
Read sequence alignment
file <- system.file("examples/kif1a.fa",package="bio3d")
aln <- read.fasta(file)

Read aligned PDBs storing all data for 'sel'
sel <- c("N", "CA", "C", "O", "CB", "*G", "*D", "*E", "*Z")

read.cif 235

pdbs <- read.all(aln, sel=sel)

atm <- colnames(pdbs$all)
ca.ind <- which(atm == "CA")
core <- core.find(pdbs)
core.ind <- c(matrix(ca.ind, nrow=3)[,core$c0.5A.atom])

Fit structures
nxyz <- fit.xyz(pdbs$all[1,], pdbs$all,

fixed.inds = core.ind,
mobile.inds = core.ind)

ngap.col <- gap.inspect(nxyz)

#npc.xray <- pca.xyz(nxyz[,ngap.col$f.inds])

#a <- mktrj.pca(npc.xray, pc=1, file="pc1-all.pdb",
elety=pdbs$all.elety[1,unique(ceiling(ngap.col$f.inds/3))],
resid=pdbs$all.resid[1,unique(ceiling(ngap.col$f.inds/3))],
resno=pdbs$all.resno[1,unique(ceiling(ngap.col$f.inds/3))])

End(Not run)

read.cif Read mmCIF File

Description

Read a Protein Data Bank (mmCIF) coordinate file.

Usage

read.cif(file, maxlines = -1, multi = FALSE,
rm.insert = FALSE, rm.alt = TRUE, verbose = TRUE)

Arguments

file a single element character vector containing the name of the mmCIF file to be
read, or the four letter PDB identifier for online file access.

maxlines the maximum number of lines to read before giving up with large files. By
default if will read up to the end of input on the connection.

multi logical, if TRUE multiple ATOM records are read for all models in multi-model
files and their coordinates returned.

rm.insert logical, if TRUE PDB insert records are ignored.

rm.alt logical, if TRUE PDB alternate records are ignored.

verbose print details of the reading process.

236 read.crd

Details

The current version of read.cif reads only ATOM/HETATM records and creates a pdb object of
the data.

See read.pdb for more info.

Value

Returns a list of class "pdb" with the following components:

atom a data.frame containing all atomic coordinate ATOM and HETATM data, with a
row per ATOM/HETATM and a column per record type. See below for details
of the record type naming convention (useful for accessing columns).

xyz a numeric matrix of class "xyz" containing the ATOM and HETATM coordinate
data.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

call the matched call.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb atom.select, write.pdb, trim.pdb, cat.pdb, read.prmtop, as.pdb, read.dcd, read.ncdf,

Examples

Read a mmCIF file from the RCSB online database
cif <- read.cif("1hel")

read.crd Read Coordinate Data from Amber or Charmm

Description

Read a CHARMM CARD (CRD) or AMBER coordinate file.

Usage

read.crd(file, ...)

read.crd 237

Arguments

file the name of the coordinate file to be read.

... additional arguments passed to the methods read.crd.charmm or read.crd.amber.

Details

read.crd is a generic function calling the corresponding function determined by the class of the
input argument x. Use methods("read.crd") to get all the methods for read.crd generic:

read.crd.charmm will be used for file extension ‘.crd’.

read.crd.amber will be used for file extension ‘.rst’ or ‘.inpcrd’.

See examples for each corresponding function for more details.

Value

See the ‘value’ section for the corresponding functions for more details.

Author(s)

Barry Grant and Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.crd.amber, read.crd.charmm, write.crd, read.prmtop, read.pdb, write.pdb, atom.select,
read.dcd, read.ncdf

Examples

Not run:
Read a PRMTOP file
prmtop <- read.prmtop(system.file("examples/crambin.prmtop", package="bio3d"))
print(prmtop)

Read a Amber CRD file
crds <- read.crd(system.file("examples/crambin.inpcrd", package="bio3d"))

Atom selection
ca.inds <- atom.select(prmtop, "calpha")

Convert to PDB format
pdb <- as.pdb(prmtop, crds, inds=ca.inds)

End(Not run)

238 read.crd.amber

read.crd.amber Read AMBER Coordinate files

Description

Read coordinate data from an AMBER coordinate / restart file.

Usage

S3 method for class 'amber'
read.crd(file, ...)

Arguments

file name of crd file to read.

... arguments passed to and from functions.

Details

Read a AMBER Coordinate format file.

Value

A list object of type ‘amber’ and ‘crd’ with the following components:

xyz a numeric matrix of class ‘xyz’ containing the Cartesian coordinates.

velocities a numeric vector containg the atom velocities.

time numeric, length of the simulation (applies to Amber restart coordinate files).

natoms total number of atoms in the coordinate file.

box dimensions of the box.

Note

See AMBER documentation for Coordinate format description.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. https://ambermd.org/FileFormats.
php

See Also

read.prmtop, read.ncdf, as.pdb, atom.select, read.pdb, read.crd.charmm

https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php

read.crd.charmm 239

Examples

Not run:
Read Amber PRMTOP and CRD files
prm <- read.prmtop(system.file("examples/crambin.prmtop", package="bio3d"))
crd <- read.crd(system.file("examples/crambin.inpcrd", package="bio3d"))

Convert to PDB format
pdb <- as.pdb(prm, crd)

Atom selection
ca.inds <- atom.select(prm, "calpha")

End(Not run)

read.crd.charmm Read CRD File

Description

Read a CHARMM CARD (CRD) coordinate file.

Usage

S3 method for class 'charmm'
read.crd(file, ext = TRUE, verbose = TRUE, ...)

Arguments

file the name of the CRD file to be read.

ext logical, if TRUE assume expanded CRD format.

verbose print details of the reading process.

... arguments going nowhere.

Details

See the function read.pdb for more details.

Value

Returns a list with the following components:

atom a character matrix containing all atomic coordinate data, with a row per atom
and a column per record type. See below for details of the record type naming
convention (useful for accessing columns).

xyz a numeric vector of coordinate data.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

240 read.dcd

Note

Similar to the output of read.pdb, the column names of atom can be used as a convenient means of
data access, namely: Atom serial number “eleno”, Atom type “elety”, Alternate location indicator
“alt”, Residue name “resid”, Residue sequence number “resno”, Code for insertion of residues
“insert”, Orthogonal coordinates “x”, Orthogonal coordinates “y”, Orthogonal coordinates “z”,
Weighting factor “b”. See examples for further details.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of CHARMM CARD (CRD) format see:
https://academiccharmm.org/documentation/version/c49b1/io#Coordinate.

See Also

write.crd, read.pdb, atom.select, write.pdb, read.dcd, read.fasta.pdb, read.fasta

Examples

Not run:
pdb <- read.pdb("1bg2")
crdfile <- paste(tempfile(), '.crd', sep='')
write.crd(pdb, file=crdfile)
crd <- read.crd(crdfile, ext=FALSE)
ca.inds <- which(crd$calpha)
crd$atom[ca.inds[1:20],c("x","y","z")]

write.pdb(crd, file=tempfile())

End(Not run)

read.dcd Read CHARMM/X-PLOR/NAMD Binary DCD files

Description

Read coordinate data from a binary DCD trajectory file.

Usage

read.dcd(trjfile, big=FALSE, verbose = TRUE, cell = FALSE)

https://academiccharmm.org/documentation/version/c49b1/io#Coordinate

read.dcd 241

Arguments

trjfile name of trajectory file to read. A vector if treat a batch of files

big logical, if TRUE attempt to read large files into a big.matrix object

verbose logical, if TRUE print details of the reading process.

cell logical, if TRUE return cell information only. Otherwise, return coordinates.

Details

Reads a CHARMM or X-PLOR/NAMD binary trajectory file with either big- or little-endian stor-
age formats.

Reading is accomplished with two different sub-functions: dcd.header, which reads header info,
and dcd.frame, which takes header information and reads atoms frame by frame producing an
nframes/natom*3 matrix of cartesian coordinates or an nframes/6 matrix of cell parameters.

Value

A numeric matrix of xyz coordinates with a frame/structure per row and a Cartesian coordinate
per column or a numeric matrix of cell information with a frame/structure per row and lengths and
angles per column.

Note

See CHARMM documentation for DCD format description.

If you experience problems reading your trajectory file with read.dcd() consider first reading your
file into VMD and from there exporting a new DCD trajectory file with the ’save coordinates’
option. This new file should be easily read with read.dcd().

Error messages beginning ’cannot allocate vector of size’ indicate a failure to obtain memory, either
because the size exceeded the address-space limit for a process or, more likely, because the system
was unable to provide the memory. Note that on a 32-bit OS there may well be enough free memory
available, but not a large enough contiguous block of address space into which to map it. In such
cases try setting the input option ’big’ to TRUE. This is an experimental option that results in a
’big.matrix’ object.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, write.pdb, atom.select

242 read.fasta

Examples

Redundant testing excluded

##-- Read cell parameters from example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile, cell = TRUE)
##-- Read coordinates from example trajectory file
trj <- read.dcd(trtfile)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

select residues 24 to 27 and 85 to 90 in both chains
inds <- atom.select(pdb, resno=c(24:27,85:90), elety='CA')

lsq fit of trj on pdb
xyz <- fit.xyz(pdb$xyz, trj, fixed.inds=inds$xyz, mobile.inds=inds$xyz)

##-- RMSD of trj frames from PDB
r1 <- rmsd(a=pdb, b=xyz)

Not run:
Pairwise RMSD of trj frames for positions 47 to 54
flap.inds <- atom.select(pdb, resno=c(47:54), elety='CA')
p <- rmsd(xyz[,flap.inds$xyz])
plot highlighting flap opening?
plot.dmat(p, color.palette = mono.colors)

End(Not run)

read.fasta Read FASTA formated Sequences

Description

Read aligned or un-aligned sequences from a FASTA format file.

Usage

read.fasta(file, rm.dup = TRUE, to.upper = FALSE, to.dash=TRUE)

Arguments

file input sequence file.

rm.dup logical, if TRUE duplicate sequences (with the same names/ids) will be re-
moved.

read.fasta 243

to.upper logical, if TRUE residues are forced to uppercase.

to.dash logical, if TRUE ‘.’ gap characters are converted to ‘-’ gap characters.

Value

A list with two components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

ids sequence names as identifers.

call the matched call.

Note

For a description of FASTA format see: https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.
shtml. When reading alignment files, the dash ‘-’ is interpreted as the gap character.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta.pdb

Examples

Read alignment
aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))

Print alignment overview
aln

Sequence names/ids
head(aln$id)

Alignment positions 335 to 339
head(aln$ali[,33:39])

Sequence d2a4f_b
aa123(aln$ali["d2a4f_b",])

Write out positions 33 to 45 only
#aln$ali=aln$ali[,30:45]
#write.fasta(aln, file="eg2.fa")

https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml

244 read.fasta.pdb

read.fasta.pdb Read Aligned Structure Data

Description

Read aligned PDB structures and store their C-alpha atom data, including xyz coordinates, residue
numbers, residue type and B-factors.

Usage

read.fasta.pdb(aln, prefix = "", pdbext = "", fix.ali = FALSE,
pdblist=NULL, ncore = 1, nseg.scale = 1, progress = NULL, ...)

Arguments

aln an alignment data structure obtained with read.fasta.

prefix prefix to aln$id to locate PDB files.

pdbext the file name extention of the PDB files.

fix.ali logical, if TRUE check consistence between $ali and $resno, and correct $ali
if they don’t match.

pdblist an optional list of pdb objects with sequence corresponding to the alignments
in aln. Primarily used through function pdbaln when the PDB objects already
exists (avoids reading PDBs from file).

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

progress progress bar for use with shiny web app.

... other parameters for read.pdb.

Details

The input aln, produced with read.fasta, must have identifers (i.e. sequence names) that match
the PDB file names. For example the sequence corresponding to the structure “1bg2.pdb” should
have the identifer ‘1bg2’. See examples below.

Sequence miss-matches will generate errors. Thus, care should be taken to ensure that the sequences
in the alignment match the sequences in their associated PDB files.

Value

Returns a list of class "pdbs" with the following five components:

xyz numeric matrix of aligned C-alpha coordinates.

resno character matrix of aligned residue numbers.

read.fasta.pdb 245

b numeric matrix of aligned B-factor values.

chain character matrix of aligned chain identifiers.

id character vector of PDB sequence/structure names.

ali character matrix of aligned sequences.

resid character matrix of aligned 3-letter residue names.

sse character matrix of aligned helix and strand secondary structure elements as
defined in each PDB file.

call the matched call.

Note

The sequence character ‘X’ is useful for masking unusual or unknown residues, as it can match any
other residue type.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, read.pdb, core.find, fit.xyz, read.all, pymol.pdbs

Examples

Redundant testing excluded
try({

Read sequence alignment
file <- system.file("examples/kif1a.fa",package="bio3d")
aln <- read.fasta(file)

Read aligned PDBs
pdbs <- read.fasta.pdb(aln)

Structure/sequence names/ids
basename(pdbs$id)

Alignment positions 335 to 339
pdbs$ali[,335:339]
pdbs$resid[,335:339]
pdbs$resno[,335:339]
pdbs$b[,335:339]

Alignment C-alpha coordinates for these positions
pdbs$xyz[, atom2xyz(335:339)]

246 read.mol2

See 'fit.xyz()' function for actual coordinate superposition
e.g. fit to first structure
xyz <- fit.xyz(pdbs$xyz[1,], pdbs)
xyz[, atom2xyz(335:339)]

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

read.mol2 Read MOL2 File

Description

Read a Tripos MOL2 file

Usage

read.mol2(file, maxlines = -1L)

S3 method for class 'mol2'
print(x, ...)

Arguments

file a single element character vector containing the name of the MOL2 file to be
read.

maxlines the maximum number of lines to read before giving up with large files. Default
is all lines.

x an object as obtained from read.mol2.

... additional arguments to ‘print’.

Details

Basic functionality to parse a MOL2 file. The current version reads and stores ‘@<TRIPOS>MOLECULE’,
‘@<TRIPOS>ATOM’, ‘@<TRIPOS>BOND’ and ‘@<TRIPOS>SUBSTRUCTURE’ records.

In the case of a multi-molecule MOL2 file, each molecule will be stored as an individual ‘mol2’ ob-
ject in a list. Conversely, if the multi-molecule MOL2 file contains identical molecules in different
conformations (typically from a docking run), then the output will be one object with an atom and
xyz component (xyz in matrix representation; row-wise coordinates).

See examples for further details.

read.mol2 247

Value

Returns a list of molecules containing the following components:

atom a data frame containing all atomic coordinate ATOM data, with a row per ATOM
and a column per record type. See below for details of the record type naming
convention (useful for accessing columns).

bond a data frame containing all atomic bond information.

substructure a data frame containing all substructure information.

xyz a numeric matrix of ATOM coordinate data.

info a numeric vector of MOL2 info data.

name a single element character vector containing the molecule name.

Note

For atom list components the column names can be used as a convenient means of data access,
namely: Atom serial number “eleno”, Atom name “elena”, Orthogonal coordinates “x”, Orthogonal
coordinates “y”, Orthogonal coordinates “z”, Reisude number “resno”, Atom type “elety”, Residue
name “resid”, Atom charge “charge”, Status bit “statbit”,

For bond list components the column names are: Bond identifier “id”, number of the atom at one
end of the bond“origin”, number of the atom at the other end of the bond “target”, the SYBYL bond
type “type”.

For substructure list components the column names are: substructure identifier “id”, substructure
name “name”, the ID number of the substructure’s root atom “root_atom”, the substructure type
“subst_type”, the type of dictionary associated with the substructure “dict_type”, the chain to which
the substructre belongs “chain”, the subtype of the chain “sub_type”, the number of inter bonds
“inter_bonds”, status bit “status”.

See examples for further details.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

write.mol2, atom.select.mol2, trim.mol2, as.pdb.mol2 read.pdb

Examples

cat("\n")
Not run:
Read a single entry MOL2 file
(returns a single object)
mol <- read.mol2(system.file("examples/aspirin.mol2", package="bio3d"))

248 read.mol2

Short summary of the molecule
print(mol)

ATOM records
mol$atom

BOND records
mol$bond

Print some coordinate data
head(mol$atom[, c("x","y","z")])

Or coordinates as a numeric vector
#head(mol$xyz)

Print atom charges
head(mol$atom[, "charge"])

Convert to PDB
pdb <- as.pdb(mol)

Read a multi-molecule MOL2 file
(returns a list of objects)
#multi.mol <- read.mol2("zinc.mol2")

Number of molecules described in file
#length(multi.mol)

Access ATOM records for the first molecule
#multi.mol[[1]]$atom

Or coordinates for the second molecule
#multi.mol[[2]]$xyz

Process output from docking (e.g. DOCK)
(typically one molecule with many conformations)
(returns one object, but xyz in matrix format)
#dock <- read.mol2("dock.mol2")

Reference PDB file (e.g. X-ray structure)
#pdb <- read.pdb("dock_ref.pdb")

Calculate RMSD of docking modes
#sele <- atom.select(dock, "noh")
#rmsd(pdb$xyz, dock$xyz, b.inds=sele$xyz)

End(Not run)

read.ncdf 249

read.ncdf Read AMBER Binary netCDF files

Description

Read coordinate data from a binary netCDF trajectory file.

Usage

read.ncdf(trjfile, headonly = FALSE, verbose = TRUE, time = FALSE,
first = NULL, last = NULL, stride = 1, cell = FALSE,
at.sel = NULL)

Arguments

trjfile name of trajectory file to read. A vector if treat a batch of files

headonly logical, if TRUE only trajectory header information is returned. If FALSE only
trajectory coordinate data is returned.

verbose logical, if TRUE print details of the reading process.

time logical, if TRUE the first and last have the time unit ps; Otherwise the unit
is the frame number.

first starting time or frame number to read; If NULL, start from the begining of the
file(s).

last read data until last time or frame number; If NULL or equal to -1, read until
the end of the file(s).

stride take at every stride frame(s)

cell logical, if TRUE and headonly is FALSE return cell information only. Other-
wise, return header or coordinates.

at.sel an object of class ‘select’ indicating a subset of atomic coordinates to be read.

Details

Reads a AMBER netCDF format trajectory file with the help of David W. Pierce’s (UCSD) ncdf4
package available from CRAN.

Value

A list of trajectory header data, a numeric matrix of xyz coordinates with a frame/structure per row
and a Cartesian coordinate per column, or a numeric matrix of cell information with a frame/structure
per row and lengths and angles per column. If time=TRUE, row names of returned coordinates or
cell are set to be the physical time of corresponding frames.

250 read.ncdf

Note

See AMBER documentation for netCDF format description.

NetCDF binary trajectory files are supported by the AMBER modules sander, pmemd and ptraj.
Compared to formatted trajectory files, the binary trajectory files are smaller, higher precision and
significantly faster to read and write.

NetCDF provides for file portability across architectures, allows for backwards compatible extensi-
bility of the format and enables the files to be self-describing. Support for this format is available
in VMD.

If you experience problems reading your trajectory file with read.ncdf() consider first reading your
file into VMD and from there exporting a new DCD trajectory file with the ’save coordinates’
option. This new file should be easily read with read.dcd().

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. https://www.unidata.ucar.edu/software/
netcdf/ https://cirrus.ucsd.edu/~pierce/ncdf/ https://ambermd.org/FileFormats.php#
netcdf

See Also

read.dcd, write.ncdf, read.pdb, write.pdb, atom.select

Examples

Not run:
##-- Read example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)

Write to netCDF format
write.ncdf(trj, "newtrj.nc")

Read trj
trj <- read.ncdf("newtrj.nc")

End(Not run)

https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/
https://cirrus.ucsd.edu/~pierce/ncdf/
https://ambermd.org/FileFormats.php#netcdf
https://ambermd.org/FileFormats.php#netcdf

read.pdb 251

read.pdb Read PDB File

Description

Read a Protein Data Bank (PDB) coordinate file.

Usage

read.pdb(file, maxlines = -1, multi = FALSE, rm.insert = FALSE,
rm.alt = TRUE, ATOM.only = FALSE, hex = FALSE, verbose = TRUE)

read.pdb2(file, maxlines = -1, multi = FALSE, rm.insert = FALSE,
rm.alt = TRUE, ATOM.only = FALSE, verbose = TRUE)

S3 method for class 'pdb'
print(x, printseq=TRUE, ...)

S3 method for class 'pdb'
summary(object, printseq=FALSE, ...)

Arguments

file a single element character vector containing the name of the PDB file to be read,
or the four letter PDB identifier for online file access.

maxlines the maximum number of lines to read before giving up with large files. By
default if will read up to the end of input on the connection.

multi logical, if TRUE multiple ATOM records are read for all models in multi-model
files and their coordinates returned.

rm.insert logical, if TRUE PDB insert records are ignored.
rm.alt logical, if TRUE PDB alternate records are ignored.
ATOM.only logical, if TRUE only ATOM/HETATM records are stored. Useful for speed

enhancements with large files where secondary structure, biological unit and
other remark records are not required.

hex logical, if TRUE enable parsing of hexadecimal atom numbers (> 99.999) and
residue numbers (> 9.999) (e.g. from VMD). Note that numbering is assumed
to be consecutive (with no missing numbers) and the hexadecimals should start
at atom number 100.000 and residue number 10.000 and proceed to the end of
file.

verbose print details of the reading process.
x a PDB structure object obtained from read.pdb.
object a PDB structure object obtained from read.pdb.
printseq logical, if TRUE the PDB ATOM sequence will be printed to the screen. See

also pdbseq.
... additional arguments to ‘print’.

252 read.pdb

Details

read.pdb is a re-implementation (using Rcpp) of the slower but more tested R implementation of
the same function (called read.pdb2 since bio3d-v2.3).

maxlines may be set so as to restrict the reading to a portion of input files. Note that the preferred
means of reading large multi-model files is via binary DCD or NetCDF format trajectory files (see
the read.dcd and read.ncdf functions).

Value

Returns a list of class "pdb" with the following components:

atom a data.frame containing all atomic coordinate ATOM and HETATM data, with a
row per ATOM/HETATM and a column per record type. See below for details
of the record type naming convention (useful for accessing columns).

helix ‘start’, ‘end’ and ‘length’ of H type sse, where start and end are residue numbers
“resno”.

sheet ‘start’, ‘end’ and ‘length’ of E type sse, where start and end are residue numbers
“resno”.

seqres sequence from SEQRES field.

xyz a numeric matrix of class "xyz" containing the ATOM and HETATM coordinate
data.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

remark a list object containing information taken from ’REMARK’ records of a "pdb".
It can be used for building biological units (See biounit).

call the matched call.

Note

For both atom and het list components the column names can be used as a convenient means of
data access, namely: Atom serial number “eleno” , Atom type “elety”, Alternate location indicator
“alt”, Residue name “resid”, Chain identifier “chain”, Residue sequence number “resno”, Code for
insertion of residues “insert”, Orthogonal coordinates “x”, Orthogonal coordinates “y”, Orthogonal
coordinates “z”, Occupancy “o”, and Temperature factor “b”. See examples for further details.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

http://www.wwpdb.org/documentation/format33/v3.3.html

read.pdb 253

See Also

atom.select, write.pdb, trim.pdb, cat.pdb, read.prmtop, as.pdb, read.dcd, read.ncdf,
read.fasta.pdb, read.fasta, biounit

Examples

Read a PDB file from the RCSB online database
#pdb <- read.pdb("4q21")

Read a PDB file from those included with the package
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))

Print a brief composition summary
pdb

Examine the storage format (or internal *str*ucture)
str(pdb)

Print data for the first four atom
pdb$atom[1:4,]

Print some coordinate data
head(pdb$atom[, c("x","y","z")])

Or coordinates as a numeric vector
#head(pdb$xyz)

Print C-alpha coordinates (can also use 'atom.select' function)
head(pdb$atom[pdb$calpha, c("resid","elety","x","y","z")])
inds <- atom.select(pdb, elety="CA")
head(pdb$atom[inds$atom,])

The atom.select() function returns 'indices' (row numbers)
that can be used for accessing subsets of PDB objects, e.g.
inds <- atom.select(pdb,"ligand")
pdb$atom[inds$atom,]
pdb$xyz[inds$xyz]

See the help page for atom.select() function for more details.

Not run:
Print SSE data for helix and sheet,
see also dssp() and stride() functions
print.sse(pdb)
pdb$helix
pdb$sheet$start

Print SEQRES data
pdb$seqres

SEQRES as one letter code

254 read.pdcBD

aa321(pdb$seqres)

Where is the P-loop motif in the ATOM sequence
inds.seq <- motif.find("G....GKT", pdbseq(pdb))
pdbseq(pdb)[inds.seq]

Where is it in the structure
inds.pdb <- atom.select(pdb,resno=inds.seq, elety="CA")
pdb$atom[inds.pdb$atom,]
pdb$xyz[inds.pdb$xyz]

View in interactive 3D mode
#view(pdb)

End(Not run)

read.pdcBD Read PQR output from pdcBD File

Description

Read a pdcBD PQR coordinate file.

Usage

read.pdcBD(file, maxlines = 50000, multi = FALSE, rm.insert = FALSE,
rm.alt = TRUE, verbose = TRUE)

Arguments

file the name of the pdcBD PQR file to be read.

maxlines the maximum number of lines to read before giving up with large files. Default
is 50,000 lines.

multi logical, if TRUE multiple ATOM records are read for all models in multi-model
files.

rm.insert logical, if TRUE PDB insert records are ignored.

rm.alt logical, if TRUE PDB alternate records are ignored.

verbose print details of the reading process.

Details

maxlines may require increasing for some large multi-model files. The preferred means of reading
such data is via binary DCD format trajectory files (see the read.dcd function).

read.pdcBD 255

Value

Returns a list of class "pdb" with the following components:

atom a character matrix containing all atomic coordinate ATOM data, with a row per
ATOM and a column per record type. See below for details of the record type
naming convention (useful for accessing columns).

het a character matrix containing atomic coordinate records for atoms within “non-
standard” HET groups (see atom).

helix ‘start’, ‘end’ and ‘length’ of H type sse, where start and end are residue numbers
“resno”.

sheet ‘start’, ‘end’ and ‘length’ of E type sse, where start and end are residue numbers
“resno”.

seqres sequence from SEQRES field.

xyz a numeric vector of ATOM coordinate data.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

Note

For both atom and het list components the column names can be used as a convenient means of
data access, namely: Atom serial number “eleno” , Atom type “elety”, Alternate location indicator
“alt”, Residue name “resid”, Chain identifier “chain”, Residue sequence number “resno”, Code for
insertion of residues “insert”, Orthogonal coordinates “x”, Orthogonal coordinates “y”, Orthogonal
coordinates “z”, Occupancy “o”, and Temperature factor “b”. See examples for further details.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

See Also

atom.select, write.pdb, read.dcd, read.fasta.pdb, read.fasta

Examples

PDB server connection required - testing excluded
try({

Read a PDB file
pdb <- read.pdb("1bg2")

Print data for the first atom

http://www.wwpdb.org/documentation/format33/v3.3.html

256 read.pqr

pdb$atom[1,]
Look at the first het atom
pdb$het[1,]
Print some coordinate data
pdb$atom[1:20, c("x","y","z")]

Print C-alpha coordinates (can also use 'atom.select')
##pdb$xyz[pdb$calpha, c("resid","x","y","z")]

Print SSE data (for helix and sheet)
pdb$helix
pdb$sheet$start

Print SEQRES data
pdb$seqres

Renumber residues
nums <- as.numeric(pdb$atom[,"resno"])
pdb$atom[,"resno"] <- nums - (nums[1] - 1)

Write out renumbered PDB file
#write.pdb(pdb=pdb,file="eg.pdb")

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

read.pqr Read PQR File

Description

Read a PQR coordinate file.

Usage

read.pqr(file, maxlines = -1, multi = FALSE, rm.insert = FALSE,
rm.alt = TRUE, verbose = TRUE)

Arguments

file the name of the PQR file to be read.

maxlines the maximum number of lines to read before giving up with large files. By
default if will read up to the end of input on the connection.

multi logical, if TRUE multiple ATOM records are read for all models in multi-model
files.

rm.insert logical, if TRUE PDB insert records are ignored.

read.pqr 257

rm.alt logical, if TRUE PDB alternate records are ignored.

verbose print details of the reading process.

Details

PQR file format is basically the same as PDB format except for the fields of o and b. In PDB,
these two fields are filled with ‘Occupancy’ and ‘B-factor’ values, respectively, with each field 6-
column long. In PQR, they are atomic ‘partial charge’ and ‘radii’ values, respectively, with each
field 8-column long.

maxlines may require increasing for some large multi-model files. The preferred means of reading
such data is via binary DCD format trajectory files (see the read.dcd function).

Value

Returns a list of class "pdb" with the following components:

atom a data.frame containing all atomic coordinate ATOM and HETATM data, with a
row per ATOM/HETATM and a column per record type. See below for details
of the record type naming convention (useful for accessing columns).

helix ‘start’, ‘end’ and ‘length’ of H type sse, where start and end are residue numbers
“resno”.

sheet ‘start’, ‘end’ and ‘length’ of E type sse, where start and end are residue numbers
“resno”.

seqres sequence from SEQRES field.

xyz a numeric matrix of class "xyz" containing the ATOM and HETATM coordinate
data.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

call the matched call.

Note

For both atom and het list components the column names can be used as a convenient means of
data access, namely: Atom serial number “eleno” , Atom type “elety”, Alternate location indicator
“alt”, Residue name “resid”, Chain identifier “chain”, Residue sequence number “resno”, Code for
insertion of residues “insert”, Orthogonal coordinates “x”, Orthogonal coordinates “y”, Orthogonal
coordinates “z”, Occupancy “o”, and Temperature factor “b”. See examples for further details.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

http://www.wwpdb.org/documentation/format33/v3.3.html

258 read.prmtop

See Also

atom.select, write.pqr, read.pdb, write.pdb, read.dcd, read.fasta.pdb, read.fasta

Examples

PDB server connection required - testing excluded
try({

Read a PDB file and write it as a PQR file
pdb <- read.pdb("4q21")
outfile = file.path(tempdir(), "eg.pqr")
write.pqr(pdb=pdb, file = outfile)

Read the PQR file
pqr <- read.pqr(outfile)

Print a brief composition summary
pqr

Examine the storage format (or internal *str*ucture)
str(pqr)

Print data for the first four atom
pqr$atom[1:4,]

Print some coordinate data
head(pqr$atom[, c("x","y","z")])

Print C-alpha coordinates (can also use 'atom.select' function)
head(pqr$atom[pqr$calpha, c("resid","elety","x","y","z")])
inds <- atom.select(pqr, elety="CA")
head(pqr$atom[inds$atom,])

The atom.select() function returns 'indices' (row numbers)
that can be used for accessing subsets of PDB objects, e.g.
inds <- atom.select(pqr,"ligand")
pqr$atom[inds$atom,]
pqr$xyz[inds$xyz]

See the help page for atom.select() function for more details.

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

read.prmtop Read AMBER Parameter/Topology files

read.prmtop 259

Description

Read parameter and topology data from an AMBER PrmTop file.

Usage

read.prmtop(file)

S3 method for class 'prmtop'
print(x, printseq=TRUE, ...)

Arguments

file a single element character vector containing the name of the PRMTOP file to be
read.

x a PRMTOP structure object obtained from read.prmtop.

printseq logical, if TRUE the residue sequence will be printed to the screen. See also
pdbseq.

... additional arguments to ‘print’.

Details

This function provides basic functionality to read and parse a AMBER PrmTop file. The resulting
‘prmtop’ object contains a complete list object of the information stored in the PrmTop file.

See examples for further details.

Value

Returns a list of class ‘prmtop’ (inherits class ‘amber’) with components according to the flags
present in the PrmTop file. See the AMBER documentation for a complete list of flags/components:
https://ambermd.org/FileFormats.php.

Selected components:

ATOM_NAME a character vector of atom names.
ATOMS_PER_MOLECULE

a numeric vector containing the number of atoms per molecule.

MASS a numeric vector of atomic masses.

RESIDUE_LABEL a character vector of residue labels.
RESIDUE_RESIDUE_POINTER

a numeric vector of pointers to the first atom in each residue.

call the matched call.

Note

See AMBER documentation for PrmTop format description:
https://ambermd.org/FileFormats.php.

https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php

260 rgyr

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. https://ambermd.org/FileFormats.
php

See Also

read.crd, read.ncdf, as.pdb, atom.select, read.pdb

Examples

Not run:
Read a PRMTOP file
prmtop <- read.prmtop(system.file("examples/crambin.prmtop", package="bio3d"))
print(prmtop)

Explore prmtop file
head(prmtop$MASS)
head(prmtop$ATOM_NAME)

Read Amber coordinates
crds <- read.crd(system.file("examples/crambin.inpcrd", package="bio3d"))

Atom selection
ca.inds <- atom.select(prmtop, "calpha")

Convert to PDB format
pdb <- as.pdb(prmtop, crds)
pdb.ca <- as.pdb(prmtop, crds, inds=ca.inds)

Trajectory processing
#trj <- read.ncdf("traj.nc", at.sel=ca.inds)

Convert to multimodel PDB format
#pdb <- as.pdb(prmtop, trj[1:20,], inds=ca.inds, inds.crd=NULL)

RMSD of trajectory
#rd <- rmsd(crds$xyz[ca.inds$xyz], traj, fit=TRUE)

End(Not run)

rgyr Radius of Gyration

Description

Calculate the radius of gyration of coordinate sets.

https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php

rgyr 261

Usage

rgyr(xyz, mass=NULL, ncore=1, nseg.scale=1)

Arguments

xyz a numeric vector, matrix or list object with an xyz component, containing one
or more coordinate sets.

mass a numeric vector of atomic masses (unit a.m.u.), or a PDB object with masses
stored in the "B-factor" column. If mass==NULL, all atoms are assumed carbon.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

Details

Radius of gyration is a standard measure of overall structural change of macromolecules.

Value

Returns a numeric vector of radius of gyration.

Author(s)

Xin-Qiu Yao & Pete Kekenes-Huskey

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

fit.xyz, rmsd, read.pdb, read.fasta.pdb

Examples

PDB server connection required - testing excluded
try({

-- Calculate Rog of single structure
pdb <- read.pdb("1bg2")
mass <- rep(12, length(pdb$xyz)/3)
mass[substr(pdb$atom[,"elety"], 1, 1) == "N"] <- 14
mass[substr(pdb$atom[,"elety"], 1, 1) == "H"] <- 1
mass[substr(pdb$atom[,"elety"], 1, 1) == "O"] <- 16
mass[substr(pdb$atom[,"elety"], 1, 1) == "S"] <- 32

rgyr(pdb, mass)

}, silent=TRUE)

262 rle2

if(inherits(.Last.value, "try-error")) {
message("Need internet to run the example")

}

Not run:
-- Calculate Rog of a trajectory
xyz <- read.dcd(system.file("examples/hivp.dcd", package="bio3d"))
rg <- rgyr(xyz)
rg[1:10]

End(Not run)

rle2 Run Length Encoding with Indices

Description

Compute the lengths, values and indices of runs of equal values in a vector. This is a modifed
version of base function rle().

Usage

rle2(x)

S3 method for class 'rle2'
print(x, digits = getOption("digits"), prefix = "", ...)

Arguments

x an atomic vector for rle(); an object of class "rle" for inverse.rle().

... further arguments; ignored here.

digits number of significant digits for printing, see print.default.

prefix character string, prepended to each printed line.

Details

Missing values are regarded as unequal to the previous value, even if that is also missing.

inverse.rle() is the inverse function of rle2() and rle(), reconstructing x from the runs.

Value

rle() returns an object of class "rle" which is a list with components:

lengths an integer vector containing the length of each run.

values a vector of the same length as lengths with the corresponding values.

rmsd 263

Examples

x <- rev(rep(6:10, 1:5))
rle(x)
lengths [1:5] 5 4 3 2 1
values [1:5] 10 9 8 7 6
rle2(x)
lengths: int [1:5] 5 4 3 2 1
values : int [1:5] 10 9 8 7 6
indices: int [1:5] 5 9 12 14 15

rmsd Root Mean Square Deviation

Description

Calculate the RMSD between coordinate sets.

Usage

rmsd(a, b=NULL, a.inds=NULL, b.inds=NULL, fit=FALSE, ncore=1, nseg.scale=1)

Arguments

a a numeric vector containing the reference coordinate set for comparison with the
coordinates in b. Alternatively, if b=NULL then a can be a matrix or list object
containing multiple coordinates for pairwise comparison.

b a numeric vector, matrix or list object with an xyz component, containing one
or more coordinate sets to be compared with a.

a.inds a vector of indices that selects the elements of a upon which the calculation
should be based.

b.inds a vector of indices that selects the elements of b upon which the calculation
should be based.

fit logical, if TRUE coordinate superposition is performed prior to RMSD calcula-
tion.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

Details

RMSD is a standard measure of structural distance between coordinate sets.

Structure a[a.inds] and b[b.inds] should have the same length.

A least-squares fit is performed prior to RMSD calculation by setting fit=TRUE. See the function
fit.xyz for more details of the fitting process.

264 rmsd

Value

Returns a numeric vector of RMSD value(s).

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

fit.xyz, rot.lsq, read.pdb, read.fasta.pdb

Examples

Redundant testing excluded
try({

-- Calculate RMSD between two or more structures
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))
pdbs <- read.fasta.pdb(aln)

Gap positions
inds <- gap.inspect(pdbs$xyz)

Superposition before pairwise RMSD
rmsd(pdbs$xyz, fit=TRUE)

RMSD between structure 1 and structures 2 and 3
rmsd(a=pdbs$xyz[1,], b=pdbs$xyz[2:3,], a.inds=inds$f.inds, b.inds=inds$f.inds, fit=TRUE)

RMSD between structure 1 and all structures in alignment
rmsd(a=pdbs$xyz[1,], b=pdbs, a.inds=inds$f.inds, b.inds=inds$f.inds, fit=TRUE)

RMSD without superposition
rmsd(pdbs$xyz)

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

rmsf 265

rmsf Atomic RMS Fluctuations

Description

Calculate atomic root mean squared fluctuations.

Usage

rmsf(xyz, grpby=NULL, average=FALSE)

Arguments

xyz numeric matrix of coordinates with each row corresponding to an individual
conformer.

grpby a vector counting connective duplicated elements that indicate the elements of
’xyz’ that should be considered as a group (e.g. atoms from a particular residue).
If provided a ’pdb’ object, grouping is automatically set by amino acid residues.

average logical, if TRUE averaged over atoms.

Details

RMSF is an often used measure of conformational variance. It is calculated by

fi =

√
1

M − 1

∑
j

∥rji − r0i ∥2

, where fi is the RMSF value for the ith atom, M the total number of frames (total number of rows
of xyz), rji the positional vector of the ith atom in the jth frame, and r0i the mean position of ith
atom. ||r|| denotes the Euclidean norm of the vector r.

Value

Returns a numeric vector of RMSF values. If average=TRUE a single numeric value representing
the averaged RMSF value over all atoms will be returned.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.dcd, fit.xyz, read.fasta.pdb

266 rmsip

Examples

attach(transducin)

Ignore Gaps
gaps <- gap.inspect(pdbs$ali)

r <- rmsf(pdbs$xyz)
plot(r[gaps$f.inds], typ="h", ylab="RMSF (A)")

detach(transducin)

Not run:

pdb <- read.pdb("1d1d", multi=TRUE)
xyz <- pdb$xyz

superimpose trajectory
xyz <- fit.xyz(xyz[1,], xyz)

select mainchain atoms
sele <- atom.select(pdb, elety=c("CA", "C", "N", "O"))

residue numbers to group by
resno <- pdb$atom$resno[sele$atom]

mean rmsf value of mainchain atoms of each residue
r <- rmsf(xyz[, sele$xyz], grpby=resno)
plot.bio3d(r, resno=pdb, sse=pdb, ylab="RMSF (A)")

End(Not run)

rmsip Root Mean Square Inner Product

Description

Calculate the RMSIP between two mode subspaces.

Usage

rmsip(...)

S3 method for class 'enma'
rmsip(enma, ncore=NULL, subset=10, ...)

Default S3 method:
rmsip(modes.a, modes.b, subset=10,

row.name="a", col.name="b", ...)

rmsip 267

Arguments

enma an object of class "enma" obtained from function nma.pdbs.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

subset the number of modes to consider.

modes.a an object of class "pca" or "nma" as obtained from functions pca.xyz or nma.

modes.b an object of class "pca" or "nma" as obtained from functions pca.xyz or nma.

row.name prefix name for the rows.

col.name prefix name for the columns.

... arguments passed to associated functions.

Details

RMSIP is a measure for the similarity between two set of modes obtained from principal component
or normal modes analysis.

Value

Returns an rmsip object with the following components:

overlap a numeric matrix containing pairwise (squared) dot products between the modes.

rmsip a numeric RMSIP value.

For function rmsip.enma a numeric matrix containing all pairwise RMSIP values of the modes
stored in the enma object.

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696. Amadei, A. et al. (1999) Proteins 36, 19–424.

See Also

pca, nma, overlap.

Other similarity measures: sip, covsoverlap, bhattacharyya.

Examples

Not run:
Load data for HIV example
trj <- read.dcd(system.file("examples/hivp.dcd", package="bio3d"))
pdb <- read.pdb(system.file("examples/hivp.pdb", package="bio3d"))

Do PCA on simulation data

268 sdENM

xyz.md <- fit.xyz(pdb$xyz, trj, fixed.inds=1:ncol(trj))
pc.sim <- pca.xyz(xyz.md)

NMA
modes <- nma(pdb)

Calculate the RMSIP between the MD-PCs and the NMA-MODEs
r <- rmsip(modes, pc.sim, subset=10, row.name="NMA", col.name="PCA")

Plot pairwise overlap values
plot(r, xlab="NMA", ylab="PCA")

End(Not run)

sdENM Index for the sdENM ff

Description

A dictonary of spring force constants for the sdENM force field.

Usage

data(sdENM)

Format

An array of 27 matrices containg the spring force constants for the ‘sdENM’ force field (see De-
houch et al for more information). Each matrix in the array holds the force constants for all amino
acid pairs for a specific distance range.

See examples for more details.

Source

Dehouck Y. & Mikhailov A.S. (2013) PLoS Comput Biol 9:e1003209.

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696. Dehouck Y. et al. (2013) PLoS Comput Biol 9:e1003209.

Examples

Load force constant data
data(sdENM)

force constants for amino acids A, C, D, E, and F
in distance range [4, 4.5)
sdENM[1:5, 1:5, 1]

seq2aln 269

and distance range [4.5, 5)
sdENM[1:5, 1:5, 2]

amino acid pair A-P, at distance 4.2
sdENM["A", "P", 1]

Not run:
for use in NMA
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
modes <- nma(pdb, ff="sdenm")

End(Not run)

seq2aln Add a Sequence to an Existing Alignmnet

Description

Add one or more sequences to an existing multiple alignment that you wish to keep intact.

Usage

seq2aln(seq2add, aln, id = "seq", file = "aln.fa", ...)

Arguments

seq2add an sequence character vector or an alignment list object with id and ali com-
ponents, similar to that generated by read.fasta and seqaln.

aln an alignment list object with id and ali components, similar to that generated
by read.fasta and seqaln.

id a vector of sequence names to serve as sequence identifers.

file name of ‘FASTA’ output file to which alignment should be written.

... additional arguments passed to seqaln.

Details

This function calls the ‘MUSCLE’ program, to perform a profile profile alignment, which MUST
BE INSTALLED on your system and in the search path for executables.

Value

A list with two components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

id sequence names as identifers.

270 seqaln

Note

A system call is made to the ‘MUSCLE’ program, which must be installed on your system and in
the search path for executables.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘MUSCLE’ is the work of Edgar: Edgar (2004) Nuc. Acid. Res. 32, 1792–1797.

Full details of the ‘MUSCLE’ algorithm, along with download and installation instructions can be
obtained from:
http://www.drive5.com/muscle/.

See Also

seqaln, read.fasta, read.fasta.pdb, seqbind

Examples

Not run:
aa.1 <- pdbseq(read.pdb("1bg2"))
aa.2 <- pdbseq(read.pdb("3dc4"))
aa.3 <- pdbseq(read.pdb("1mkj"))

aln <- seqaln(seqbind(aa.1,aa.2))

seq2aln(aa.3, aln)

End(Not run)

seqaln Sequence Alignment with MUSCLE

Description

Create multiple alignments of amino acid or nucleotide sequences according to the method of Edgar.

Usage

seqaln(aln, id=NULL, profile=NULL, exefile="muscle", outfile="aln.fa",
protein=TRUE, seqgroup=FALSE, refine=FALSE, extra.args="",
verbose=FALSE, web.args = list(), ...)

http://www.drive5.com/muscle/

seqaln 271

Arguments

aln a sequence character matrix, as obtained from seqbind, or an alignment list
object as obtained from read.fasta.

id a vector of sequence names to serve as sequence identifers.

profile a profile alignment of class ‘fasta’ (e.g. obtained from read.fasta). The align-
ment aln will be added to the profile.

exefile file path to the ‘MUSCLE’ program on your system (i.e. how is ‘MUSCLE’
invoked). Alternatively, ‘CLUSTALO’ can be used. Also supported is using the
‘msa’ package from Bioconductor (need to install packages using BiocManager::install()).
To do so, simply set exefile="msa".

outfile name of ‘FASTA’ output file to which alignment should be written.

protein logical, if TRUE the input sequences are assumed to be protein not DNA or
RNA.

seqgroup logical, if TRUE similar sequences are grouped together in the output.

refine logical, if TRUE the input sequences are assumed to already be aligned, and
only tree dependent refinement is performed.

extra.args a single character string containing extra command line arguments for the align-
ment program.

verbose logical, if TRUE ‘MUSCLE’ warning and error messages are printed.

web.args a ‘list’ object containing arguments to perform online sequence alignment using
EMBL-EBI Web Services. See below for details.

... additional arguments passed to the function msa::msaMuscle().

Details

Sequence alignment attempts to arrange the sequences of protein, DNA or RNA, to highlight regions
of shared similarity that may reflect functional, structural, and/or evolutionary relationships between
the sequences.

Aligned sequences are represented as rows within a matrix. Gaps (‘-’) are inserted between the
aminoacids or nucleotides so that equivalent characters are positioned in the same column.

This function calls the ‘MUSCLE’ program to perform a multiple sequence alignment, which must
be installed on your system and in the search path for executables. If local ‘MUSCLE’ can not be
found, alignment can still be performed via online web services (see below) with limited features.

If you have a large number of input sequences (a few thousand), or they are very long, the default
settings may be too slow for practical use. A good compromise between speed and accuracy is to
run just the first two iterations of the ‘MUSCLE’ algorithm by setting the extra.args argument to
“-maxiters 2”.

You can set ‘MUSCLE’ to improve an existing alignment by setting refine to TRUE.

To inspect the sequence clustering used by ‘MUSCLE’ to produce alignments, include “-tree2
tree.out” in the extra.args argument. You can then load the “tree.out” file with the ‘read.tree’
function from the ‘ape’ package.

‘CLUSTALO’ can be used as an alternative to ‘MUSCLE’ by specifiying exefile='clustalo'.
This might be useful e.g. when adding several sequences to a profile alignment.

272 seqaln

If local ‘MUSCLE’ or ‘CLUSTALO’ program is unavailable, the alignment can be performed via
the ‘msa’ package from the Bioconductor repository. To do so, set exefile="msa". Note that both
‘msa’ and ‘Biostrings’ packages need to be installed properly using BiocManager::install().

If the access to any method metioned above fails, the function will attempt to perform alignment
via the EMBL-EBI Web Services (See https://www.ebi.ac.uk/). In this case, the argument
web.args cannot be empty and must contain at least user’s E-Mail address. Note that as stated by
EBI, a fake email address may result in your jobs being killed and your IP, organisation or entire
domain being black-listed (See FAQs on https://www.ebi.ac.uk/). Possible parameters to be
passed via web.args include:

email a string containing a valid E-Mail address. Required.

title a string for the title of the job to be submitted to the remote server. Optional.

timeout integer specifying the number of seconds to wait for the response of the server before a
time out occurs. Default: 90.

An example of usage is web.args=list(email='user_id@email.provider').

Value

Returns a list of class "fasta" with the following components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

id sequence names as identifers.

call the matched call.

Note

A system call is made to the ‘MUSCLE’ program, which must be installed on your system and in the
search path for executables. See http://thegrantlab.org/bio3d/articles/online/install_
vignette/Bio3D_install.html for instructions of how to install this program.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘MUSCLE’ is the work of Edgar: Edgar (2004) Nuc. Acid. Res. 32, 1792–1797.

Full details of the ‘MUSCLE’ algorithm, along with download and installation instructions can be
obtained from:
http://www.drive5.com/muscle/.

See Also

read.fasta, read.fasta.pdb, get.seq, seqbind, pdbaln, plot.fasta, blast.pdb

https://www.ebi.ac.uk/
https://www.ebi.ac.uk/
http://thegrantlab.org/bio3d/articles/online/install_vignette/Bio3D_install.html
http://thegrantlab.org/bio3d/articles/online/install_vignette/Bio3D_install.html
http://www.drive5.com/muscle/

seqaln 273

Examples

Not run:
##-- Basic sequence alignemnt
seqs <- get.seq(c("4q21_A", "1ftn_A"))
aln <- seqaln(seqs)

##-- add a sequence to the (profile) alignment
seq <- get.seq("1tnd_A")
aln <- seqaln(seq, profile=aln)

##-- Read a folder/directory of PDB files
#pdb.path <- "my_dir_of_pdbs"
#files <- list.files(path=pdb.path ,
pattern=".pdb",
full.names=TRUE)

##-- Use online files
files <- get.pdb(c("4q21","1ftn"), URLonly=TRUE)

##-- Extract and store sequences
raw <- NULL
for(i in 1:length(files)) {

pdb <- read.pdb(files[i])
raw <- seqbind(raw, pdbseq(pdb))

}

##-- Align these sequences
aln <- seqaln(raw, id=files, outfile="seqaln.fa")

##-- Read Aligned PDBs storing coordinate data
pdbs <- read.fasta.pdb(aln)

Sequence identity
seqidentity(aln)

Note that all the above can be done with the pdbaln() function:
#pdbs <- pdbaln(files)

##-- For identical sequences with masking use a custom matrix
aa <- seqbind(c("X","C","X","X","A","G","K"),

c("C","-","A","X","G","X","X","K"))

aln <- seqaln(aln=aln, id=c("a","b"), outfile="temp.fas", protein=TRUE,
extra.args= paste("-matrix",
system.file("matrices/custom.mat", package="bio3d"),
"-gapopen -3.0 ",
"-gapextend -0.5",
"-center 0.0"))

End(Not run)

274 seqaln.pair

seqaln.pair Sequence Alignment of Identical Protein Sequences

Description

Create multiple alignments of amino acid sequences according to the method of Edgar.

Usage

seqaln.pair(aln, ...)

Arguments

aln a sequence character matrix, as obtained from seqbind, or an alignment list
object as obtained from read.fasta.

... additional arguments for the function seqaln.

Details

This function is intended for the alignment of identical sequences only. For standard alignment see
the related function seqaln.

This function is useful for determining the equivalences between sequences and structures. For
example in aligning a PDB sequence to an existing multiple sequence alignment, where one would
first mask the alignment sequences and then run the alignment to determine equivalences.

Value

A list with two components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

ids sequence names as identifers.

Note

A system call is made to the ‘MUSCLE’ program, which must be installed on your system and in
the search path for executables.

Author(s)

Barry Grant

seqbind 275

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

‘MUSCLE’ is the work of Edgar: Edgar (2004) Nuc. Acid. Res. 32, 1792–1797.

Full details of the ‘MUSCLE’ algorithm, along with download and installation instructions can be
obtained from:
http://www.drive5.com/muscle/.

See Also

seqaln, read.fasta, read.fasta.pdb, seqbind

Examples

NOTE: FOLLOWING EXAMPLE NEEDS MUSCLE INSTALLED
if(check.utility("muscle")) {

##- Aligning a PDB sequence to an existing sequence alignment

##- Simple example
aln <- seqbind(c("X","C","X","X","A","G","K"),

c("C","-","A","X","G","X","X","K"))

seqaln.pair(aln, outfile = tempfile())

}

seqbind Combine Sequences by Rows Without Recycling

Description

Take vectors and/or matrices arguments and combine them row-wise without recycling them (as is
the case with rbind).

Usage

seqbind(..., blank = "-")

Arguments

... vectors, matrices, and/or alignment ‘fasta’ objects to combine.

blank a character to add to short arguments, to achieve the same length as the longer
argument.

http://www.drive5.com/muscle/

276 seqidentity

Value

Returns a list of class "fasta" with the following components:

ali an alignment character matrix with a row per sequence and a column per equiv-
alent aminoacid/nucleotide.

id sequence names as identifers.

call the matched call.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

seqaln, read.fasta, read.pdb, write.fasta, rbind

Examples

Not run:
Read two pdbs
a.pdb <- read.pdb("1bg2")
b.pdb <- read.pdb("1goj")

seqs <- seqbind(aa321(a.pdb$atom[a.pdb$calpha,"resid"]),
aa321(b.pdb$atom[b.pdb$calpha,"resid"]))

seqaln(seqs)

End(Not run)

seqidentity Percent Identity

Description

Determine the percent identity scores for aligned sequences.

Usage

seqidentity(alignment, normalize=TRUE, similarity=FALSE, ncore=1, nseg.scale=1)

seqidentity 277

Arguments

alignment sequence alignment obtained from read.fasta or an alignment character ma-
trix.

normalize logical, if TRUE output is normalized to values between 0 and 1 otherwise per-
cent identity is returned.

similarity logical, if TRUE sequence similarity is calculated instead of identity.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

nseg.scale split input data into specified number of segments prior to running multiple core
calculation. See fit.xyz.

Details

The percent identity value is a single numeric score determined for each pair of aligned sequences.
It measures the number of identical residues (“matches”) in relation to the length of the alignment.

Value

Returns a numeric matrix with all pairwise identity values.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, filter.identity, entropy, consensus

Examples

attach(kinesin)

ide.mat <- seqidentity(pdbs)

Plot identity matrix
plot.dmat(ide.mat, color.palette=mono.colors,

main="Sequence Identity", xlab="Structure No.",
ylab="Structure No.")

Histogram of pairwise identity values
hist(ide.mat[upper.tri(ide.mat)], breaks=30,xlim=c(0,1),

main="Sequence Identity", xlab="Identity")

Compare two sequences
seqidentity(rbind(pdbs$ali[1,], pdbs$ali[15,]))

278 sip

detach(kinesin)

setup.ncore Setup for Running Bio3D Functions using Multiple CPU Cores

Description

Internally used in parallelized Bio3D functions.

Usage

setup.ncore(ncore, bigmem = FALSE)

Arguments

ncore User set (or default) value of ‘ncore’.

bigmem logical, if TRUE also check the availability of ‘bigmemory’ package.

Details

Check packages and set correct value of ‘ncore’.

Value

The actual value of ‘ncore’.

Examples

setup.ncore(NULL)
setup.ncore(1)

setup.ncore(2)

sip Square Inner Product

Description

Calculate the correlation between two atomic fluctuation vectors.

sip 279

Usage

sip(...)

S3 method for class 'nma'
sip(a, b, ...)

S3 method for class 'enma'
sip(enma, ncore=NULL, ...)

Default S3 method:
sip(v, w, ...)

Arguments

enma an object of class "enma" obtained from function nma.pdbs.

ncore number of CPU cores used to do the calculation. ncore>1 requires package
‘parallel’ installed.

a an ‘nma’ object as object from function nma to be compared to b.

b an ‘nma’ object as object from function nma to be compared to a.

v a numeric vector containing the atomic fluctuation values.

w a numeric vector containing the atomic fluctuation values.

... arguments passed to associated functions.

Details

SIP is a measure for the similarity of atomic fluctuations of two proteins, e.g. experimental b-
factors, theroetical RMSF values, or atomic fluctuations obtained from NMA.

Value

Returns the similarity coefficient(s).

Author(s)

Lars Skjaerven

References

Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics
22, 2695–2696. Fuglebakk, E. et al. (2013) JCTC 9, 5618–5628.

See Also

Other similarity measures: covsoverlap, bhattacharyya, rmsip.

280 sse.bridges

Examples

pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
a <- nma(pdb)
b <- nma(pdb, ff="anm")

sip(a$fluctuations, b$fluctuations)

sse.bridges SSE Backbone Hydrogen Bonding

Description

Determine backbone C=O to N-H hydrogen bonding in secondary structure elements.

Usage

sse.bridges(sse, type="helix", hbond=TRUE, energy.cut=-1.0)

Arguments

sse an sse object as obtained with dssp.

type character string specifying ‘helix’ or ‘sheet’.

hbond use hbond records in the dssp output.

energy.cut cutoff for the dssp hbond energy.

Details

Simple functionality to parse the ‘BP’ and ‘hbond’ records of the DSSP output.

Requires input from function dssp with arguments resno=FALSE and full=TRUE.

Value

Returns a numeric matrix of two columns containing the residue ids of the paired residues.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, dssp

store.atom 281

Examples

Not run:
Read a PDB file
pdb <- read.pdb(system.file("examples/1hel.pdb", package="bio3d"))
sse <- dssp(pdb, resno=FALSE, full=TRUE)

sse.bridges(sse, type="helix")

End(Not run)

store.atom Store all-atom data from a PDB object

Description

Not intended for public usage

Usage

store.atom(pdb=NULL)

Arguments

pdb A pdb object as obtained from read.pdb

Details

This function was requested by a user and has not been extensively tested. Hence it is not yet
recommended for public usage.

Value

Returns a matrix of all-atom data. If pdb=NULL, returns the default atom names to be stored.

Note

This function is still in development and is NOT part of the offical bio3d package

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta.pdb

282 struct.aln

Examples

Not run:
pdb <- read.pdb(get.pdb("5p21", URLonly=TRUE))
a <- store.atom(pdb)
a[,,1:2]

End(Not run)

struct.aln Structure Alignment Of Two PDB Files

Description

Performs a sequence and structural alignment of two PDB entities.

Usage

struct.aln(fixed, mobile, fixed.inds=NULL, mobile.inds=NULL,
write.pdbs=TRUE, outpath = "fitlsq", prefix=c("fixed",
"mobile"), max.cycles=10, cutoff=0.5, ...)

Arguments

fixed an object of class pdb as obtained from function read.pdb.

mobile an object of class pdb as obtained from function read.pdb.

fixed.inds atom and xyz coordinate indices obtained from atom.select that selects the
elements of fixed upon which the calculation should be based.

mobile.inds atom and xyz coordinate indices obtained from atom.select that selects the
elements of mobile upon which the calculation should be based.

write.pdbs logical, if TRUE the aligned structures are written to PDB files.

outpath character string specifing the output directory when write.pdbs is TRUE.

prefix a character vector of length 2 containing the filename prefix in which the fitted
structures should be written.

max.cycles maximum number of refinement cycles.

cutoff standard deviation of the pairwise distances for aligned residues at which the
fitting refinement stops.

... extra arguments passed to seqaln function.

struct.aln 283

Details

This function performs a sequence alignment followed by a structural alignment of the two PDB
entities. Cycles of refinement steps of the structural alignment are performed to improve the fit by
removing atoms with a high structural deviation. The primary purpose of the function is to allow
rapid structural alignment (and RMSD analysis) for protein structures with unequal, but related
sequences.

The function reports the residues of fixed and mobile included in the final structural alignment, as
well as the related RMSD values.

This function makes use of the underlying functions seqaln, rot.lsq, and rmsd.

Value

Returns a list with the following components:

a.inds atom and xyz indices of fixed.

b.inds atom and xyz indices of mobile.

xyz fitted xyz coordinates of mobile.

rmsd a numeric vector of RMSD values after each cycle of refinement.

Author(s)

Lars Skjarven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

rmsd, rot.lsq, seqaln, pdbaln

Examples

Needs MUSCLE installed - testing excluded

if(check.utility("muscle")) {

try({

Stucture of PKA:
a <- read.pdb("1cmk")

Stucture of PKB:
b <- read.pdb("2jdo")

Align and fit b on to a:
path = file.path(tempdir(), "struct.aln")
aln <- struct.aln(a, b, outpath = path, outfile = tempfile())

284 torsion.pdb

Should be the same as aln$rmsd (when using aln$a.inds and aln$b.inds)
rmsd(axyz, bxyz, aln$a.inds$xyz, aln$b.inds$xyz, fit=TRUE)

invisible(cat("\nSee the output files:", list.files(path, full.names = TRUE), sep="\n"))

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}
}

Not run:
Align two subunits of GroEL (open and closed states)
a <- read.pdb("1sx4")
b <- read.pdb("1xck")

Select chain A only
a.inds <- atom.select(a, chain="A")
b.inds <- atom.select(b, chain="A")

Align and fit:
aln <- struct.aln(a,b, a.inds, b.inds)

End(Not run)

torsion.pdb Calculate Mainchain and Sidechain Torsion/Dihedral Angles

Description

Calculate all torsion angles for a given protein PDB structure object.

Usage

torsion.pdb(pdb)

Arguments

pdb a PDB structure object as obtained from function read.pdb.

Details

The conformation of a polypeptide chain can be usefully described in terms of angles of internal
rotation around its constituent bonds. See the related torsion.xyz function, which is called by this
function, for details.

torsion.pdb 285

Value

Returns a list object with the following components:

phi main chain torsion angle for atoms C,N,CA,C.

psi main chain torsion angle for atoms N,CA,C,N.

omega main chain torsion angle for atoms CA,C,N,CA.

alpha virtual torsion angle between consecutive C-alpha atoms.

chi1 side chain torsion angle for atoms N,CA,CB,*G.

chi2 side chain torsion angle for atoms CA,CB,*G,*D.

chi3 side chain torsion angle for atoms CB,*G,*D,*E.

chi4 side chain torsion angle for atoms *G,*D,*E,*Z.

chi5 side chain torsion angle for atoms *D,*E,*Z, NH1.

coords numeric matrix of ‘justified’ coordinates.

tbl a numeric matrix of psi, phi and chi torsion angles.

Note

For the protein backbone, or main-chain atoms, the partial double-bond character of the peptide
bond between ‘C=N’ atoms severely restricts internal rotations. In contrast, internal rotations
around the single bonds between ‘N-CA’ and ‘CA-C’ are only restricted by potential steric col-
lisions. Thus, to a good approximation, the backbone conformation of each residue in a given
polypeptide chain can be characterised by the two angles phi and psi.

Sidechain conformations can also be described by angles of internal rotation denoted chi1 up to
chi5 moving out along the sidechain.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

torsion.xyz, read.pdb, dssp, stride.

Examples

PDB server connection required - testing excluded
try({

##-- PDB torsion analysis
pdb <- read.pdb("1bg2")
tor <- torsion.pdb(pdb)
head(tor$tbl)

286 torsion.xyz

basic Ramachandran plot
plot(torphi, torpsi)

torsion analysis of a single coordinate vector
#inds <- atom.select(pdb,"calpha")
#tor.ca <- torsion.xyz(pdb$xyz[inds$xyz], atm.inc=1)

##-- Compare two PDBs to highlight interesting residues
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))
m <- read.fasta.pdb(aln)
a <- torsion.xyz(m$xyz[1,],1)
b <- torsion.xyz(m$xyz[2,],1)
d <- wrap.tor(a-b)
plot(m$resno[1,],d, typ="h")

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

torsion.xyz Calculate Torsion/Dihedral Angles

Description

Defined from the Cartesian coordinates of four successive atoms (A-B-C-D) the torsion or dihedral
angle is calculated about an axis defined by the middle pair of atoms (B-C).

Usage

torsion.xyz(xyz, atm.inc = 4)

Arguments

xyz a numeric vector of Cartisean coordinates.

atm.inc a numeric value indicating the number of atoms to increment by between suc-
cessive torsion evaluations (see below).

Details

The conformation of a polypeptide or nucleotide chain can be usefully described in terms of angles
of internal rotation around its constituent bonds.

If a system of four atoms A-B-C-D is projected onto a plane normal to bond B-C, the angle between
the projection of A-B and the projection of C-D is described as the torsion angle of A and D about
bond B-C.

By convention angles are measured in the range -180 to +180, rather than from 0 to 360, with
positive values defined to be in the clockwise direction.

torsion.xyz 287

With atm.inc=1, torsion angles are calculated for each set of four successive atoms contained in
xyz (i.e. moving along one atom, or three elements of xyz, between sucessive evaluations). With
atm.inc=4, torsion angles are calculated for each set of four successive non-overlapping atoms
contained in xyz (i.e. moving along four atoms, or twelve elements of xyz, between sucessive
evaluations).

Value

A numeric vector of torsion angles.

Note

Contributions from Barry Grant.

Author(s)

Karim ElSawy

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

torsion.pdb, pca.tor, wrap.tor, read.pdb, read.dcd.

Examples

Calculate torsions for cis & trans conformers
xyz <- rbind(c(0,-0.5,0,1,0,0,1,1,0,0,1.5,0),

c(0,-0.5,0,1,0,0,1,1,0,2,1.5,0)-3)
cis.tor <- torsion.xyz(xyz[1,])
trans.tor <- torsion.xyz(xyz[2,])
apply(xyz, 1, torsion.xyz)

plot(range(xyz), range(xyz), xlab="", ylab="", typ="n", axes=FALSE)
apply(xyz, 1, function(x){
lines(matrix(x, ncol=3, byrow=TRUE), lwd=4)
points(matrix(x, ncol=3, byrow=TRUE), cex=2.5,

bg="white", col="black", pch=21) })

text(t(apply(xyz, 1, function(x){
apply(matrix(x, ncol=3, byrow=TRUE)[c(2,3),], 2, mean) })),

labels=c(0,180), adj=-0.5, col="red")

PDB server connection required - testing excluded
try({

##-- PDB torsion analysis
pdb <- read.pdb("1bg2")

288 trim

tor <- torsion.pdb(pdb)
basic Ramachandran plot
plot(torphi, torpsi)

torsion analysis of a single coordinate vector
inds <- atom.select(pdb,"calpha")
tor.ca <- torsion.xyz(pdb$xyz[inds$xyz], atm.inc=3)

##-- Compare two PDBs to highlight interesting residues
aln <- read.fasta(system.file("examples/kif1a.fa",package="bio3d"))
m <- read.fasta.pdb(aln)
a <- torsion.xyz(m$xyz[1,],1)
b <- torsion.xyz(m$xyz[2,],1)
Note the periodicity of torsion angles
d <- wrap.tor(a-b)
plot(m$resno[1,],d, typ="h")

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

trim Trim a PDB Object To A Subset of Atoms.

Description

Produce a new smaller PDB object, containing a subset of atoms, from a given larger PDB object.

Usage

trim(...)

S3 method for class 'pdb'
trim(pdb, ..., inds = NULL, sse = TRUE)

Arguments

pdb a PDB structure object obtained from read.pdb.

... additional arguments passed to atom.select. If inds is also provided, these
arguments will be ignored.

inds a list object of ATOM and XYZ indices as obtained from atom.select. If
NULL, atom selection will be obtained from calling atom.select(pdb, ...).

sse logical, if ‘FALSE’ helix and sheet components are omitted from output.

trim 289

Details

This is a basic utility function for creating a new PDB object based on a selection of atoms.

Value

Returns a list of class "pdb" with the following components:

atom a character matrix containing all atomic coordinate ATOM data, with a row per
ATOM and a column per record type. See below for details of the record type
naming convention (useful for accessing columns).

het a character matrix containing atomic coordinate records for atoms within “non-
standard” HET groups (see atom).

helix ‘start’, ‘end’ and ‘length’ of H type sse, where start and end are residue numbers
“resno”.

sheet ‘start’, ‘end’ and ‘length’ of E type sse, where start and end are residue numbers
“resno”.

seqres sequence from SEQRES field.

xyz a numeric vector of ATOM coordinate data.

xyz.models a numeric matrix of ATOM coordinate data for multi-model PDB files.

calpha logical vector with length equal to nrow(atom) with TRUE values indicating a
C-alpha “elety”.

Note

het and seqres list components are returned unmodified.

For both atom and het list components the column names can be used as a convenient means of
data access, namely: Atom serial number “eleno”, Atom type “elety”, Alternate location indicator
“alt”, Residue name “resid”, Chain identifier “chain”, Residue sequence number “resno”, Code for
insertion of residues “insert”, Orthogonal coordinates “x”, Orthogonal coordinates “y”, Orthogonal
coordinates “z”, Occupancy “o”, and Temperature factor “b”. See examples for further details.

Author(s)

Barry Grant, Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html. .

See Also

trim.pdbs, trim.xyz, read.pdb, atom.select

http://www.wwpdb.org/documentation/format33/v3.3.html

290 trim.mol2

Examples

Not run:
Read a PDB file from the RCSB online database
pdb <- read.pdb("1bg2")

Select calpha atoms
sele <- atom.select(pdb, "calpha")

Trim PDB
new.pdb <- trim.pdb(pdb, inds=sele)

Or, simply
#new.pdb <- trim.pdb(pdb, "calpha")

Write to file
write.pdb(new.pdb, file="calpha.pdb")

End(Not run)

trim.mol2 Trim a MOL2 Object To A Subset of Atoms.

Description

Produce a new smaller MOL2 object, containing a subset of atoms, from a given larger MOL2
object.

Usage

S3 method for class 'mol2'
trim(mol, ..., inds = NULL)

Arguments

mol a MOL2 structure object obtained from read.mol2.

... additional arguments passed to atom.select. If inds is also provided, these
arguments will be ignored.

inds a list object of ATOM and XYZ indices as obtained from atom.select. If
NULL, atom selection will be obtained from calling atom.select(mol, ...).

Details

This is a basic utility function for creating a new MOL2 object based on a selection of atoms.

Value

Returns a list of class "mol2".

trim.pdbs 291

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.mol2, atom.select.mol2, as.pdb.mol2, write.mol2,

Examples

Not run:
Read a MOL2 file from those included with the package
mol <- read.mol2(system.file("examples/aspirin.mol2", package="bio3d"))

Trim away H-atoms
mol <- trim(mol, "noh")

End(Not run)

trim.pdbs Filter or Trim a PDBs Object

Description

Trim residues and/or filter out structures from a PDBs object.

Usage

S3 method for class 'pdbs'
trim(pdbs, row.inds=NULL, col.inds=NULL, ...)

Arguments

pdbs an object of class pdbs as obtained from function pdbaln or read.fasta.pdb;
a xyz matrix containing the cartesian coordinates of C-alpha atoms.

row.inds a numeric vector of indices pointing to the PDB structures to keep (rows in the
pdbs$ali matrix).

col.inds a numeric vector of indices pointing to the alignment columns to keep (columns
in the pdbs$ali matrix).

... additional arguments passed to and from functions.

Details

Utility function to remove structures, or trim off columns, in a ‘pdbs’ object.

292 trim.pdbs

Value

Returns an updated ‘pdbs’ object with the following components:

xyz numeric matrix of aligned C-alpha coordinates.

resno character matrix of aligned residue numbers.

b numeric matrix of aligned B-factor values.

chain character matrix of aligned chain identifiers.

id character vector of PDB sequence/structure names.

ali character matrix of aligned sequences.

call the matched call.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

pdbaln, gap.inspect, read.fasta,read.fasta.pdb, trim.pdb,

Examples

Not run:
Fetch PDB files and split to chain A only PDB files
ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A")
raw.files <- get.pdb(ids, path = "raw_pdbs")
files <- pdbsplit(raw.files, ids, path = "raw_pdbs/split_chain")

Sequence Alignement, and connectivity check
pdbs <- pdbaln(files)

cons <- inspect.connectivity(pdbs)

omit files with missing residues
trim.pdbs(pdbs, row.inds=which(cons))

End(Not run)

trim.xyz 293

trim.xyz Trim a XYZ Object of Cartesian Coordinates.

Description

Produce a new smaller XYZ object, containing a subset of atoms.

Usage

S3 method for class 'xyz'
trim(xyz, row.inds = NULL, col.inds = NULL, ...)

Arguments

xyz a XYZ object containing Cartesian coordinates, e.g. obtained from read.pdb,
read.ncdf.

row.inds a numeric vector specifying which rows of the xyz matrix to return.

col.inds a numeric vector specifying which columns of the xyz matrix to return.

... additional arguments passed to and from functions.

Details

This function provides basic functionality for subsetting a matrix of class ‘xyz’ while also main-
taining the class attribute.

Value

Returns an object of class xyz with the Cartesian coordinates stored in a matrix object with dimen-
sions M x 3N, where N is the number of atoms, and M number of frames.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, as.xyz.

294 unbound

Examples

Not run:
Read a PDB file from the RCSB online database
pdb <- read.pdb("1bg2")

Select calpha atoms
sele <- atom.select(pdb, "calpha")

Trim XYZ
trim(pdb$xyz, col.inds=sele$xyz)

Equals to
pdb$xyz[, sele$xyz, drop=FALSE]

End(Not run)

unbound Sequence Generation from a Bounds Vector

Description

Generate a sequence of consecutive numbers from a bounds vector.

Usage

unbound(start, end = NULL)

Arguments

start vector of starting values, or a matrix containing starting and end values such as
that obtained from bounds.

end vector of (maximal) end values, such as that obtained from bounds.

Details

This is a simple utility function that does the opposite of the bounds function. If start is a vector,
end must be a vector having the same length as start. If start is a matrix with column names
contain ’start’ and ’end’, such as that returned from bounds, end can be skipped and both starting
and end values will be extracted from start.

Value

Returns a numeric sequence vector.

Author(s)

Barry Grant

uniprot 295

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

bounds

Examples

test <- c(seq(1,5,1),8,seq(10,15,1))
b <- bounds(test)
unbound(b)

uniprot Fetch UniProt Entry Data.

Description

Fetch protein sequence and functional information from the UniProt database.

Usage

uniprot(accid)

Arguments

accid UniProt accession id.

Details

This is a basic utility function for downloading information from the UniProt database. UniProt
contains protein sequence and functional information.

Value

Returns a list object with the following components:

accession a character vector with UniProt accession id’s.

name abbreviated name.

fullName full recommended protein name.

shortName short protein name.

sequence protein sequence.

gene gene names.

organism organism.

taxon taxonomic lineage.

296 var.xyz

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See also the UniProt web-site for more information:
https://www.uniprot.org/.

See Also

blast.pdb, get.seq

Examples

Not run:
UNIPROT server connection required - testing excluded

prot <- uniprot('PH4H_HUMAN')
prot$fullName
prot$sequence

End(Not run)

var.xyz Pairwise Distance Variance in Cartesian Coordinates

Description

Calculate the variance of all pairwise distances in an ensemble of Cartesian coordinates.

Usage

var.xyz(xyz, weights=TRUE)
var.pdbs(pdbs, ...)

Arguments

xyz an object of class "xyz" containing Cartesian coordinates in a matrix.

weights logical, if TRUE weights are calculated based on the pairwise distance variance.

pdbs a ‘pdbs’ object as object from function pdbaln.

... arguments passed to associated functions.

Details

This function calculates the variance of all pairwise distances in an ensemble of Cartesian coordi-
nates. The primary use of this function is to calculate weights to scale the pair force constant for
NMA.

https://www.uniprot.org/

vec2resno 297

Value

Returns the a matrix of the pairwise distance variance, formated as weights if ‘weights=TRUE’.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

nma.pdbs

vec2resno Replicate Per-residue Vector Values

Description

Replicate values in one vector based on consecutive entries in a second vector. Useful for adding
per-residue data to all-atom PDB files.

Usage

vec2resno(vec, resno)

Arguments

vec a vector of values to be replicated.

resno a reference vector or a PDB structure object, obtained from read.pdb, upon
which replication is based.

Details

This function can aid in mapping data to PDB structure files. For example, residue conservation per
position (or any other one value per residue data) can be replicated to fit the B-factor field of an all
atom PDB file which can then be rendered according to this field in a molecular viewer.

A basic check is made to ensure that the number of consecutively unique entries in the reference
vector equals the length of the vector to be replicated.

Value

Returns a vector of replicated values.

Author(s)

Barry Grant

298 vmd

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.pdb, atom.select, write.pdb

Examples

vec2resno(c("a","b"), c(1,1,1,1,2,2))

vmd View CNA Protein Structure Network Community Output in VMD

Description

This function generates a VMD scene file and a PDB file that can be read and rendered by the
VMD molecular viewer. Chose ‘color by chain’ to see corresponding regions of structure colored
by community along with the community protein structure network.

Usage

vmd(...)

S3 method for class 'cna'
vmd(x, pdb, layout = layout.cna(x, pdb, k=3),
col.sphere=NULL, col.lines = "silver", weights = NULL,
radius = table(x$communities$membership)/5, alpha = 1,
vmdfile = "network.vmd", pdbfile = "network.pdb",

full = FALSE, launch = FALSE, exefile=NULL, ...)
S3 method for class 'ecna'
vmd(x, n=1, ...)
S3 method for class 'cnapath'
vmd(x, pdb, out.prefix = "vmd.cnapath", spline = FALSE,

colors = c("blue", "red"), launch = FALSE, exefile=NULL, mag=1.0, ...)
S3 method for class 'ecnapath'
vmd(x, ...)

Arguments

x A ’cna’ or ’cnapath’ class object, or a list of such objects, as obtained from
functions cna or cnapath.

n The index to indicate which network or path to view with vmd.

pdb A ’pdb’ class object such as obtained from ‘read.pdb’ function.

layout A numeric matrix of Nx3 XYZ coordinate matrix, where N is the number of
community spheres to be drawn.

vmd 299

col.sphere A numeric vector containing the sphere colors.

col.lines A character object specifying the color of the edges (default ’silver’). Must use
VMD colors names.

weights A numeric vector specifying the edge width. Default is taken from E(x$community.network)$weight.

radius A numeric vector containing the sphere radii. Default is taken from the number
of community members divided by 5.

alpha A single element numeric vector specifying the VMD alpha transparency pa-
rameter. Default is set to 1.

vmdfile A character element specifying the output VMD scene file name that will be
loaded in VMD.

pdbfile A character element specifying the output pdb file name to be loaded in VMD.

full Logical, if TRUE the full all-atom network rather than the clustered community
network will be drawn. Intra community edges are colored according to the
community membership, while inter community edges are thicker and colored
black.

launch Logical. If TRUE, a VMD session will be started with the output of ‘vmd.cna’.

out.prefix Prefix for the names of output files, ‘vmd.cnapath.vmd’ and ‘vmd.cnapath.pdb’.

spline Logical, if TRUE all paths are displayed as spline curves.

colors Character vector or integer scalar, define path colors. If a character vector,
passed to colorRamp function to generate the color scales. If an integer, color
all paths the same way with VMD color ID equal to the integer.

exefile file path to the ‘VMD’ program on your system (i.e. how is ‘VMD’ invoked). If
NULL, use OS-dependent default path to the program.

mag A numeric factor to scale the maximal thickness of paths.

... additional arguments passed to the function colorRamp (in vmd.cnapath).

Details

This function generates a scaled sphere (communities) and stick (edges) representation of the com-
munity network along with the corresponding protein structure divided into chains, one chain for
each community. The sphere radii are proportional to the number of community members and the
edge widths correspond to network edge weights.

Value

Two files are generated as output. A pdb file with the residue chains assigned according to the
community and a text file containing The drawing commands for the community representation.

Author(s)

Barry Grant

References

Humphrey, W., Dalke, A. and Schulten, K., “VMD - Visual Molecular Dynamics” J. Molec. Graph-
ics 1996, 14.1, 33-38.

300 vmd_colors

Examples

Not run:

if (!requireNamespace("igraph", quietly = TRUE)) {
message('Need igraph installed to run this example')

} else {

Load the correlation network from MD data
attach(hivp)

Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)

View cna
vmd.cna(net, pdb, launch=FALSE)
within VMD set 'coloring method' to 'Chain' and 'Drawing method' to Tube

##-- From NMA
pdb.gdi = read.pdb("1KJY")
pdb.gdi = trim.pdb(pdb.gdi, inds=atom.select(pdb.gdi, chain="A", elety="CA"))
modes.gdi = nma(pdb.gdi)
cij.gdi = dccm(modes.gdi)
net.gdi = cna(cij.gdi, cutoff.cij=0.35)
#vmd.cna(net.gdi, pdb.gdi, alpha = 0.7, launch=TRUE)

detach(hivp)

}

End(Not run)

vmd_colors VMD Color Palette

Description

This function creates a character vector of the colors used by the VMD molecular graphics program.

Usage

vmd_colors(n=33, picker=FALSE, ...)

Arguments

n The number of desired colors chosen in sequence from the VMD color palette
(>=1)

picker Logical, if TRUE a color wheel plot will be produced to aid with color choice.
... Extra arguments passed to the rgb function, including alpha transparency.

wrap.tor 301

Details

The function uses the underlying 33 RGB color codes from VMD, See http://www.ks.uiuc.edu/
Research/vmd/. Note that colors will be recycled if “n” > 33 with a warning issued. When ‘picker’
is set to “TRUE” a color wheel of the requested colors will be plotted to the currently active device.

Value

Returns a character vector with color names.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

http://www.ks.uiuc.edu/Research/vmd/

See Also

bwr.colors

Examples

Generate a vector of 10 colors
clrs <- vmd_colors(10)
vmd_colors(4, picker=TRUE)

wrap.tor Wrap Torsion Angle Data

Description

Adjust angular data so that the absolute difference of any of the observations from its mean is not
greater than 180 degrees.

Usage

wrap.tor(data, wrapav=TRUE, avestruc=NULL)

Arguments

data a numeric vector or matrix of torsion angle data as obtained from torsion.xyz.

wrapav logical, if TRUE average structure is also ‘wrapped’

avestruc a numeric vector corresponding to the average structure

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/

302 write.crd

Details

This is a basic utility function for coping with the periodicity of torsion angle data, by ‘wraping’
angular data such that the absolute difference of any of the observations from its column-wise mean
is not greater than 180 degrees.

Value

A numeric vector or matrix of wrapped torsion angle data.

Author(s)

Karim ElSawy

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

torsion.xyz

write.crd Write CRD File

Description

Write a CHARMM CARD (CRD) coordinate file.

Usage

write.crd(pdb = NULL, xyz = pdb$xyz, resno = NULL, resid = NULL,
eleno = NULL, elety = NULL, segid = NULL, resno2 = NULL, b = NULL,
verbose = FALSE, file = "R.crd")

Arguments

pdb a structure object obtained from read.pdb or read.crd.
xyz Cartesian coordinates as a vector or 3xN matrix.
resno vector of residue numbers of length equal to length(xyz)/3.
resid vector of residue types/ids of length equal to length(xyz)/3.
eleno vector of element/atom numbers of length equal to length(xyz)/3.
elety vector of element/atom types of length equal to length(xyz)/3.
segid vector of segment identifiers with length equal to length(xyz)/3.
resno2 vector of alternate residue numbers of length equal to length(xyz)/3.
b vector of weighting factors of length equal to length(xyz)/3.
verbose logical, if TRUE progress details are printed.
file the output file name.

write.fasta 303

Details

Only the xyz argument is strictly required. Other arguments assume a default poly-ALA C-alpha
structure with a blank segid and B-factors equal to 0.00.

Value

Called for its effect.

Note

Check that resno and eleno do not exceed “9999”.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of CHARMM CARD (CRD) format see:
https://academiccharmm.org/documentation/version/c49b1/io#Coordinate.

See Also

read.crd, read.pdb, atom.select, write.pdb, read.dcd, read.fasta.pdb, read.fasta

Examples

Not run:
Read a PDB file
pdb <- read.pdb("1bg2")
summary(pdb)
Convert to CHARMM format
new <- convert.pdb(pdb, type="charmm")
summary(new)
Write a CRD file
write.crd(new, file="4charmm.crd")

End(Not run)

write.fasta Write FASTA Formated Sequences

Description

Write aligned or un-aligned sequences to a FASTA format file.

https://academiccharmm.org/documentation/version/c49b1/io#Coordinate

304 write.fasta

Usage

write.fasta(alignment=NULL, ids=NULL, seqs=alignment$ali, gap=TRUE, file, append = FALSE)

Arguments

alignment an alignment list object with id and ali components, similar to that generated
by read.fasta.

ids a vector of sequence names to serve as sequence identifers

seqs an sequence or alignment character matrix or vector with a row per sequence

gap logical, if FALSE gaps will be removed.

file name of output file.

append logical, if TRUE output will be appended to file; otherwise, it will overwrite
the contents of file.

Value

Called for its effect.

Note

For a description of FASTA format see: https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.
shtml.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, read.fasta.pdb

Examples

PDB server connection required - testing excluded
try({

Read a PDB file
pdb <- read.pdb("1bg2")

Extract sequence from PDB file
s <- aa321(pdb$seqres) # SEQRES
a <- aa321(pdb$atom[pdb$calpha,"resid"]) # ATOM

Write simple fasta file
#write.fasta(seqs=seqbind(s,a), file="eg.fa")

https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml

write.mol2 305

#write.fasta(ids=c("seqres","atom"), seqs=seqbind(s,a), file="eg.fa")

outfile1 = file.path(tempdir(), "eg.fa")
write.fasta(list(id=c("seqres"),ali=s), file = outfile1)
write.fasta(list(id=c("atom"),ali=a), file = outfile1, append=TRUE)

Align seqres and atom records
#seqaln(seqbind(s,a))

Read alignment
aln<-read.fasta(system.file("examples/kif1a.fa",package="bio3d"))

Cut all but positions 130 to 245
aln$ali=aln$ali[,130:245]

outfile2 = file.path(tempdir(), "eg2.fa")
write.fasta(aln, file = outfile2)

invisible(cat("\nSee the output files:", outfile1, outfile2, sep="\n"))

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

write.mol2 Write MOL2 Format Coordinate File

Description

Write a Sybyl MOL2 file

Usage

write.mol2(mol, file = "R.mol2", append = FALSE)

Arguments

mol a MOL2 structure object obtained from read.mol2.

file the output file name.

append logical, if TRUE output is appended to the bottom of an existing file (used pri-
marly for writing multi-model files).

Details

See examples for further details.

306 write.ncdf

Value

Called for its effect.

Author(s)

Lars Skjaerven

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

Examples

Read MOL2 file
mol <- read.mol2(system.file("examples/aspirin.mol2", package="bio3d"))

Trim away H-atoms
mol <- trim(mol, "noh")

Write new MOL2 file
#write.mol2(mol)

write.ncdf Write AMBER Binary netCDF files

Description

Write coordinate data to a binary netCDF trajectory file.

Usage

write.ncdf(x, trjfile = "R.ncdf", cell = NULL)

Arguments

x A numeric matrix of xyz coordinates with a frame/structure per row and a Carte-
sian coordinate per column.

trjfile name of the output trajectory file.

cell A numeric matrix of cell information with a frame/structure per row and a cell
length or angle per column. If NULL cell will not be written.

Details

Writes an AMBER netCDF (Network Common Data Form) format trajectory file with the help of
David W. Pierce’s (UCSD) ncdf4 package available from CRAN.

write.ncdf 307

Value

Called for its effect.

Note

See AMBER documentation for netCDF format description.

NetCDF binary trajectory files are supported by the AMBER modules sander, pmemd and ptraj.
Compared to formatted trajectory files, the binary trajectory files are smaller, higher precision and
significantly faster to read and write.

NetCDF provides for file portability across architectures, allows for backwards compatible extensi-
bility of the format and enables the files to be self-describing. Support for this format is available
in VMD.

Author(s)

Barry Grant

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696. https://www.unidata.ucar.edu/software/
netcdf/ https://cirrus.ucsd.edu/~pierce/ncdf/ https://ambermd.org/FileFormats.php#
netcdf

See Also

read.dcd, read.ncdf, read.pdb, write.pdb, atom.select

Examples

Not run:
##-- Read example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)

Write to netCDF format
write.ncdf(trj, "newtrj.nc")

Read trj
trj <- read.ncdf("newtrj.nc")

End(Not run)

https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/
https://cirrus.ucsd.edu/~pierce/ncdf/
https://ambermd.org/FileFormats.php#netcdf
https://ambermd.org/FileFormats.php#netcdf

308 write.pdb

write.pdb Write PDB Format Coordinate File

Description

Write a Protein Data Bank (PDB) file for a given ‘xyz’ Cartesian coordinate vector or matrix.

Usage

write.pdb(pdb = NULL, file = "R.pdb", xyz = pdb$xyz, type = NULL, resno = NULL,
resid = NULL, eleno = NULL, elety = NULL, chain = NULL, insert = NULL,
alt = NULL, o = NULL, b = NULL, segid = NULL, elesy = NULL, charge = NULL,
append = FALSE, verbose = FALSE, chainter = FALSE, end = TRUE, sse = FALSE,
print.segid = FALSE)

Arguments

pdb a PDB structure object obtained from read.pdb.

file the output file name.

xyz Cartesian coordinates as a vector or 3xN matrix.

type vector of record types, i.e. "ATOM" or "HETATM", with length equal to length(xyz)/3.

resno vector of residue numbers of length equal to length(xyz)/3.

resid vector of residue types/ids of length equal to length(xyz)/3.

eleno vector of element/atom numbers of length equal to length(xyz)/3.

elety vector of element/atom types of length equal to length(xyz)/3.

chain vector of chain identifiers with length equal to length(xyz)/3.

insert vector of insertion code with length equal to length(xyz)/3.

alt vector of alternate record with length equal to length(xyz)/3.

o vector of occupancy values of length equal to length(xyz)/3.

b vector of B-factors of length equal to length(xyz)/3.

segid vector of segment id of length equal to length(xyz)/3.

elesy vector of element symbol of length equal to length(xyz)/3.

charge vector of atomic charge of length equal to length(xyz)/3.

append logical, if TRUE output is appended to the bottom of an existing file (used pri-
marly for writing multi-model files).

verbose logical, if TRUE progress details are printed.

chainter logical, if TRUE a TER line is inserted at termination of a chain.

end logical, if TRUE END line is written.

sse logical, if TRUE secondary structure annotations are written.

print.segid logical, if FALSE segid will not be written.

write.pdb 309

Details

Only the xyz argument is strictly required. Other arguments assume a default poly-ALA C-alpha
structure with a blank chain id, occupancy values of 1.00 and B-factors equal to 0.00.

If the input argument xyz is a matrix then each row is assumed to be a different structure/frame to
be written to a “multimodel” PDB file, with frames separated by “END” records.

Value

Called for its effect.

Note

Check that: (1) chain is one character long e.g. “A”, and (2) resno and eleno do not exceed
“9999”.

Author(s)

Barry Grant with contributions from Joao Martins.

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

See Also

read.pdb, read.dcd, read.fasta.pdb, read.fasta

Examples

PDB server connection required - testing excluded
try({

Read a PDB file
pdb <- read.pdb("1bg2")

Renumber residues
nums <- as.numeric(pdb$atom[,"resno"])
nums <- nums - (nums[1] - 1)

Write out renumbered PDB file
outfile = file.path(tempdir(), "eg.pdb")
write.pdb(pdb=pdb, resno = nums, file = outfile)

invisible(cat("\nSee the output file:", outfile, sep = "\n"))

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")

http://www.wwpdb.org/documentation/format33/v3.3.html

310 write.pir

}

write.pir Write PIR Formated Sequences

Description

Write aligned or un-aligned sequences to a PIR format file.

Usage

write.pir(alignment=NULL, ids=NULL, seqs=alignment$ali,
pdb.file = NULL, chain.first = NULL, resno.first = NULL,
chain.last = NULL, resno.last = NULL, file, append = FALSE)

Arguments

alignment an alignment list object with id and ali components, similar to that generated
by read.fasta.

ids a vector of sequence names to serve as sequence identifers

seqs an sequence or alignment character matrix or vector with a row per sequence

pdb.file a vector of pdb filenames; For sequence, provide "".

chain.first a vector of chain id for the first residue.

resno.first a vector of residue number for the first residue.

chain.last a vector of chain id for the last residue.

resno.last a vector of residue number for the last residue.

file name of output file.

append logical, if TRUE output will be appended to file; otherwise, it will overwrite
the contents of file.

Value

Called for its effect.

Note

PIR is required format for input alignment file to use Modeller. For a description of PIR format see:
https://salilab.org/modeller/manual/node501.html.

Author(s)

Xin-Qiu Yao

https://salilab.org/modeller/manual/node501.html

write.pqr 311

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

See Also

read.fasta, read.fasta.pdb, write.fasta

Examples

Needs MUSCLE installed - testing excluded

if(check.utility("muscle")) {

try({

Generate an input file for structural modeling of
transducin G-alpha subunit using the template 3SN6_A

Read transducin alpha subunit sequence
seq <- get.seq("P04695", outfile = tempfile())

Read structure template
path = tempdir()
pdb.file <- get.pdb("3sn6_A", path = path, split = TRUE)
pdb <- read.pdb(pdb.file)

Build an alignment between template and target
aln <- seqaln(seqbind(pdbseq(pdb), seq), id = c("3sn6_A", seq$id), outfile = tempfile())

Write PIR format alignment file
outfile = file.path(tempdir(), "eg.pir")
write.pir(aln, pdb.file = c(pdb.file, ""), file = outfile)

invisible(cat("\nSee the output file:", outfile, sep = "\n"))

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}
}

write.pqr Write PQR Format Coordinate File

Description

Write a PQR file for a given ‘xyz’ Cartesian coordinate vector or matrix.

312 write.pqr

Usage

write.pqr(pdb = NULL, xyz = pdb$xyz, resno = NULL, resid = NULL, eleno =
NULL, elety = NULL, chain = NULL, o = NULL, b = NULL,
append = FALSE, verbose = FALSE, chainter = FALSE, file = "R.pdb")

Arguments

pdb a PDB structure object obtained from read.pdb or read.pqr.

xyz Cartesian coordinates as a vector or 3xN matrix.

resno vector of residue numbers of length equal to length(xyz)/3.

resid vector of residue types/ids of length equal to length(xyz)/3.

eleno vector of element/atom numbers of length equal to length(xyz)/3.

elety vector of element/atom types of length equal to length(xyz)/3.

chain vector of chain identifiers with length equal to length(xyz)/3.

o atomic partial charge values of length equal to length(xyz)/3.

b atomic radii values of length equal to length(xyz)/3.

append logical, if TRUE output is appended to the bottom of an existing file (used pri-
marly for writing multi-model files).

verbose logical, if TRUE progress details are printed.

chainter logical, if TRUE a TER line is inserted between chains.

file the output file name.

Details

PQR file format is basically the same as PDB format except for the fields of o and b. In PDB,
these two fields are filled with ‘Occupancy’ and ‘B-factor’ values, respectively, with each field 6-
column long. In PQR, they are atomic ‘partial charge’ and ‘radii’ values, respectively, with each
field 8-column long.

Only the xyz argument is strictly required. Other arguments assume a default poly-ALA C-alpha
structure with a blank chain id, atomic charge values of 0.00 and atomic radii equal to 1.00.

If the input argument xyz is a matrix then each row is assumed to be a different structure/frame to
be written to a “multimodel” PDB file, with frames separated by “END” records.

Value

Called for its effect.

Note

Check that: (1) chain is one character long e.g. “A”, and (2) resno and eleno do not exceed
“9999”.

Author(s)

Barry Grant with contributions from Joao Martins.

write.pqr 313

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.

For a description of PDB format (version3.3) see:
http://www.wwpdb.org/documentation/format33/v3.3.html.

See Also

read.pqr, read.pdb, write.pdb, read.dcd, read.fasta.pdb, read.fasta

Examples

PDB server connection required - testing excluded
try({

Read a PDB file
pdb <- read.pdb("1bg2")

Write out in PQR format
outfile = file.path(tempdir(), "eg.pqr")
write.pqr(pdb=pdb, file = outfile)

invisible(cat("\nSee the output file:", outfile, sep = "\n"))

}, silent=TRUE)
if(inherits(.Last.value, "try-error")) {

message("Need internet to run the example")
}

http://www.wwpdb.org/documentation/format33/v3.3.html

Index

∗ IO
aln2html, 19
as.pdb, 23
get.seq, 125
read.all, 233
read.cif, 235
read.crd, 236
read.crd.amber, 238
read.crd.charmm, 239
read.dcd, 240
read.fasta, 242
read.fasta.pdb, 244
read.mol2, 246
read.ncdf, 249
read.pdb, 251
read.pdcBD, 254
read.pqr, 256
read.prmtop, 258
write.crd, 302
write.fasta, 303
write.mol2, 305
write.ncdf, 306
write.pdb, 308
write.pir, 310
write.pqr, 311

∗ analysis
cna, 55
community.aln, 65
community.tree, 67
dccm.enma, 82
dccm.gnm, 83
dccm.nma, 85
dccm.pca, 86
deformation.nma, 90
filter.cmap, 106
filter.dccm, 107
fluct.nma, 115
geostas, 119
inspect.connectivity, 136

nma, 155
nma.pdb, 156
nma.pdbs, 160

∗ classes
is.mol2, 139
is.pdb, 140
is.select, 141
is.xyz, 142

∗ datasets
aa.index, 7
aa.table, 9
atom.index, 27
elements, 101
example.data, 105
sdENM, 268

∗ documentation
bio3d-package, 6

∗ hplot
blast.pdb, 41
hclustplot, 129
plot.bio3d, 193
plot.cmap, 196
plot.cna, 198
plot.core, 200
plot.dccm, 202
plot.dmat, 205
plot.enma, 207
plot.fasta, 209
plot.fluct, 210
plot.geostas, 212
plot.hmmer, 214
plot.nma, 216
plot.pca, 218
plot.pca.loadings, 220
plot.rmsip, 221

∗ manip
orient.pdb, 164
rle2, 262

∗ multivariate

314

INDEX 315

pca.pdbs, 170
pca.tor, 172
pca.xyz, 173

∗ runs
rle2, 262

∗ utilities
aa123, 10
aa2index, 11
aa2mass, 12
angle.xyz, 21
as.fasta, 22
as.select, 26
atom.select, 28
atom2ele, 31
atom2mass, 33
atom2xyz, 34
basename.pdb, 35
bhattacharyya, 36
binding.site, 38
blast.pdb, 41
bounds, 44
bwr.colors, 47
cat.pdb, 48
chain.pdb, 49
check.utility, 50
cmap, 52
cnapath, 58
com, 61
combine.select, 63
consensus, 69
conserv, 70
convert.pdb, 72
core.cmap, 74
core.find, 75
cov.nma, 79
covsoverlap, 80
dccm, 81
dccm.xyz, 88
diag.ind, 92
difference.vector, 93
dist.xyz, 94
dm, 95
dssp, 98
entropy, 103
filter.identity, 109
filter.rmsd, 111
fit.xyz, 112
formula2mass, 117

gap.inspect, 118
get.pdb, 124
get.seq, 125
hmmer, 131
inner.prod, 135
is.gap, 138
lbio3d, 144
load.enmff, 144
mask, 146
mktrj, 148
motif.find, 150
mustang, 151
normalize.vector, 163
overlap, 165
pairwise, 167
pca, 168
pca.array, 169
pca.pdbs, 170
pca.tor, 172
pca.xyz, 173
pdb.annotate, 176
pdb2aln, 177
pdb2aln.ind, 179
pdbaln, 182
pdbfit, 184
pdbs2pdb, 185
pdbs2sse, 187
pdbseq, 188
pdbsplit, 189
pfam, 191
print.cna, 222
print.core, 224
print.fasta, 225
print.xyz, 226
project.pca, 227
rgyr, 260
rmsd, 263
rmsf, 265
rmsip, 266
seq2aln, 269
seqaln, 270
seqaln.pair, 274
seqbind, 275
seqidentity, 276
setup.ncore, 278
sip, 278
sse.bridges, 280
store.atom, 281

316 INDEX

struct.aln, 282
torsion.pdb, 284
torsion.xyz, 286
trim, 288
trim.mol2, 290
trim.pdbs, 291
trim.xyz, 293
unbound, 294
uniprot, 295
var.xyz, 296
vec2resno, 297
wrap.tor, 301

∗ utility
identify.cna, 134
layout.cna, 142
network.amendment, 153
prune.cna, 228
vmd, 298
vmd_colors, 300

.print.fasta.ali (print.fasta), 225

aa.index, 7, 9, 12, 13
aa.table, 9
aa123, 6, 10
aa2index, 11
aa2mass, 9, 12, 14, 157, 161, 173
aa321, 6, 189
aa321 (aa123), 10
aanma, 14, 18, 145
aanma.pdbs, 16, 17
aln2html, 6, 19, 210
amsm.xyz, 120
amsm.xyz (geostas), 119
angle.xyz, 21
annotation (example.data), 105
as.fasta, 22
as.pdb, 23, 236, 238, 253, 260
as.pdb.mol2, 247, 291
as.select, 26, 30, 64
as.xyz, 24, 293
as.xyz (is.xyz), 142
atom.index, 9, 13, 27, 27, 32, 34
atom.select, 6, 15, 23, 25, 27, 28, 29, 32, 33,

35, 38, 39, 49, 50, 53, 63, 64, 73, 97,
120, 125, 127, 141, 147, 157, 165,
188–190, 236–238, 240, 241, 250,
253, 255, 258, 260, 288–290, 298,
303, 307

atom.select.mol2, 247, 291

atom2ele, 27, 31, 33, 34, 117
atom2mass, 13, 32, 33, 62, 117
atom2xyz, 34

basename, 36
basename.pdb, 35
bhattacharyya, 19, 36, 81, 162, 267, 279
binding.site, 38
bio3d (bio3d-package), 6
bio3d-package, 6
biounit, 6, 40, 252, 253
blast.pdb, 6, 41, 42, 126, 133, 214, 272, 296
bounds, 44, 294, 295
bounds.sse, 45, 182
build.hessian, 6, 14, 146, 157
build.hessian (nma.pdb), 156
bwr.colors, 47, 301

cat.pdb, 48, 236, 253
chain.pdb, 49
check.utility, 50
clean.pdb, 51
cm.colors, 47
cmap, 52, 106, 108, 198
cna, 6, 55, 59, 60, 65, 66, 68, 108, 154, 223,

229
cna.dccm, 60
cnapath, 6, 58
col2rgb, 47
colorRamp, 299
colors, 47
com, 61
combine.select, 30, 63
community.aln, 65
community.tree, 67, 154
consensus, 6, 69, 104, 110, 277
conserv, 6, 70
contour, 204, 206
convert.pdb, 72
cor, 89
core (example.data), 105
core.cmap, 74
core.find, 6, 75, 75, 105, 183, 201, 202, 224,

234, 245
cov.enma, 18, 162
cov.enma (cov.nma), 79
cov.nma, 79
covsoverlap, 19, 37, 80, 81, 162, 267, 279
cutree, 130

INDEX 317

dccm, 6, 54, 81, 87, 89, 108, 121, 147, 231
dccm.egnm (dccm.gnm), 83
dccm.enma, 18, 81, 82, 82, 84, 87, 89, 162
dccm.gnm, 83
dccm.nma, 6, 16, 81–84, 85, 87, 89, 108, 159
dccm.pca, 81, 82, 86, 89
dccm.xyz, 81, 82, 87, 88, 108
deformation.nma, 6, 90
diag, 92
diag.ind, 92
difference.vector, 93, 166
dirname, 36
dist, 54, 95
dist.xyz, 54, 94
dm, 39, 53, 54, 95, 95, 137, 198, 205, 206
dssp, 98, 99, 182, 188, 194, 195, 197, 198,

203, 204, 215, 280, 285
dssp.pdb, 99

edge.betweenness.community, 57
eigen, 159
elements, 9, 27, 32, 34, 101
entropy, 6, 71, 103, 110, 210, 277
example.data, 105

fastgreedy.community, 57
ff.aaenm (load.enmff), 144
ff.aaenm2 (load.enmff), 144
ff.anm (load.enmff), 144
ff.calpha (load.enmff), 144
ff.pfanm (load.enmff), 144
ff.reach (load.enmff), 144
ff.sdenm (load.enmff), 144
filled.contour, 204, 206
filter.cmap, 106
filter.dccm, 107
filter.identity, 109, 277
filter.rmsd, 111
fit.xyz, 6, 53, 75–77, 88, 94, 112, 142, 165,

173, 182–185, 227, 228, 234, 244,
245, 261, 263–265, 277

fluct.nma, 6, 16, 115, 159
formula2mass, 32, 117

gap.inspect, 6, 118, 137, 138, 292
geostas, 6, 119, 120, 213
get.blast (blast.pdb), 41
get.pdb, 6, 44, 123, 126, 190
get.seq, 6, 22, 23, 125, 133, 192, 272, 296

get.shortest.paths, 59, 60
gnm, 84, 127
gnm.pdbs, 128
graph.adjacency, 57
gray, 47

hclust, 6, 111, 120, 121, 130, 209
hclustplot, 129
hivp (example.data), 105
hmmer, 6, 44, 131, 192, 214
hsv, 47

identify, 134
identify.cna, 134
igraph.plotting, 134, 143, 200, 223
image, 204, 206, 222
infomap.community, 57
inner.prod, 135, 163
inspect.connectivity, 136
is.gap, 6, 138
is.mol2, 139
is.pdb, 140
is.pdbs (is.pdb), 140
is.select, 141
is.xyz, 142, 227

kinesin (example.data), 105
kmeans, 120, 121

layout.cna, 142
lbio3d, 144
load.enmff, 15, 16, 144, 158, 159
lower.tri, 92

mask, 146
matrix, 92
mktrj, 120, 121, 148
mktrj.enma, 18, 162
mktrj.nma, 6, 16, 159
mktrj.pca, 6, 174
mono.colors (bwr.colors), 47
motif.find, 150
mustang, 6, 151

network.amendment, 68, 153
nma, 6, 18, 79, 83, 85, 90, 91, 116, 120, 121,

136, 146, 149, 155, 155, 163, 166,
171, 208, 217, 222, 267

nma.pdb, 16, 149, 155, 156, 157, 158, 162, 174

318 INDEX

nma.pdbs, 6, 18, 120, 149, 155, 160, 161, 208,
211, 212, 297

normalize.vector, 136, 163

orient.pdb, 6, 164
overlap, 6, 93, 159, 165, 222, 267

pairwise, 6, 167
palette, 47
pca, 149, 155, 168, 171, 174, 267
pca.array, 169, 215, 216
pca.pdbs, 6, 169, 170, 174
pca.tor, 6, 169, 172, 174, 228, 287
pca.xyz, 6, 87, 149, 166, 169–172, 173, 174,

218–220, 228
pdb.annotate, 106, 176
pdb.pfam (pdb.annotate), 176
pdb2aln, 177, 179, 180
pdb2aln.ind, 178, 179, 179
pdb2sse, 45, 46, 181
pdbaln, 6, 23, 28, 53, 74, 76, 96, 99, 105, 120,

138, 140, 149, 153, 155, 160–162,
169, 171, 179, 182, 184–186, 188,
225, 226, 230, 272, 283, 292

pdbfit, 6, 105, 184
pdbs (example.data), 105
pdbs2pdb, 185
pdbs2sse, 187
pdbseq, 6, 10, 151, 183, 188, 251, 259
pdbsplit, 124, 125, 189
pfam, 133, 191
plot.bio3d, 6, 100, 193, 198, 204, 212, 217,

219
plot.blast, 6, 44, 133, 214
plot.blast (blast.pdb), 41
plot.cmap, 106, 196
plot.cna, 6, 57, 66, 134, 143, 198, 229
plot.cnapath (cnapath), 58
plot.communities, 134, 143, 200
plot.core, 6, 77, 200, 224
plot.dccm, 6, 81–85, 87, 108, 202, 213, 215,

216
plot.default, 195, 198, 204
plot.dendrogram, 130
plot.dmat, 97, 198, 204, 205
plot.ecna (plot.cna), 198
plot.ecnapath (cnapath), 58
plot.enma, 18, 162, 207
plot.fasta, 153, 209, 272

plot.fluct, 208, 210
plot.geostas, 121, 212
plot.hclust, 130
plot.hmmer, 214
plot.igraph, 134, 143, 200
plot.matrix.loadings, 215
plot.nma, 6, 216
plot.pca, 6, 172, 174, 218, 220
plot.pca.loadings, 6, 172, 220
plot.rmsip, 221
plotb3, 208
plotb3 (plot.bio3d), 193
points, 217
polygon, 212
print, 157, 161
print.cna, 222
print.cnapath (cnapath), 58
print.core, 202, 224
print.default, 262
print.enma (nma.pdbs), 160
print.fasta, 225
print.geostas (geostas), 119
print.igraph, 223
print.mol2 (read.mol2), 246
print.nma (nma.pdb), 156
print.pca (pca.xyz), 173
print.pdb (read.pdb), 251
print.prmtop (read.prmtop), 258
print.rle2 (rle2), 262
print.select (atom.select), 28
print.sse (dssp), 98
print.xyz, 226
project.pca, 174, 227
prune.cna, 228
pymol, 230
pymol.dccm, 6, 81, 82
pymol.modes, 6, 149
pymol.pdbs, 183, 245

rbind, 275, 276
read.all, 17–19, 53, 96, 183, 233, 245
read.cif, 235
read.crd, 25, 30, 99, 100, 236, 260, 302, 303
read.crd.amber, 23, 237, 238
read.crd.charmm, 237, 238, 239
read.dcd, 6, 22, 30, 73, 76, 99, 100, 112, 114,

120, 121, 142, 227, 236, 237, 240,
240, 250, 252–255, 257, 258, 265,
287, 303, 307, 309, 313

INDEX 319

read.fasta, 6, 10, 12, 20, 69, 71, 73, 103,
104, 110, 118, 119, 125, 126, 138,
151, 153, 178, 179, 183, 189, 192,
210, 225, 226, 233, 234, 240, 242,
244, 245, 253, 255, 258, 269–272,
274–277, 292, 303, 304, 309–311,
313

read.fasta.pdb, 6, 28, 53, 71, 73–77, 96, 99,
111, 112, 114, 118–120, 125, 126,
138, 140, 149, 153, 155, 160–162,
178, 179, 183–186, 188, 225, 226,
230, 240, 243, 244, 253, 255, 258,
261, 264, 265, 270, 272, 275, 281,
292, 303, 304, 309, 311, 313

read.mol2, 23, 29, 139, 246, 290, 291, 305
read.ncdf, 6, 25, 30, 76, 99, 100, 120, 121,

142, 227, 236–238, 249, 252, 253,
260, 293, 307

read.pdb, 6, 10, 14, 22, 24, 25, 27, 28, 30, 32,
34, 35, 39–41, 46, 48–53, 59, 62, 64,
72, 76, 96, 97, 99, 100, 112–114,
120, 121, 125, 127, 140, 142, 147,
149, 155, 157, 164, 165, 181, 183,
185, 186, 188–190, 194, 197, 203,
215, 227, 233, 234, 236–241, 244,
245, 247, 250, 251, 251, 258, 260,
261, 264, 276, 280, 285, 287–289,
293, 297, 298, 302, 303, 307–309,
312, 313

read.pdb2 (read.pdb), 251
read.pdcBD, 254
read.pqr, 256, 312, 313
read.prmtop, 23, 29, 30, 100, 236–238, 253,

258, 259
regexpr, 151
rgb, 47
rgyr, 260
rle2, 262
rmsd, 6, 111, 112, 114, 185, 261, 263, 283
rmsf, 6, 211, 212, 265
rmsip, 6, 19, 37, 159, 162, 166, 222, 266, 279
rot.lsq, 6, 165, 264, 283
rot.lsq (fit.xyz), 112
rtb (aanma), 14

sdENM, 268
seq2aln, 178–180, 269
seqaln, 6, 20, 23, 44, 110, 133, 138, 153, 178,

179, 183, 209, 210, 225, 226, 269,

270, 270, 274–276, 283
seqaln.pair, 179, 180, 274
seqbind, 22, 23, 270–272, 274, 275, 275
seqidentity, 6, 110, 168, 276
setup.ncore, 278
sip, 19, 37, 81, 162, 267, 278
sse.bridges, 280
store.atom, 281
str.igraph, 223
stride, 99, 182, 194, 195, 197, 198, 203, 204,

215, 285
stride (dssp), 98
struct.aln, 282
summary.cna, 57, 68, 154, 229
summary.cna (print.cna), 222
summary.cnapath (cnapath), 58
summary.pdb, 6
summary.pdb (read.pdb), 251

t.test, 212
torsion.pdb, 6, 22, 100, 284, 287
torsion.xyz, 6, 22, 100, 172, 285, 286, 302
transducin (example.data), 105
trim, 288
trim.mol2, 247, 290
trim.pdb, 30, 32, 33, 49, 50, 64, 236, 253, 292
trim.pdbs, 289, 291
trim.xyz, 289, 293

unbound, 294
uniprot, 133, 192, 295
upper.tri, 92

var.pdbs (var.xyz), 296
var.xyz, 161, 296
vec2resno, 297
vmd, 298
vmd.cna, 57, 60, 66, 229
vmd.cnapath, 60
vmd_colors, 47, 300

walktrap.community, 57
wrap.tor, 287, 301
write.crd, 237, 240, 302
write.fasta, 6, 20, 276, 303, 311
write.mol2, 247, 291, 305
write.ncdf, 6, 250, 306
write.pdb, 6, 30, 49, 50, 73, 125, 149, 165,

190, 236, 237, 240, 241, 250, 253,
255, 258, 298, 303, 307, 308, 313

320 INDEX

write.pir, 310
write.pqr, 258, 311

xyz2atom (atom2xyz), 34
xyz2z.pca (project.pca), 227

z2xyz.pca (project.pca), 227

	bio3d-package
	aa.index
	aa.table
	aa123
	aa2index
	aa2mass
	aanma
	aanma.pdbs
	aln2html
	angle.xyz
	as.fasta
	as.pdb
	as.select
	atom.index
	atom.select
	atom2ele
	atom2mass
	atom2xyz
	basename.pdb
	bhattacharyya
	binding.site
	biounit
	blast.pdb
	bounds
	bounds.sse
	bwr.colors
	cat.pdb
	chain.pdb
	check.utility
	clean.pdb
	cmap
	cna
	cnapath
	com
	combine.select
	community.aln
	community.tree
	consensus
	conserv
	convert.pdb
	core.cmap
	core.find
	cov.nma
	covsoverlap
	dccm
	dccm.enma
	dccm.gnm
	dccm.nma
	dccm.pca
	dccm.xyz
	deformation.nma
	diag.ind
	difference.vector
	dist.xyz
	dm
	dssp
	elements
	entropy
	example.data
	filter.cmap
	filter.dccm
	filter.identity
	filter.rmsd
	fit.xyz
	fluct.nma
	formula2mass
	gap.inspect
	geostas
	get.pdb
	get.seq
	gnm
	hclustplot
	hmmer
	identify.cna
	inner.prod
	inspect.connectivity
	is.gap
	is.mol2
	is.pdb
	is.select
	is.xyz
	layout.cna
	lbio3d
	load.enmff
	mask
	mktrj
	motif.find
	mustang
	network.amendment
	nma
	nma.pdb
	nma.pdbs
	normalize.vector
	orient.pdb
	overlap
	pairwise
	pca
	pca.array
	pca.pdbs
	pca.tor
	pca.xyz
	pdb.annotate
	pdb2aln
	pdb2aln.ind
	pdb2sse
	pdbaln
	pdbfit
	pdbs2pdb
	pdbs2sse
	pdbseq
	pdbsplit
	pfam
	plot.bio3d
	plot.cmap
	plot.cna
	plot.core
	plot.dccm
	plot.dmat
	plot.enma
	plot.fasta
	plot.fluct
	plot.geostas
	plot.hmmer
	plot.matrix.loadings
	plot.nma
	plot.pca
	plot.pca.loadings
	plot.rmsip
	print.cna
	print.core
	print.fasta
	print.xyz
	project.pca
	prune.cna
	pymol
	read.all
	read.cif
	read.crd
	read.crd.amber
	read.crd.charmm
	read.dcd
	read.fasta
	read.fasta.pdb
	read.mol2
	read.ncdf
	read.pdb
	read.pdcBD
	read.pqr
	read.prmtop
	rgyr
	rle2
	rmsd
	rmsf
	rmsip
	sdENM
	seq2aln
	seqaln
	seqaln.pair
	seqbind
	seqidentity
	setup.ncore
	sip
	sse.bridges
	store.atom
	struct.aln
	torsion.pdb
	torsion.xyz
	trim
	trim.mol2
	trim.pdbs
	trim.xyz
	unbound
	uniprot
	var.xyz
	vec2resno
	vmd
	vmd_colors
	wrap.tor
	write.crd
	write.fasta
	write.mol2
	write.ncdf
	write.pdb
	write.pir
	write.pqr
	Index

