
Package ‘binr’
October 12, 2022

Title Cut Numeric Values into Evenly Distributed Groups

Version 1.1.1

Author Sergei Izrailev

Maintainer Sergei Izrailev <sizrailev@jabiruventures.com>

Description Implementation of algorithms for cutting numerical values
exhibiting a potentially highly skewed distribution into evenly distributed
groups (bins). This functionality can be applied for binning discrete
values, such as counts, as well as for discretization of continuous values,
for example, during generation of features used in machine learning
algorithms.

URL https://github.com/jabiru/binr

Depends R (>= 2.15),

License Apache License (== 2.0)

Copyright Copyright (C) Collective, Inc. | file inst/COPYRIGHTS

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-26 06:58:08 UTC

R topics documented:

binr . 2
bins . 3
bins.greedy . 5
bins.optimize . 6
bins.quantiles . 8

Index 9

1

https://github.com/jabiru/binr

2 binr

binr Cut Numeric Values Into Evenly Distributed Groups (bins).

Description

Package binr (pronounced as "binner") provides algorithms for cutting numerical values exhibiting
a potentially highly skewed distribution into evenly distributed groups (bins). This functionality can
be applied for binning discrete values, such as counts, as well as for discretization of continuous
values, for example, during generation of features used in machine learning algorithms.

Maintainer

Sergei Izrailev

Copyright

Copyright (C) Collective, Inc.; with portions Copyright (C) Jabiru Ventures LLC

License

Apache License, Version 2.0, available at http://www.apache.org/licenses/LICENSE-2.0

URL

http://github.com/jabiru/binr

Installation from github

devtools::install_github("jabiru/binr")

Author(s)

Sergei Izrailev

See Also

bins, bins.quantiles, bins.optimize, bins.greedy

bins 3

bins Cut Numeric Values Into Evenly Distributed Groups (Bins)

Description

bins - Cuts points in vector x into evenly distributed groups (bins). bins takes 3 separate ap-
proaches to generating the cuts, picks the one resulting in the least mean square deviation from
the ideal cut - length(x) / target.bins points in each bin - and then merges small bins unless
excat.groups is TRUE The 3 approaches are:

1. Use quantiles, and increase the number of even cuts up to max.breaks until the number of
groups reaches the desired number. See bins.quantiles.

2. Start with a single bin with all the data in it and perform bin splits until either the desired
number of bins is reached or there’s no reduction in error (the latter is ignored if exact.groups
is TRUE). See bins.split.

3. Start with length(table(x)) bins, each containing exactly one distinct value and merge bins
until the desired number of bins is reached. If exact.groups is FALSE, continue merging until
there’s no further reduction in error. See bins.merge.

For each of these approaches, apply redistribution of points among existing bins until there’s no
further decrease in error. See bins.move.

bins.getvals - Extracts cut points from the object retured by bins. The cut points are always
between the values in x and weighed such that the cut point splits the area under the line from (lo,
n1) to (hi, n2) in half.

bins.merr - Partitioning the data into bins using splitting, merging and moving optimizes this error
function, which is the mean squared error of point counts in the bins relative to the optimal number
of points per bin.

Usage

bins(x, target.bins, max.breaks = NA, exact.groups = F, verbose = F,
errthresh = 0.1, minpts = NA)

bins.getvals(lst, minpt = -Inf, maxpt = Inf)

bins.merr(binct, target.bins)

Arguments

x Vector of numbers

target.bins Number of groups desired; this is also the max number of groups.

max.breaks Used for initial cut. If exact.groups is FALSE, bins are merged until there’s
no bins with fewer than length(x) / max.breaks points. In bins, one of
max.breaks and minpts must be supplied.

exact.groups if TRUE, the result will have exactly the number of target.bins; if FALSE, the
result may contain fewer than target.bins bins

4 bins

verbose Indicates verbose output.

errthresh If the error is below the provided value, stops after the first rough estimate of the
bins.

minpts Minimum number of points in a bin. In bins, one of max.breaks and minpts
must be supplied.

lst The list returned by the bins function.

minpt The value replacing the lower bound of the cut points.

maxpt The value replacing the upper bound of the cut points.

binct The number of points falling into the bins.

Details

The gains are computed using incremental analytical expresions derived for moving a value from
one bin to the next, splitting a bin into two or merging two bins.

Value

A list containing the following items (not all of them may be present):

• binlo - The "low" value falling into the bin.

• binhi - The "high" value falling into the bin.

• binct - The number of points falling into the bin.

• xtbl - The result of a call to table(x).

• xval - The sorted unique values of the data points x. Essentially, a numeric version of
names(xtbl).

• changed - Flag indicating whether the bins have been modified by the function.

• err - Mean square root error between the resulting counts and ideal bins.

• imax - For the move, merge and split operations, the index of the bin with the maximum gain.

• iside - For the move operation, the side of the move: 0 = left, 1 = right.

• gain - Error gain obtained as the result of the function call.

bins.getvals returns a vector of cut points extracted from the lst object.

See Also

binr, bins.greedy, bins.quantiles bins.optimize

Examples

Not run:
Seriously skewed x:
x <- floor(exp(rnorm(200000 * 1.3)))
cuts <- bins(x, target.bins = 10, minpts = 2000)
cuts$breaks <- bins.getvals(cuts)
cuts$binct
[0, 0] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 7] [8, 10]

bins.greedy 5

129868 66611 28039 13757 7595 4550 4623 2791
[11, 199]
2166

Centered x:
x <- rep(c(1:10,20,31:40), c(rep(1, 10), 100, rep(1,10)))
cuts <- bins(x, target.bins = 3, minpts = 10)
cuts$binct
[1, 10] [20, 20] [31, 40]
10 100 10

End(Not run)

bins.greedy Greedy binning algorithm.

Description

bins.greedy - Wrapper around bins.greedy.impl. Goes over the sorted values of x left to right
and fills the bins with the values until they are about the right size.

bins.greedy.impl - Implementation of a single-pass binning algorithm that examines sorted data
left to right and builds bins of the target size. The bins.greedy wrapper around this function
provides a less involved interface. This is not symmetric wrt direction: symmetric distributions
may not have symmetric bins if there are multiple points with the same values. If a single value
accounts for more than thresh * binsz points, it will be placed in a new bin.

Usage

bins.greedy(x, nbins, minpts = floor(0.5 * length(x)/nbins), thresh = 0.8,
naive = FALSE)

bins.greedy.impl(xval, xtbl, xstp, binsz, nbins, thresh, verbose = F)

Arguments

x Vector of numbers.

nbins Target number of bins.

minpts Minimum number of points in a bin. Only used if naive = FALSE.

thresh Threshold fraction of bin size for the greedy algorithm. Suppose there’s n <
binsz points in the current bin already. Also suppose that the next value V is
represented by m points, and m + n > binsz. Then the algorithm will check if m
> thresh * binsz, and if so, will place the value V into a new bin. If m is below
the threshold, the points having value V are added to the current bin.

naive When TRUE, simply calls bins.greedy.impl with data derived from x. Other-
wise, makes an extra step of marking the values that by themselves take a whole
bin to force the algorithm to place these values in a bin separately.

6 bins.optimize

xval Sorted unique values of the data set x. This should be the numeric version of
names(xtbl).

xtbl Result of a call to table(x).

xstp Stopping points; if xstp[i] == TRUE, the i-th value can’t be merged to the
(i-1)-th one. xstp[1] value is ignored.

binsz Target bin size, i.e., the number of points falling into each bin; for example,
floor(length(x) / nbins)

verbose When TRUE, prints the number of points falling into the bins.

Value

A list with the following items:

• binlo - The "low" value falling into the bin.

• binhi - The "high" value falling into the bin.

• binct - The number of points falling into the bin.

• xtbl - The result of a call to table(x).

• xval - The sorted unique values of the data points x. Essentially, a numeric version of
names(xtbl).

See Also

binr, bins, bins.quantiles bins.optimize

bins.optimize Algorithms minimizing the binning error function bins.merr.

Description

bins.move - Compute the best move of a value from one bin to its neighbor

bins.split - Split a bin into two bins optimally.

bins.merge - Merges the two bins yielding the largest gain in error reduction.

bins.move.iter - Apply bins.move until there’s no change. Can only reduce the error.

bins.split.iter Iterate to repeatedly apply bins.split.

bins.merge.iter Iterate to repeatedly apply bins.merge.

bins.optimize 7

Usage

bins.move(xval, xtbl, binlo, binhi, binct, target.bins, verbose = F)

bins.split(xval, xtbl, binlo, binhi, binct, target.bins, force = F,
verbose = F)

bins.merge(xval, xtbl, binlo, binhi, binct, target.bins, force = F,
verbose = F)

bins.move.iter(lst, target.bins, verbose = F)

bins.split.iter(lst, target.bins, exact.groups = F, verbose = F)

bins.merge.iter(lst, target.bins, exact.groups = F, verbose = F)

Arguments

xval Sorted unique values of the data set x. This should be the numeric version of
names(xtbl).

xtbl Result of a call to table(x).
binlo The "low" value falling into the bin.
binhi The "high" value falling into the bin.
binct The number of points falling into the bin.
target.bins Number of bins desired; this is also the max number of bins.
verbose When TRUE, prints resulting binct.
force When TRUE, splits or merges bins regardless of whether the best gain is positive.
lst List containing xval, xtbl, binlo, binhi, binct.
exact.groups If FALSE, run until either the target.bins is reached or there’s no more splits

or merges that reduce the error. Otherwise (TRUE), run until the target.bins is
reached, even if that increases the error.

Value

A list containing the following items (not all of them may be present):

• binlo - The "low" value falling into the bin.
• binhi - The "high" value falling into the bin.
• binct - The number of points falling into the bin.
• xtbl - The result of a call to table(x).
• xval - The sorted unique values of the data points x. Essentially, a numeric version of
names(xtbl).

• changed - Flag indicating whether the bins have been modified by the function.
• err - Mean square root error between the resulting counts and ideal bins.
• imax - For the move, merge and split operations, the index of the bin with the maximum gain.
• iside - For the move operation, the side of the move: 0 = left, 1 = right.
• gain - Error gain obtained as the result of the function call.

8 bins.quantiles

See Also

bins, binr, bins.greedy, bins.quantiles

bins.quantiles Quantile-based binning

Description

Cuts the data set x into roughly equal groups using quantiles.

Usage

bins.quantiles(x, target.bins, max.breaks, verbose = FALSE)

Arguments

x A numeric vector to be cut in bins.

target.bins Target number of bins, which may not be reached if the number of unique values
is smaller than the specified value.

max.breaks Maximum number of quantiles; must be at least as large as target.bins.

verbose Indicates verbose output.

Details

Because the number of unique values may be smaller than target.bins, the function gradually in-
creases the number of quantiles up to max.breaks or until the target.bins number of bins is reached.

See Also

binr, bins, bins.greedy, bins.optimize

Index

∗ 64-bit
binr, 2

∗ bigint
binr, 2

∗ csv
binr, 2

∗ delimited
binr, 2

∗ file
binr, 2

∗ integer64
binr, 2

∗ read.csv
binr, 2

binr, 2, 4, 6, 8
binr-package (binr), 2
bins, 2, 3, 6, 8
bins.greedy, 2, 4, 5, 8
bins.merge, 3
bins.merge (bins.optimize), 6
bins.move (bins.optimize), 6
bins.optimize, 2, 4, 6, 6, 8
bins.quantiles, 2–4, 6, 8, 8
bins.split, 3
bins.split (bins.optimize), 6

9

	binr
	bins
	bins.greedy
	bins.optimize
	bins.quantiles
	Index

