Package ‘bigtabulate’

October 12, 2022
Version 1.1.9

Title Table, Apply, and Split Functionality for Matrix and
'big.matrix' Objects

Author Michael J. Kane <kaneplusplus@gmail.com> and John W. Emerson
<jayemerson@gmail.com>

Maintainer Michael J. Kane <bigmemoryauthors@gmail.com>

Contact Jay and Mike <bigmemoryauthors@gmail . com>

Depends bigmemory (>= 4.0.0), biganalytics

LinkingTo Rcpp, BH, bigmemory

Description Extend the bigmemory package with 'table’, 'tapply’, and 'split'
support for 'big.matrix' objects. The functions may also be used with native R
matrices for improving speed and memory-efficiency.

License LGPL-3 | Apache License 2.0
Copyright (C) 2015 Michael J. Kane and John W. Emerson

URL http://www.bigmemory.org
LazyLoad yes

Biarch yes

RoxygenNote 7.1.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-04-11 14:12:43 UTC

R topics documented:
bigtabulate L

Index

http://www.bigmemory.org

2 bigtabulate

bigtabulate Extended Tabular Operations for Both matrix and big.matrix Objects

Description

This package extends the bigmemory package, but the functions may also be used with traditional
R matrix and data.frame objects. The function bigtabulate is exposed, but we expect most
users will prefer the higher-level functions bigtable, bigtsummary, and bigsplit. Each of these
functions provides functionality based on a specified conditional structure. In other words, for
every cell of a (possibly multidimensional) contingency table, they provide (or tabulate) some useful
conditional behavior (or statistic(s)) of interest. At the most basic level, this provides an extremely
fast and memory-efficient alternative to table for matrices and data frames.

Usage
bigtabulate(
X’
ccols,
breaks = vector(”list”, length = length(ccols)),
table = TRUE,
useNA = "no",

summary.cols = NULL,
summary.na.rm = FALSE,
splitcol = NULL,
splitret = "list”

)
bigsplit(
X,
ccols,
breaks = vector(”list”, length = length(ccols)),
useNA = "no",

splitcol = NA,
splitret = "list”
)

bigtable(
X’
ccols,
breaks = vector(”list”, length
useNA = "no”

)

length(ccols)),

bigtsummary(
X,
ccols,
breaks = vector(”list”, length

length(ccols)),

bigtabulate

n n

useNA = "no",
cols,

na.rm FALSE

Arguments

X

ccols

breaks

table

useNA
summary.cols
summary.na.rm

splitcol

splitret

cols

na.rm

Details

abig.matrix oradata.frame or amatrix.

a vector of column indices or names specifying which columns should be used
for conditioning (e.g. for building a contingency table or structure for tabula-
tion).

a vector or list of length(ccols). If a vector, NA indicates that the associated
column should be treated like a factor (categorical variable), while an integer
value indicates that the range of the associated column should be broken into a
specified number of evenly-spaced bins (histogram-like). If a list, NA triggers the
factor-like handling, a single number triggers bin-like behavior, while a triplet
(min,max,breaks) indicates that the bin-like behavior should be on a restricted
range rather than on the range of data for that column. See binit for similar
specification of this option.

if TRUE, a list of table counts will be returned.

whether to include extra ’NA’ levels in the table.

column(s) for which table summaries will be calculated.

if TRUE, NAs are removed from table summary calculations.

if NA, the indices which correspond to table-levels are returned. If numeric, the
corresponding column values will be returned in a list corresponding to table-
levels. If NULL, then there is no splitting at all.

if "list"”, the splitcol value is returned as a list. When splitcol is NA,
splitret may be "vector”. Finally, "sparselist” may be a useful option
when the full-blown splitting structure has many unrepresented "cells"; this is
like using the drop=TRUE option to split.

with bigtsummary, which column(s) should be conditionally summarized? This
(or these) will be passed on as summary.cols.

an obvious option for summaries.

This package concentrates on conditional stuctures and calculations, much like table, tapply, and
split. The functions are juiced-up versions of the base R functions; they work on both regular
R matrices and data frames, but are specialized for use with bigmemory and (for more advanced
usage) foreach. They are particularly fast and memory-efficient. We have found that bigsplit
followed by lapply or sapply can be particularly effective, when the subsets produced by the split
are of reasonable size. For intensive calculations, subsequent use of foreach can be helpful (think:
parallel apply-like behavior).

When x is a matrix or a data.frame, some additional work may be required. For example, a
character column of a data.frame will be converted to a factor and then coerced to numeric
values (factor level numberings).

4 bigtabulate

The conditional structure is specified via ccols and breaks. This differs from the design of the
base R functions but is at the root of the gains in speed and memory-efficiency. The breaks may
seem distracting, as most users will simply condition on categorical-like columns. However, it
provides the flexibility to “bin” “continuous”, column(s) much like a histogram. See binit for
another example of this type of option, which can be particularly valuable with massive data sets.

A word of caution: if a “continuous” variable is not “binned”, it will be treated like a factor and the
resulting conditional structure will be large (perhaps immensely so). The function uses left-closed
intervals [a,b) for the "binning" behavior, when specified, except in the right-most bin, where the
interval is entirely closed.

Finally, bigsplit is somewhat more general than split. The default behavior (splitcol=NA)
returns a split of 1:nrow(x) as a list based on the specified conditional structure. However, it
may also return a vector of cell (or category) numbers. And of course it may conduct a split of
x[,splitcoll].

Value

array-like object(s), each similar to what is returned by tapply and the associated R functions.

Examples

data(iris)

First, break up column 2 into 5 groups, and leave column 5 as a

factor (which it is). Note that iris is a data.frame, which is

fine. A matrix would also be fine. A big.matrix would also be fine!
bigtable(iris, ccols=c(2, 5), breaks=list(5, NA))

iris[,2] <- round(iris[,2]) # So columns 2 and 5 will be factor-like
for convenience in these examples, below:

ans1 <- bigtable(iris, c(2, 5))

ansl

Same answer, but with nice factor labels from table(), because
table() handles factors. bigtable() uses the numeric factor
levels only.

table(iris[,2], iris[,51)

Here, our formulation is simpler than split's, and is faster and
more memory-efficient:

ans2 <- bigsplit(iris, c(2, 5), splitcol=1)

ans2[1:3]

split(iris[,1], list(col2=factor(iris[,2]), colb=iris[,51))[1:3]

Index

big.matrix, 3

bigsplit (bigtabulate), 2
bigtable (bigtabulate), 2
bigtabulate, 2,2
bigtsummary (bigtabulate), 2
binit, 3, 4

data.frame, 3
factor, 3
lapply, 3
matrix, 3

sapply, 3
split, 3

table, 2, 3
tapply, 3, 4

	bigtabulate
	Index

