Package ‘bigstatsr’

September 9, 2024
Encoding UTF-8
Type Package
Title Statistical Tools for Filebacked Big Matrices
Version 1.6.1
Date 2024-09-10

Description Easy-to-use, efficient, flexible and scalable statistical tools.
Package bigstatsr provides and uses Filebacked Big Matrices via memory-mapping.
It provides for instance matrix operations, Principal Component Analysis,
sparse linear supervised models, utility functions and more
<doi:10.1093/bioinformatics/bty 185>.

License GPL-3

Language en-US

ByteCompile TRUE

Depends R (>=3.4)

Imports bigassertr (>=0.1.1), bigparallelr (>= 0.2.3), cowplot,

foreach, ggplot2 (>= 3.0), graphics, methods, ps (>= 1.4),
Rcepp, rmio (>= 0.4), RSpectra, stats, tibble, utils

LinkingTo Rcpp, ReppArmadillo, rmio
Suggests bigmemory (>=4.5.33), bigreadr (>= 0.2), covr, data.table,

dplyr, glmnet, hexbin, memuse, ModelMetrics, plotly, ppcor,
RhpcBLASctl, spelling (>= 1.2), testthat

RoxygenNote 7.3.2
URL https://privefl.github.io/bigstatsr/

BugReports https://github.com/privefl/bigstatsr/issues

Collate 'AUC.R' 'FBM-attach.R' 'crochet.R' 'FBM.R' 'FBM-code256.R’
'FBM-copy.R' 'ReppExports.R' 'SVD.R' 'apply-parallelize.R'
'biglasso.R' 'bigstatsr-package.R' 'colstats.R'

‘crossprodSelf.R' 'mult-mat.R' 'mult-vec.R' ‘pcor.R' 'plot.R’
‘predict.R' rfandomSVD.R' 'read-write.R' 'scaling.R’
'summary.R' 'tcrossprodSelf.R' 'transpose.R' 'univLinReg.R’
'univLogReg.R' 'utils-assert.R' 'utils.R' 'zzz.R'

1


https://doi.org/10.1093/bioinformatics/bty185
https://privefl.github.io/bigstatsr/
https://github.com/privefl/bigstatsr/issues

Contents

NeedsCompilation yes

Author Florian Privé [aut, cre],

Michael Blum [ths],
Hugues Aschard [ths]

Maintainer Florian Privé <florian.prive.21@gmail.com>
Repository CRAN
Date/Publication 2024-09-09 21:40:02 UTC

Contents

asPlotlyText . . . . . . . . . o e
as_scaling_fun . . . ...
AUC . . e e e e

big_apply . . . .. e
big_colstats . . . . . . .

Dig_Copy . . . o e e e e
big_cor . . .. e e e
big_counts . . . . . . .
big_cprodMat . . . . . . .. e e e e e e
big_cprodVec . . . . . . . e
big_crossprodSelf . . . . . ...
big_increment . . . . . . .. L. e e e e e e e e
big_parallelize . . . . . . . . . . e
big_prodMat . . . . ..
big_prodVec . . . . . . .. e e e
big_randomSVD . . . ..
big_read . . . . . ..
big_scale . . . . .. e e e e
big_spLinReg . . . . . . . ..
big_spLogReg . . . . . . . ..
big_SVD . .
big_tcrossprodSelf . . . . . ..
big_transpose . . . . . .. L. e e e
big_univLinReg . . . . . . ...
big_univLogReg . . . . . . ..
big_write . . . . .. e e e e
block_Size . . . . . . . e
covar_from_df . . ...
FBM-class . . . . . . . . e e e
FBM-methods . . . . . . . . . . . e
FBM.code256-class . . . . . . . . . . . e
get beta . . . .. e e e e
pasteLoc . . . . . L
PCOT o o e e e
plot.big_sp_list . . . . . . .. e
plotbig SVD . . . . . e



asPlotlyText 3
plot.mhtest . . . . . . .. e e e e e e e 54
predict.big_sp . . . . . . L 55
predict.big_sp_list. . . . . . . . L e 56
predict.big_ SVD . . . . . 57
predict.mhtest . . . . . . ... 58
sub_bk . . .. 59
summary.big_sp_list . . . . .. 60
theme_bigstatsr . . . . . . . ... e e 60
without_downcast_warning . . . . . . . . . .. ..o e 61

Index 62

asPlotlyText Plotly text

Description

Convert a data.frame to plotly text

Usage

asPlotlyText(df)
Arguments

df A data.frame
Value

A character vector of the length of df’s number of rows.

Examples

set.seed(1)

X <- big_attachExtdata()
svd <- big_SVD(X, big_scale(), k = 10)

p <- plot(svd, type = "scores"”)

pop <- rep(c("POP1", "POP2", "POP3"), c(143, 167, 207))
df <- data.frame(Population = pop, Index = 1:517)

plot(p2 <- p + ggplot2::aes(text = asPlotlyText(df)))
## Not run: plotly::ggplotly(p2, tooltip = "text")



4 AUC

as_scaling_fun Scaling function creator

Description

Convenience function to create a function to be used as parameter fun.scaling when you want to

use your own precomputed center and scale.

Usage

as_scaling_fun(center.col, scale.col, ind.col = seq_along(center.col))

Arguments
center.col Vector of centers corresponding to ind.col.
scale.col Vector of scales corresponding to ind. col.
ind.col Column indices for which these are provided.
Value

A function to be used as parameter fun.scaling.

Examples

fun.scaling <- as_scaling_fun(1:6, 2:7)

fun.scaling(NULL, NULL, 1:3) # first two parameters X and ind.row are not used here
fun.scaling2 <- as_scaling_fun(1:6, 2:7, ind.col = 6:1)

fun.scaling2(NULL, NULL, 1:3)

X <- big_attachExtdata()

sc <- big_scale()(X)

fun <- as_scaling_fun(center = sc$center, scale = sc$scale)
obj.svd <- big_randomSVD(X, fun.scaling = fun)

obj.svd2 <- big_randomSVD(X, fun.scaling = big_scale())
all.equal(obj.svd, obj.svd2)

AUC AUC

Description

Compute the Area Under the ROC Curve (AUC) of a predictor and possibly its 95% confidence

interval.



AUC 5

Usage

AUC(pred, target, digits = NULL)

AUCBoot(pred, target, nboot = 10000, seed = NA, digits = NULL)

Arguments
pred Vector of predictions.
target Vector of true labels (must have exactly two levels, no missing values).
digits See round. Default doesn’t use rounding.
nboot Number of bootstrap samples used to evaluate the 95% CI. Default is 1e4.
seed See set.seed. Use it for reproducibility. Default doesn’t set any seed.
Details

Other packages provide ways to compute the AUC (see this answer). I chose to compute the AUC
through its statistical definition as a probability:

P(score(eqse) > score(Teontrol))-

Note that I consider equality between scores as a 50%-probability of one being greater than the
other.

Value

The AUC, a probability, and possibly its 2.5% and 97.5% quantiles (95% CI).

See Also

wilcox.test

Examples

set.seed(1)

AUC(c(@, @), @:1) # Equality of scores
AUC(c(0.2, 0.1, 1), c(@, @, 1)) # Perfect AUC
X <= rnorm(100)

z <- rnorm(length(x), x, abs(x))

y <- as.numeric(z > @)

print(AUC(x, y))

print(AUCBoot(x, y))

# Partial AUC

pAUC <- function(pred, target, p = 0.1) {
val.min <- min(target)
q <- quantile(pred[target == val.min], probs =1 - p)
ind <- (target != val.min) | (pred > q)
bigstatsr::AUC(pred[ind], target[ind]) * p


https://stats.stackexchange.com/a/146174/135793

6 big_apply

PAUC(X, y)
pAUC(x, vy, 0.2)

big_apply Split-Apply-Combine

Description

A Split-Apply-Combine strategy to apply common R functions to a Filebacked Big Matrix.

Usage

big_apply(
X,
a.FUN,
a.combine = NULL,
ind = cols_along(X),
ncores = 1,
block.size = block_size(nrow(X), ncores),

Arguments
X An object of class FBM.
a.FUN The function to be applied to each subset matrix. It must take a Filebacked Big
Matrix as first argument and ind, a vector of indices, which are used to split the
data. For example, if you want to apply a function to X[ind.row, ind.col],
you may use X[ind.row, ind.col[ind]] in a.FUN.
a.combine Function to combine the results with do.call. This function should accept
multiple arguments (. ..). For example, you can use c, cbind, rbind. This
package also provides function plus to add multiple arguments together. The
default is NULL, in which case the results are not combined and are returned as a
list, each element being the result of a block.
ind Initial vector of subsetting indices. Default is the vector of all column indices.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
block.size Maximum number of columns (or rows, depending on how you use ind for
subsetting) read at once. Default uses block_size.
Extra arguments to be passed to a. FUN.
Details

This function splits indices in parts, then apply a given function to each subset matrix and finally
combine the results. If parallelization is used, this function splits indices in parts for parallelization,
then split again them on each core, apply a given function to each part and finally combine the
results (on each cluster and then from each cluster). See also the corresponding vignette.


https://privefl.github.io/bigstatsr/articles/big-apply.html

big_colstats 7

See Also
big_parallelize bigparallelr::split_parapply

Examples

X <- big_attachExtdata()

# get the means of each column
colMeans_sub <- function(X, ind) colMeans(X[, ind])
str(colmeans <- big_apply(X, a.FUN = colMeans_sub, a.combine = 'c'))

# get the norms of each column
colNorms_sub <- function(X, ind) sqrt(colSums(X[, ind]*2))
str(colnorms <- big_apply(X, colNorms_sub, a.combine = 'c'))

# get the sums of each row

# split along rows: need to change the "complete” “ind™ parameter

str(rowsums <- big_apply(X, a.FUN = function(X, ind) rowSums(X[ind, 1),
ind = rows_along(X), a.combine = 'c',
block.size = 100))

# it is usually preferred to split along columns

# because matrices are stored by column.

str(rowsums2 <- big_apply(X, a.FUN = function(X, ind) rowSums(X[, indl),
a.combine = 'plus'))

big_colstats Standard univariate statistics

Description

Standard univariate statistics for columns of a Filebacked Big Matrix. For now, the sum and var
are implemented (the mean and sd can easily be deduced, see examples).

Usage

big_colstats(X, ind.row = rows_along(X), ind.col = cols_along(X), ncores = 1)

Arguments
X An object of class FBM.
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Value

Data.frame of two numeric vectors sum and var with the corresponding column statistics.



8 big_copy

See Also

colSums apply

Examples

set.seed(1)
X <- big_attachExtdata()

# Check the results
str(test <- big_colstats(X))

# Only with the first 100 rows

ind <- 1:100

str(test2 <- big_colstats(X, ind.row
plot(test$sum, test2$sum)
abline(Im(test2$sum ~ test$sum), col = "red”, lwd = 2)

ind))

X.ind <- X[ind, ]
all.equal(test2$sum, colSums(X.ind))
all.equal(test2$var, apply(X.ind, 2, var))

# deduce mean and sd
# note that the are also implemented in big_scale()
means <- test2$sum / length(ind) # if using all rows,
# divide by nrow(X) instead
all.equal(means, colMeans(X.ind))
sds <- sqrt(test2$var)
all.equal(sds, apply(X.ind, 2, sd))

big_copy Copy as a Filebacked Big Matrix

Description

Deep copy of a Filebacked Big Matrix with possible subsetting. This should also work for any
matrix-like object.

Usage
big_copy(
X,
ind.row = rows_along(X),
ind.col = cols_along(X),

type = typeof(X),

backingfile = tempfile(tmpdir = getOption("FBM.dir")),
block.size = block_size(length(ind.row)),
is_read_only = FALSE



big_copy

Arguments

X

ind.row

ind.col

type

backingfile

block.size

is_read_only

Value

Could be any matrix-like object.

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Type of the Filebacked Big Matrix (default is double). Either

e "double” (double precision — 64 bits)
* "float” (single precision — 32 bits)
e "integer"

* "unsigned short"”: can store integer values from 0 to 65535. It has voca-
tion to become the basis for a FBM. code65536.

* "raw” or "unsigned char”: can store integer values from O to 255. It is
the basis for class FBM.code256 in order to access 256 arbitrary different
numeric values. It is used in package bigsnpr.

Path to the file storing the FBM data on disk. An extension ".bk' will be
automatically added. Default stores in the temporary directory, which you can
change using global option "FBM.dir".

Maximum number of columns read at once. Default uses block_size.

Whether the FBM is read-only? Default is FALSE.

A copy of X as a new FBM object.

Examples

X <- FBM(10, 10, init = 1:100)

X1

X2 <- big_copy(X, ind.row = 1:5)

X2[1

mat <- matrix(101:200, 10)
X3 <- big_copy(mat, type = "double"”) # as_FBM() would be faster here

X3[1

X.code <- big_attachExtdata()

class(X.code)

X2.code <- big_copy(X.code)

class(X2.code)

all.equal(X.code[], X2.code[])


https://goo.gl/pHCCmo

10 big_cor

big_cor Correlation

Description

Compute the (Pearson) correlation matrix of a Filebacked Big Matrix.

Usage

big_cor(
X,
ind.row = rows_along(X),
ind.col = cols_along(X),
block.size = block_size(nrow(X)),
backingfile = tempfile(tmpdir = getOption("FBM.dir"))

)
Arguments

X An object of class FBM.

ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

block.size Maximum number of columns read at once. Default uses block_size.

backingfile Path to the file storing the FBM data on disk. An extension '.bk' will be
automatically added. Default stores in the temporary directory, which you can
change using global option "FBM.dir".
Value

A temporary FBM, with the following two attributes:

* anumeric vector center of column scaling,

* anumeric vector scale of column scaling.

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to
reduce the size of these blocks. Instead, you can use the MKL or OpenBLAS in order to accelerate
these block matrix computations. You can control the number of cores used by these optimized
matrix libraries with bigparallelr::set_blas_ncores().

See Also

cor big_crossprodSelf


https://forum.posit.co/t/intel-mkl-integration-to-r-on-windows/176071

big_counts

Examples

11

X <- FBM(13, 17, init = rnorm(221))

# Comparing with cor
K <- big_cor(X)

class(K)
dim(K)

K$backingfile

true <- cor(X[1)
all.equal(K[], true)

# Using only half of the data
n <- nrow(X)

ind <- sort(sample(n, n/2))

K2 <- big_cor(X, ind.row = ind)

true2 <- cor(X[ind, 1)
all.equal(K2[], true2)

big_counts

Counts for class FBM.code256

Description

Counts by columns (or rows) the number of each unique element of a FBM. code256.

Usage

big_counts(
X.code,
ind.row
ind.col

byrow

)

Arguments

X.code

ind.row

ind.col

byrow

= rows_along(X.code),
= cols_along(X.code),
FALSE

An object of class FBM.code256.

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Count by rows rather than by columns? Default is FALSE (count by columns).



12

Value

A matrix of counts of K x m (or n) elements, where

* K is the number of unique elements of the BM. code,

e nis its number of rows,

e m is its number of columns.

big_cprodMat

Beware that K is up to 256. So, if you apply this on a Filebacked Big Matrix of one million
columns, you will create a matrix of nearly 1GB!

Examples

X <- big_attachExtdata()

class(X) # big_counts() is available for class FBM.code256 only

X[1:5, 1:8]

# by columns
big_counts(X, ind.row = 1:5, ind.col = 1:8)

# by rows

big_counts(X, ind.row = 1:5, ind.col = 1:8, byrow = TRUE)

big_cprodMat Cross-product with a matrix

Description

Cross-product between a Filebacked Big Matrix and a matrix.

Usage

big_cprodMat(

)

X,

A.row,

ind.row = rows_along(X),

ind.col = cols_along(X),

ncores = 1,

block.size = block_size(nrow(X), ncores),
center = NULL,

scale = NULL

## S4 method for signature 'FBM,matrix’
crossprod(x, y)

## S4 method for signature 'FBM,matrix’



big_cprodMat

13

tcrossprod(x, y)

## S4 method for signature 'matrix,FBM'

crossprod(x, y)

## S4 method for signature 'matrix,FBM'
tcrossprod(x, y)

Arguments
X

A.row

ind.row

ind.col

ncores
block.size
center
scale

X

y

Value

XT. A

Matrix parallelization

An object of class FBM.
A matrix with length(ind.row) rows.

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Maximum number of columns read at once. Default uses block_size.

Vector of same length of ind. col to subtract from columns of X.

Vector of same length of ind.col to divide from columns of X.

A ’double’ FBM or a matrix.

A ’double’ FBM or a matrix.

Large matrix computations are made block-wise and won’t be parallelized in order to not have to
reduce the size of these blocks. Instead, you can use the MKL or OpenBLAS in order to accelerate
these block matrix computations. You can control the number of cores used by these optimized
matrix libraries with bigparallelr::set_blas_ncores().

Examples

X <- big_attachExtdata()

n <- nrow(X)
m <- ncol(X)

A <- matrix(@, n, 10); A[] <- rnorm(length(A))

test <- big_cprodMat(X, A)
true <- crossprod(X[1, A)
all.equal(test, true)

X2 <- big_copy(X, type = "double")
all.equal(crossprod(X2, A), true)


https://forum.posit.co/t/intel-mkl-integration-to-r-on-windows/176071

14 big_cprodVec

# subsetting
ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_cprodMat(X, A, ind.row, ind.col),
error = function(e) print(e))

# returns an error. You need to use the subset of A:

test2 <- big_cprodMat(X, A[ind.row, 1, ind.row, ind.col)

true2 <- crossprod(X[ind.row, ind.col], A[ind.row, 1)

all.equal(test2, true2)

big_cprodVec Cross-product with a vector

Description

Cross-product between a Filebacked Big Matrix and a vector.

Usage

big_cprodVec(
X,
y.row,
ind.row = rows_along(X),
ind.col = cols_along(X),
center = NULL,

scale = NULL,
ncores = 1
)
Arguments
X An object of class FBM.
y.row A vector of same size as ind. row.
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
center Vector of same length of ind. col to subtract from columns of X.
scale Vector of same length of ind. col to divide from columns of X.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Value

XT . y.



big_crossprodSelf 15

Examples

X <- big_attachExtdata()
n <- nrow(X)
m <- ncol(X)
y <= rnorm(n)

test <- big_cprodVec(X, vy) # vector
true <- crossprod(X[], y) # one-column matrix
all.equal(test, as.numeric(true))

# subsetting
ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_cprodVec(X, y, ind.row, ind.col),
error = function(e) print(e))

# returns an error. You need to use the subset of y:

test2 <- big_cprodVec(X, y[ind.row], ind.row, ind.col)

true2 <- crossprod(X[ind.row, ind.col], y[ind.row])

all.equal(test2, as.numeric(true2))

big_crossprodSelf Crossprod

Description

Compute X.row” X .row for a Filebacked Big Matrix X after applying a particular scaling to it.

Usage

big_crossprodSelf(
X,
fun.scaling = big_scale(center = FALSE, scale = FALSE),
ind.row = rows_along(X),
ind.col = cols_along(X),
block.size = block_size(nrow(X)),
backingfile = tempfile(tmpdir = getOption("FBM.dir"))

## S4 method for signature 'FBM,missing'’
crossprod(x, y)

Arguments

X An object of class FBM.



16

fun.scaling

ind.row

ind.col

block.size

backingfile

Value

big_crossprodSelf

A function with parameters X, ind. row and ind. col, and that returns a data.frame
with $center and $scale for the columns corresponding to ind. col, to scale
each of their elements such as followed:
X ; — center;
scale;
Default doesn’t use any scaling. You can also provide your own center and
scale by using as_scaling_fun().

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Maximum number of columns read at once. Default uses block_size.

Path to the file storing the FBM data on disk. An extension '.bk' will be
automatically added. Default stores in the temporary directory, which you can
change using global option "FBM.dir".

A ’double’ FBM.
Missing.

A temporary FBM, with the following two attributes:

* a numeric vector center of column scaling,

* anumeric vector scale of column scaling.

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to
reduce the size of these blocks. Instead, you can use the MKL or OpenBLAS in order to accelerate
these block matrix computations. You can control the number of cores used by these optimized
matrix libraries with bigparallelr::set_blas_ncores().

See Also

crossprod

Examples

X <= FBM(13, 17, init = rnorm(221))
true <- crossprod(X[])

# No scaling

K1 <- crossprod(X)

class(K1)

all.equal(K1, true)

K2 <- big_crossprodSelf(X)


https://forum.posit.co/t/intel-mkl-integration-to-r-on-windows/176071

big_increment 17

class(K2)
K2$backingfile
all.equal(K2[]1, true)

# big_crossprodSelf() provides some scaling and subsetting

# Example using only half of the data:

n <- nrow(X)

ind <- sort(sample(n, n/2))

K3 <- big_crossprodSelf(X, fun.scaling = big_scale(), ind.row = ind)
true2 <- crossprod(scale(X[ind, 1))

all.equal(K3[], true2)

big_increment Increment an FBM

Description

Increment an FBM

Usage

big_increment(X, add, use_lock = FALSE)

Arguments
X An FBM (of type double) to increment.
add A matrix of same dimensions as X. Or a vector of same size.
use_lock Whether to use locks when incrementing. Default is FALSE. This is useful when
incrementing in parallel.
Value

Returns nothing (NULL, invisibly).

Examples

X <- FBM(10, 10, init = @)
mat <- matrix(rnorm(100), 10, 10)

big_increment(X, mat)
all.equal(X[], mat)

big_increment(X, mat)
all.equal(X[], 2 * mat)



18 big_parallelize

big_parallelize Split-parApply-Combine

Description

A Split-Apply-Combine strategy to parallelize the evaluation of a function.

Usage

big_parallelize(
X,
p.FUN,
p.combine = NULL,
ind = cols_along(X),
ncores = nb_cores(),

Arguments
X An object of class FBM.
p.FUN The function to be applied to each subset matrix. It must take a Filebacked Big
Matrix as first argument and ind, a vector of indices, which are used to split the
data. For example, if you want to apply a function to X[ind.row, ind.col],
you may use X[ind.row, ind.col[ind]] in a.FUN.
p.combine Function to combine the results with do.call. This function should accept
multiple arguments (...). For example, you can use ¢, cbind, rbind. This
package also provides function plus to add multiple arguments together. The
default is NULL, in which case the results are not combined and are returned as a
list, each element being the result of a block.
ind Initial vector of subsetting indices. Default is the vector of all column indices.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Extra arguments to be passed to p. FUN.
Details

This function splits indices in parts, then apply a given function to each part and finally combine
the results.

Value

Return a list of ncores elements, each element being the result of one of the cores, computed on a
block. The elements of this list are then combined with do.call(p.combine, .) if p.combined is
given.



big_parallelize 19

See Also

big_apply bigparallelr::split_parapply

Examples

## Not run: # CRAN is super slow when parallelism.
X <- big_attachExtdata()

### Computation on all the matrix
true <- big_colstats(X)

big_colstats_sub <- function(X, ind) {
big_colstats(X, ind.col = ind)
}
# 1. the computation is split along all the columns
# 2. for each part the computation is done, using “big_colstats”
# 3. the results (data.frames) are combined via “rbind~.
test <- big_parallelize(X, p.FUN = big_colstats_sub,
p.combine = 'rbind', ncores = 2)
all.equal(test, true)

### Computation on a part of the matrix

n <- nrow(X)

m <- ncol(X)

rows <- sort(sample(n, n/2)) # sort to provide some locality in accesses
cols <- sort(sample(m, m/2)) # idem

true2 <- big_colstats(X, ind.row = rows, ind.col = cols)

big_colstats_sub2 <- function(X, ind, rows, cols) {
big_colstats(X, ind.row = rows, ind.col = cols[ind])
}
# This doesn't work because, by default, the computation is spread
# along all columns. We must explictly specify the “ind~ parameter.
tryCatch(big_parallelize(X, p.FUN = big_colstats_sub2,
p.combine = 'rbind', ncores = 2,
rows = rows, cols = cols),
error = function(e) message(e))

# This now works, using ~ind = seq_along(cols)™.

test2 <- big_parallelize(X, p.FUN = big_colstats_sub2,
p.combine = 'rbind', ncores = 2,
ind = seq_along(cols),
rows = rows, cols = cols)

all.equal(test2, true2)

## End(Not run)



20 big_prodMat
big_prodMat Product with a matrix
Description
Product between a Filebacked Big Matrix and a matrix.
Usage
big_prodMat(
X,
A.col,
ind.row = rows_along(X),
ind.col = cols_along(X),
ncores = 1,
block.size = block_size(nrow(X), ncores),
center = NULL,
scale = NULL
)
## S4 method for signature 'FBM,matrix’
X %*% Yy
## S4 method for signature 'matrix,FBM'
X %*% Yy
Arguments
X An object of class FBM.
A.col A matrix with length(ind.col) rows.
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
block.size Maximum number of columns read at once. Default uses block_size.
center Vector of same length of ind. col to subtract from columns of X.
scale Vector of same length of ind. col to divide from columns of X.
X A ’double’ FBM or a matrix.
y A ’double’ FBM or a matrix.
Value

XA



big_prodVec 21

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to
reduce the size of these blocks. Instead, you can use the MKL or OpenBLAS in order to accelerate
these block matrix computations. You can control the number of cores used by these optimized
matrix libraries with bigparallelr::set_blas_ncores().

Examples

X <- big_attachExtdata()

n <- nrow(X)

m <- ncol(X)

A <- matrix(@, m, 10); A[] <- rnorm(length(A))

test <- big_prodMat(X, A)
true <- X[J %*% A
all.equal(test, true)

X2 <- big_copy(X, type = "double")
all.equal(X2 %*% A, true)

# subsetting
ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_prodMat(X, A, ind.row, ind.col),
error = function(e) print(e))

# returns an error. You need to use the subset of A:

test2 <- big_prodMat(X, A[ind.col, ], ind.row, ind.col)

true2 <- X[ind.row, ind.col] %*% A[ind.col, ]

all.equal(test2, true2)

big_prodVec Product with a vector

Description

Product between a Filebacked Big Matrix and a vector.

Usage

big_prodVec(
X,
y.col,
ind.row = rows_along(X),
ind.col = cols_along(X),
center = NULL,
scale = NULL,
ncores = 1


https://forum.posit.co/t/intel-mkl-integration-to-r-on-windows/176071

22

Arguments

X
y.col

ind.row

ind.col

center
scale

ncores

Value

X -y.

Examples

big_randomSVD

An object of class FBM.
A vector of same size as ind.col.

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Vector of same length of ind. col to subtract from columns of X.
Vector of same length of ind. col to divide from columns of X.

Number of cores used. Default doesn’t use parallelism. You may use nb_cores.

X <- big_attachExtdata()

n <- nrow(X)
m <- ncol(X)
y <= rnorm(m)

test <- big_prodvVec(X, y) # vector
true <- X[J] %*% y # one-column matrix
all.equal(test, as.numeric(true))

# subsetting

ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_prodVec(X, y, ind.row, ind.col),

function(e) print(e))

# returns an error. You need to use the subset of y:
test2 <- big_prodVec(X, y[ind.col], ind.row, ind.col)
true2 <- X[ind.row, ind.col] %*% y[ind.col]
all.equal(test2, as.numeric(true2))

big_randomSVD

Randomized partial SVD

Description

An algorithm for partial SVD (or PCA) of a Filebacked Big Matrix based on the algorithm in
RSpectra (by Yixuan Qiu and Jiali Mei).

This algorithm is linear in time in all dimensions and is very memory-efficient. Thus, it can be used
on very large big.matrices.



big_randomSVD

Usage

23

big_randomSVD(

X,

fun.scaling = big_scale(center = FALSE, scale = FALSE),

ind.row = rows_along(X),
ind.col = cols_along(X),
k =10,
tol = 1e-04,
verbose = FALSE,
ncores = 1,
fun.prod = big_prodVec,
fun.cprod = big_cprodVec

)

Arguments
X An object of class FBM.

fun.scaling

ind.row

ind.col

tol
verbose
ncores

fun.prod

fun.cprod

A function with parameters X, ind. row and ind. col, and that returns a data.frame
with $center and $scale for the columns corresponding to ind. col, to scale
each of their elements such as followed:

X, ; — center;

scale;
Default doesn’t use any scaling. You can also provide your own center and
scale by using as_scaling_fun().

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute only a few singular vectors/values.

Precision parameter of svds. Default is Te-4.

Should some progress be printed? Default is FALSE.

Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Function that takes 6 arguments (in this order):

* a matrix-like object X,

* a vector X,

* a vector of row indices ind. row of X,

¢ a vector of column indices ind.col of X,

* avector of column centers (corresponding to ind.col),

* a vector of column scales (corresponding to ind.col), and compute the
product of X (subsetted and scaled) with x.

Same as fun.prod, but for the rranspose of X.



24 big_randomSVD

Value

A named list (an S3 class "big_SVD") of

* d, the singular values,

* u, the left singular vectors,

* v, the right singular vectors,

* niter, the number of the iteration of the algorithm,
* nops, number of Matrix-Vector multiplications used,
* center, the centering vector,

* scale, the scaling vector.

Note that to obtain the Principal Components, you must use predict on the result. See examples.

Note

The idea of using this Implicitly Restarted Arnoldi Method algorithm comes from G. Abraham, Y.
Qiu, and M. Inouye, FlashPCA2: principal component analysis of biobank-scale genotype datasets,
bioRxiv: doi:10.1101/094714.

It proved to be faster than our implementation of the "blanczos" algorithm in Rokhlin, V., Szlam, A.,
& Tygert, M. (2010). A Randomized Algorithm for Principal Component Analysis. SIAM Journal
on Matrix Analysis and Applications, 31(3), 1100-1124. doi:10.1137/080736417.

See Also

svds

Examples

set.seed(1)

X <- big_attachExtdata()
K <-10

# Using only half of the data for "training”

n <- nrow(X)

ind <- sort(sample(n, n/2))

test <- big_randomSVD(X, fun.scaling = big_scale(), ind.row = ind, k = K)
str(test)

pca <- prcomp(X[ind, 1, center = TRUE, scale. = TRUE)

# same scaling
all.equal(test$center, pca$center)
all.equal(test$scale, pca$scale)

# use this function to predict scores
class(test)

scores <- predict(test)

# scores and loadings are the same or opposite


https://doi.org/10.1101/094714
https://doi.org/10.1137/080736417

big_read 25

plot(scores, pca$x[, 1:K1)
plot(test$v, pca$rotation[, 1:K1)
plot(test$u)

plot(test, type = "scores")

# projecting on new data

ind2 <- setdiff(rows_along(X), ind)
scores.test2 <- predict(test, X, ind.row = ind2)
scores.test3 <- predict(pca, X[-ind, 1)
plot(scores.test2, scores.test3[, 1:K])

big_read Read a file as FBM

Description

Read a file as a Filebacked Big Matrix by using package {bigreadr}. For a mini-tutorial, please see
this vignette.

Usage

big_read(
file,
select,
filter = NULL,
type = c("double”, "float”, "integer”, "unsigned short”, "unsigned char"”, "raw"),
backingfile = drop_ext(file),

)
Arguments
file File to read.
select Indices of columns to read (sorted). The length of select will be the number of
columns of the resulting FBM.
filter Vector used to subset the rows of each data frame.
type Type of the Filebacked Big Matrix (default is double). Either

e "double” (double precision — 64 bits)

* "float” (single precision — 32 bits)

e "integer"

* "unsigned short"”: can store integer values from 0 to 65535. It has voca-
tion to become the basis for a FBM. code65536.

* "raw” or "unsigned char”: can store integer values from 0 to 255. It is
the basis for class FBM.code256 in order to access 256 arbitrary different
numeric values. It is used in package bigsnpr.


https://goo.gl/91oNxU
https://goo.gl/pHCCmo

26 big_scale

backingfile Path to the file storing the FBM data on disk. An extension ".bk" will be auto-
matically added. Default uses file without its extension.

Arguments passed on to bigreadr: :big_fread2

nb_parts Number of parts in which to split reading (and transforming). Parts
are referring to blocks of selected columns. Default uses part_size to set
a good value.

skip Number of lines to skip at the beginning of file.
progress Show progress? Default is FALSE.

part_size Size of the parts if nb_parts is not supplied. Default is 500 *
10242 (500 MB).

Value

A Filebacked Big Matrix of type type with length(select) columns.

big_scale Some scaling functions

Description
Some scaling functions for a Filebacked Big Matrix to be used as the fun.scaling parameter of
some functions of this package.

Usage

big_scale(center = TRUE, scale = TRUE)

Arguments
center A logical value: whether to return means or 0s.
scale A logical value: whether to return standard deviations or 1s. You can’t use scale
without using center.
Details

One could think about less common scalings, such as for example the "y-aware" scaling which uses
the inverse of betas of column-wise linear regression as scaling. See this post for details. It would
be easy to implement it using big_colstats to get column means and big_univLinReg to get
betas (and then inverse them).

Value

A new function that returns a data.frame of two vectors "center" and "scale" which are of the length
of ind.col.


https://goo.gl/8G8WMa

big_spLinReg 27

See Also

as_scaling_fun

Examples

X <- big_attachExtdata()

# No scaling

big_noscale <- big_scale(center = FALSE, scale = FALSE)
class(big_noscale) # big_scale returns a new function
str(big_noscale(X))

big_noscale2 <- big_scale(center = FALSE)
str(big_noscale2(X)) # you can't scale without centering

# Centering

big_center <- big_scale(scale = FALSE)
str(big_center(X))

# + scaling

str(big_scale() (X))

big_spLinReg Sparse linear regression

Description

Fit lasso (or elastic-net) penalized linear regression for a Filebacked Big Matrix. Covariables can
be added (/\ penalized by default /!\).

Usage

big_spLinReg(
X,
y.train,
ind.train = rows_along(X),
ind.col = cols_along(X),
covar.train = NULL,
base.train = NULL,
pf.X = NULL,
pf.covar = NULL,
alphas = 1,
power_scale = 1,
power_adaptive = 0,
K =109,
ind.sets = NULL,
nlambda = 200,
nlam.min = 50,
n.abort = 10,
dfmax = 50000,



28 big_spLinReg

warn = TRUE,
ncores = 1,
)
Arguments

X An object of class FBM.

y.train Vector of responses, corresponding to ind. train.

ind.train An optional vector of the row indices that are used, for the training part. If not
specified, all rows are used. Don’t use negative indices.

ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

covar.train Matrix of covariables to be added in each model to correct for confounders (e.g.
the scores of PCA), corresponding to ind.train. Default is NULL and corre-
sponds to only adding an intercept to each model. You can use covar_from_df ()
to convert from a data frame.

base.train Vector of base predictions. Model will be learned starting from these predic-
tions. This can be useful if you want to previously fit a model with large-effect
variables that you don’t want to penalize.

pf.X A multiplicative factor for the penalty applied to each coefficient. If supplied,
pf.X must be a numeric vector of the same length as ind.col. Default is all
1. The purpose of pf.X is to apply differential penalization if some coefficients
are thought to be more likely than others to be in the model. Setting SOME to 0
allows to have unpenalized coefficients.

pf.covar Same as pf.X, but for covar.train. You might want to set some to 0 as vari-
ables with large effects can mask small effects in penalized regression.

alphas The elastic-net mixing parameter that controls the relative contribution from the
lasso (11) and the ridge (12) penalty. The penalty is defined as

allBllr + (1 = a)/2]|8I[3.

alpha =1 is the lasso penalty and alpha in between @ (1e-4) and 1 is the elastic-
net penalty. Default is 1. You can pass multiple values, and only one will be
used (optimized by grid-search).

power_scale When using lasso (alpha = 1), penalization to apply that is equivalent to scal-

ing genotypes dividing by (standard deviation)*power_scale. Default is 1 and
corresponding to standard scaling. Using O would correspond to using unscaled
variables and using 0.5 is Pareto scaling. If you e.g. use power_scale = c(@,
0.5, 1), the best value in CMSA will be used (just like with alphas).

power_adaptive Multiplicative penalty factor to apply to variables in the form of 1/ m_j*power_adaptive,
where m_j is the marginal statistic for variable j. Default is 0, which effectively
disables this option. If you e.g. use power_adaptive =c(@, 0.5, 1.5), the
best value in CMSA will be used (just like with alphas).

K Number of sets used in the Cross-Model Selection and Averaging (CMSA) pro-
cedure. Default is 10.



big_spLinReg

ind.sets

nlambda
nlam.min

n.abort

dfmax

warn

ncores

Details

29

Integer vectors of values between 1 and K specifying which set each index of the
training set is in. Default randomly assigns these values but it can be useful to
set this vector for reproducibility, or if you want to refine the grid-search over
alphas using the same sets.

The number of lambda values. Default is 200.

Minimum number of lambda values to investigate. Default is 50.

Number of lambda values for which prediction on the validation set must de-
crease before stopping. Default is 10.

Upper bound for the number of nonzero coefficients. Default is 50e3 because,
for large data sets, computational burden may be heavy for models with a large
number of nonzero coefficients.

Whether to warn if some models may not have reached a minimum. Default is
TRUE.

Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Arguments passed on to COPY_biglasso_main
lambda.min.ratio The smallest value for lambda, as a fraction of lambda.max.

Default is . 0001 if the number of observations is larger than the number of
variables and .01 otherwise.

eps Convergence threshold for inner coordinate descent. The algorithm iterates
until the maximum change in the objective after any coefficient update is
less than eps times the null deviance. Default value is 1e-5.

max.iter Maximum number of iterations. Default is 1000.
return.all Deprecated. Now always return all models.

This is a modified version of one function of package biglasso. It adds the possibility to train
models with covariables and use many types of FBM (not only double ones). Yet, it only corresponds
to screen = "SSR" (Sequential Strong Rules).

Also, to remove the choice of the lambda parameter, we introduce the Cross-Model Selection and
Averaging (CMSA) procedure:

1. This function separates the training set in K folds (e.g. 10).

2. In turn,

each fold is considered as an inner validation set and the others (K - 1) folds form an inner
training set,

the model is trained on the inner training set and the corresponding predictions (scores)
for the inner validation set are computed,

the vector of scores which maximizes log-likelihood is determined,

the vector of coefficients corresponding to the previous vector of scores is chosen.

3. The K resulting vectors of coefficients are then averaged into one final vector of coefficients.

Value

Return an object of class big_sp_list (alist of length(alphas) x K) that has 3 methods predict,

summary and plot.


https://github.com/pbreheny/biglasso

30 big_spLogReg

References

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J. and Tibshirani, R. J. (2012),
Strong rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 74: 245-266. doi:10.1111/j.14679868.2011.01004.x.

Zeng, Y., and Breheny, P. (2017). The biglasso Package: A Memory- and Computation-Efficient
Solver for Lasso Model Fitting with Big Data in R. doi:10.32614/RJ2021001.

Privé, F., Aschard, H., and Blum, M. G.B. (2019). Efficient implementation of penalized regression
for genetic risk prediction. Genetics, 212: 65-74. doi:10.1534/genetics.119.302019.

See Also

glmnet

Examples

set.seed(1)

simulating some data

<- 230

<- 730

<- FBM(N, M, init = rnorm(N * M, sd = 5))
<- rowSums(X[, 1:10]1) + rnorm(N)

covar <- matrix(rnorm(N * 3), N)

< X X Z %=

ind.train <- sort(sample(nrow(X), 150))
ind.test <- setdiff(rows_along(X), ind.train)

# fitting model for multiple lambdas and alphas

test <- big_spLinReg(X, y[ind.train], ind.train = ind.train,
covar.train = covar[ind.train, 1,
alphas = c(1, 0.1), K = 3, warn = FALSE)

# peek at the models

plot(test)

summary(test, sort = TRUE)
summary(test, sort = TRUE)$message

# prediction for other data -> only the best alpha is used

summary(test, best.only = TRUE)

pred <- predict(test, X, ind.row = ind.test, covar.row = covar[ind.test, 1)
plot(pred, y[ind.test], pch = 20); abline(®, 1, col = "red")

big_spLogReg Sparse logistic regression

Description

Fit lasso (or elastic-net) penalized logistic regression for a Filebacked Big Matrix. Covariables can
be added (/\ penalized by default /!\).


https://doi.org/10.1111/j.1467-9868.2011.01004.x
https://doi.org/10.32614/RJ-2021-001
https://doi.org/10.1534/genetics.119.302019

big_spLogReg

Usage

big_splLogReg(
X,
yo1.train,

31

ind.train = rows_along(X),
ind.col = cols_along(X),

covar.train =
base.train =
pf.X = NULL,

NULL,

NULL,

pf.covar = NULL,

alphas = 1,
power_scale =

1

power_adaptive = 0,

K =109,

ind.sets = NULL,

nlambda = 200
nlam.min = 50
n.abort = 10,
dfmax = 50000
warn = TRUE,
ncores = 1,

Arguments

X
y01.train

ind.train

ind.col

covar.train

base.train

pf.X

pf.covar

’

’

’

An object of class FBM.
Vector of responses, corresponding to ind. train. Must be only 0s and 1s.

An optional vector of the row indices that are used, for the training part. If not
specified, all rows are used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Matrix of covariables to be added in each model to correct for confounders (e.g.
the scores of PCA), corresponding to ind. train. Default is NULL and corre-
sponds to only adding an intercept to each model. You can use covar_from_df ()
to convert from a data frame.

Vector of base predictions. Model will be learned starting from these predic-
tions. This can be useful if you want to previously fit a model with large-effect
variables that you don’t want to penalize.

A multiplicative factor for the penalty applied to each coefficient. If supplied,
pf.X must be a numeric vector of the same length as ind.col. Default is all
1. The purpose of pf.X is to apply differential penalization if some coefficients
are thought to be more likely than others to be in the model. Setting SOME to 0
allows to have unpenalized coefficients.

Same as pf.X, but for covar.train. You might want to set some to O as vari-
ables with large effects can mask small effects in penalized regression.



32

alphas

power_scale

power_adaptive

ind.sets

nlambda
nlam.min

n.abort

dfmax

warn

ncores

big_spLogReg

The elastic-net mixing parameter that controls the relative contribution from the
lasso (11) and the ridge (12) penalty. The penalty is defined as

allBll + (1 = o) /2]18]13.

alpha = 1 is the lasso penalty and alpha in between @ (1e-4) and 1 is the elastic-
net penalty. Default is 1. You can pass multiple values, and only one will be
used (optimized by grid-search).

When using lasso (alpha = 1), penalization to apply that is equivalent to scal-
ing genotypes dividing by (standard deviation)*power_scale. Default is 1 and
corresponding to standard scaling. Using 0 would correspond to using unscaled
variables and using 0.5 is Pareto scaling. If you e.g. use power_scale = c(@,
0.5, 1), the best value in CMSA will be used (just like with alphas).

Multiplicative penalty factor to apply to variables in the form of 1/m_j*power_adaptive,
where m_j is the marginal statistic for variable j. Default is 0, which effectively
disables this option. If you e.g. use power_adaptive =c(@, 0.5, 1.5), the

best value in CMSA will be used (just like with alphas).

Number of sets used in the Cross-Model Selection and Averaging (CMSA) pro-
cedure. Default is 10.

Integer vectors of values between 1 and K specifying which set each index of the
training set is in. Default randomly assigns these values but it can be useful to
set this vector for reproducibility, or if you want to refine the grid-search over
alphas using the same sets.

The number of lambda values. Default is 200.
Minimum number of lambda values to investigate. Default is 50.

Number of lambda values for which prediction on the validation set must de-
crease before stopping. Default is 10.

Upper bound for the number of nonzero coefficients. Default is 50e3 because,
for large data sets, computational burden may be heavy for models with a large
number of nonzero coefficients.

Whether to warn if some models may not have reached a minimum. Default is
TRUE.

Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Arguments passed on to COPY_biglasso_main

lambda.min.ratio The smallest value for lambda, as a fraction of lambda.max.
Default is . 0001 if the number of observations is larger than the number of
variables and . 001 otherwise.

eps Convergence threshold for inner coordinate descent. The algorithm iterates
until the maximum change in the objective after any coefficient update is
less than eps times the null deviance. Default value is 1e-5.

max.iter Maximum number of iterations. Default is 1000.

return.all Deprecated. Now always return all models.



big_spLogReg 33

Details

This is a modified version of one function of package biglasso. It adds the possibility to train
models with covariables and use many types of FBM (not only double ones). Yet, it only corresponds
to screen = "SSR" (Sequential Strong Rules).

Also, to remove the choice of the lambda parameter, we introduce the Cross-Model Selection and
Averaging (CMSA) procedure:

1. This function separates the training set in K folds (e.g. 10).

2. In turn,

* each fold is considered as an inner validation set and the others (K - 1) folds form an inner
training set,

¢ the model is trained on the inner training set and the corresponding predictions (scores)
for the inner validation set are computed,

* the vector of scores which maximizes log-likelihood is determined,

* the vector of coefficients corresponding to the previous vector of scores is chosen.

3. The K resulting vectors of coefficients are then averaged into one final vector of coefficients.

Value

Return an object of class big_sp_list (alist of length(alphas) x K) that has 3 methods predict,
summary and plot.

References

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J. and Tibshirani, R. J. (2012),
Strong rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 74: 245-266. doi:10.1111/j.14679868.2011.01004.x.

Zeng, Y., and Breheny, P. (2017). The biglasso Package: A Memory- and Computation-Efficient
Solver for Lasso Model Fitting with Big Data in R. doi:10.32614/RJ2021001.

Privé, F., Aschard, H., and Blum, M. G.B. (2019). Efficient implementation of penalized regression
for genetic risk prediction. Genetics, 212: 65-74. doi:10.1534/genetics.119.302019.

See Also

glmnet

Examples

set.seed(2)

# simulating some data

N <- 230

M <- 730

X <= FBM(N, M, init = rnorm(N * M, sd = 5))

y01 <- as.numeric((rowSums(X[, 1:10]1) + 2 x rnorm(N)) > @)
covar <- matrix(rnorm(N * 3), N)

ind.train <- sort(sample(nrow(X), 150))


https://github.com/pbreheny/biglasso
https://doi.org/10.1111/j.1467-9868.2011.01004.x
https://doi.org/10.32614/RJ-2021-001
https://doi.org/10.1534/genetics.119.302019

34 big_SVD

ind.test <- setdiff(rows_along(X), ind.train)

# fitting model for multiple lambdas and alphas

test <- big_spLogReg(X, y@1[ind.train], ind.train = ind.train,
covar.train = covar[ind.train, 1,
alphas = c(1, 0.1), K = 3, warn = FALSE)

# peek at the models

plot(test)

summary(test, sort = TRUE)
summary(test, sort = TRUE)$message

# prediction for other data -> only the best alpha is used
summary(test, best.only = TRUE)
pred <- predict(test, X, ind.row = ind.test, covar.row = covar[ind.test, 1)
AUC(pred, y@1[ind.test])
library(ggplot2)
gplot(pred, fill = as.logical(y@1[ind.test]),
geom = "density"”, alpha = 1(0.4)) +

labs(fill = "Case?") +

theme_bigstatsr() +

theme(legend.position = c(0.52, 0.8))

big_SVD Partial SVD

Description

An algorithm for partial SVD (or PCA) of a Filebacked Big Matrix through the eigen decomposition
of the covariance between variables (primal) or observations (dual). Use this algorithm only if
there is one dimension that is much smaller than the other. Otherwise use big_randomSVD.

Usage

big_SVD(
X,
fun.scaling = big_scale(center = FALSE, scale = FALSE),
ind.row = rows_along(X),
ind.col = cols_along(X),
k = 10,
block.size = block_size(nrow(X))

Arguments

X An object of class FBM.



big SVD

fun.scaling

ind.row

ind.col

block.size

Details

35

A function with parameters X, ind. row and ind. col, and that returns a data.frame
with $center and $scale for the columns corresponding to ind. col, to scale
each of their elements such as followed:

X ; — center;
scale;

Default doesn’t use any scaling. You can also provide your own center and
scale by using as_scaling_fun().

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute only a few singular vectors/values. If more is
needed, have a look at https://stackoverflow.com/a/46380540/6103040.

Maximum number of columns read at once. Default uses block_size.

TogetX:U-D-VT,

* if the number of observations is small, this function computes K (2) =X -XT=U.-D?2.UT
andthenV = XT .U - D1,

* if the number of variable is small, this function computes K (1) =XT. X~V -D?.VT and
thenU =X -V -D71,

* if both dimensions are large, use big_randomSVD instead.

Value

A named list (an S3 class "big_SVD") of

* d, the singular values,

* u, the left singular vectors,

* v, the right singular vectors,

* center, the centering vector,

* scale, the scaling vector.

Note that to obtain the Principal Components, you must use predict on the result. See examples.

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to
reduce the size of these blocks. Instead, you can use the MKL or OpenBLAS in order to accelerate
these block matrix computations. You can control the number of cores used by these optimized
matrix libraries with bigparallelr::set_blas_ncores().


https://forum.posit.co/t/intel-mkl-integration-to-r-on-windows/176071

36

See Also

prcomp

Examples

set.seed(1)

X <- big_attachExtdata()
n <- nrow(X)

# Using only half of the data
ind <- sort(sample(n, n/2))

test <- big_SVD(X, fun.scaling = big_scale(), ind.row = ind)
str(test)
plot(test$u)

pca <- prcomp(X[ind, 1, center = TRUE, scale. = TRUE)

# same scaling
all.equal(test$center, pca$center)
all.equal(test$scale, pca$scale)

# scores and loadings are the same or opposite

# except for last eigenvalue which is equal to @

# due to centering of columns

scores <- test$u %*% diag(test$d)

class(test)

scores2 <- predict(test) # use this function to predict scores
all.equal(scores, scores2)

dim(scores)

dim(pca$x)

tail(pca$sdev)

plot(scores2, pca$x[, 1:ncol(scores2)])

plot(test$v[1:100, 1, pca$rotation[1:100, 1:ncol(scores2)])

# projecting on new data

X2 <- sweep(sweep(X[-ind, 1, 2, test$center, '-'), 2, test$scale,
scores.test <- X2 %*% test$v

ind2 <- setdiff(rows_along(X), ind)

scores.test2 <- predict(test, X, ind.row = ind2) # use this
all.equal(scores.test, scores.test2)

scores.test3 <- predict(pca, X[-ind, 1)

plot(scores.test2, scores.test3[, 1:ncol(scores.test2)])

)

big_tcrossprodSelf

big_tcrossprodSelf Tcrossprod

Description

Compute X.rowX.row” for a Filebacked Big Matrix X after applying a particular scaling to it.



big_tcrossprodSelf 37

Usage

big_tcrossprodSelf(
X,
fun.scaling = big_scale(center = FALSE, scale = FALSE),
ind.row = rows_along(X),
ind.col = cols_along(X),
block.size = block_size(nrow(X))

)

## S4 method for signature 'FBM,missing'’
tcrossprod(x, y)

Arguments
X An object of class FBM.
fun.scaling A function with parameters X, ind. row and ind. col, and that returns a data.frame
with $center and $scale for the columns corresponding to ind. col, to scale
each of their elements such as followed:
X ; — center;
scale;
Default doesn’t use any scaling. You can also provide your own center and
scale by using as_scaling_fun().
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
block.size Maximum number of columns read at once. Default uses block_size.
X A ’double’ FBM.
y Missing.
Value

A temporary FBM, with the following two attributes:

* a numeric vector center of column scaling,

* anumeric vector scale of column scaling.

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to
reduce the size of these blocks. Instead, you can use the MKL or OpenBLAS in order to accelerate
these block matrix computations. You can control the number of cores used by these optimized
matrix libraries with bigparallelr::set_blas_ncores().

See Also

tcrossprod


https://forum.posit.co/t/intel-mkl-integration-to-r-on-windows/176071

38 big_transpose

Examples

X <= FBM(13, 17, init = rnorm(221))
true <- tcrossprod(X[])

# No scaling

K1 <- tcrossprod(X)
class(K1)
all.equal(K1, true)

K2 <- big_tcrossprodSelf(X)
class(K2)

K2$backingfile
all.equal(K2[1, true)

# big_tcrossprodSelf() provides some scaling and subsetting

# Example using only half of the data:

n <- nrow(X)

ind <- sort(sample(n, n/2))

K3 <- big_tcrossprodSelf (X, fun.scaling = big_scale(), ind.row = ind)
true2 <- tcrossprod(scale(X[ind, 1))

all.equal(K3[], true2)

big_transpose Transpose an FBM

Description

This function implements a simple cache-oblivious algorithm for the transposition of a Filebacked
Big Matrix.

Usage

big_transpose(X, backingfile = tempfile(tmpdir = getOption("FBM.dir")))

Arguments

X An object of class FBM.

backingfile Path to the file storing the FBM data on disk. An extension '.bk' will be
automatically added. Default stores in the temporary directory, which you can
change using global option "FBM.dir".

Value

The new transposed FBM. Dimensions and type are automatically determined from the input FBM.



big_univLinReg

Examples

39

X <- FBM(6, 5, init = rnorm(30))

X1

Xt <- big_transpose(X)
identical (t(X[1), Xt[1)

big_univLinReg

Column-wise linear regression

Description

Slopes of column-wise linear regressions of each column of a Filebacked Big Matrix, with some
other associated statistics. Covariates can be added to correct for confounders.

Usage

big_univLinReg(

X,
y.train,
ind.train

ncores =

Arguments

X
y.train

ind.train

ind.col

covar.train

thr.eigval

ncores

1

rows_along(X),
ind.col = cols_along(X),

covar.train
thr.eigval = 1e-04,

NULL,

An object of class FBM.
Vector of responses, corresponding to ind. train.

An optional vector of the row indices that are used, for the training part. If not
specified, all rows are used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Matrix of covariables to be added in each model to correct for confounders (e.g.
the scores of PCA), corresponding to ind.train. Default is NULL and corre-
sponds to only adding an intercept to each model. You can use covar_from_df ()
to convert from a data frame.

Threshold to remove "insignificant" singular vectors. Default is Te-4.

Number of cores used. Default doesn’t use parallelism. You may use nb_cores.



40 big_univLinReg

Value

A data.frame with 3 elements:

1. the slopes of each regression,
2. the standard errors of each slope,

3. the t-scores associated with each slope. This is also an object of class mhtest. See methods(class
= "mhtest").

See Also

Im

Examples

set.seed(1)

X <- big_attachExtdata()

n <- nrow(X)

y <= rnorm(n)

covar <- matrix(rnorm(n * 3), n)

X1 <= X[, 1] # only first column of the Filebacked Big Matrix

# Without covar

test <- big_univLinReg(X, y)

## New class “mhtest”

class(test)

attr(test, "transfo")

attr(test, "predict")

## plot results

plot(test)

plot(test, type = "Volcano")

## To get p-values associated with the test
test$p.value <- predict(test, logl@ = FALSE)
str(test)

summary (Im(y ~ X1))$coefficients[2, ]

# With all data
str(big_univLinReg(X, y, covar = covar))
summary (Im(y ~ X1 + covar))$coefficients[2, ]

# With only half of the data
ind.train <- sort(sample(n, n/2))
str(big_univLinReg(X, y[ind.train],
covar.train = covar[ind.train, 1],
ind.train = ind.train))
summary(Im(y ~ X1 + covar, subset = ind.train))$coefficients[2, ]



big_univLogReg 41

big_univLogReg Column-wise logistic regression

Description

Slopes of column-wise logistic regressions of each column of a Filebacked Big Matrix, with some
other associated statistics. Covariates can be added to correct for confounders.

Usage

big_univLogReg(
X,
y01.train,
ind.train = rows_along(X),
ind.col = cols_along(X),
covar.train = NULL,

tol = 1e-08,
maxiter = 20,
ncores = 1
)
Arguments
X An object of class FBM.
y01.train Vector of responses, corresponding to ind.train. Must be only 0s and 1s.
ind.train An optional vector of the row indices that are used, for the training part. If not
specified, all rows are used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
covar.train Matrix of covariables to be added in each model to correct for confounders (e.g.
the scores of PCA), corresponding to ind.train. Default is NULL and corre-
sponds to only adding an intercept to each model. You can use covar_from_df ()
to convert from a data frame.
tol Relative tolerance to assess convergence of the coefficient. Default is Te-8.
maxiter Maximum number of iterations before giving up. Default is 20. Usually, con-
vergence is reached within 3 or 4 iterations. If there is not convergence, glm is
used instead for the corresponding column.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Details

If convergence is not reached by the main algorithm for some columns, the corresponding niter
element is set to NA and a message is given. Then, glm is used instead for the corresponding column.
If it can’t converge either, all corresponding estimations are set to NA.



42 big_univLogReg

Value
A data.frame with 4 elements:

1. the slopes of each regression,
2. the standard errors of each slope,

3. the number of iteration for each slope. If is NA, this means that the algorithm didn’t converge,
and glm was used instead.

4. the z-scores associated with each slope. This is also an object of class mhtest. See methods(class
= "mhtest").

See Also

glm

Examples

set.seed(1)

X <- big_attachExtdata()

n <- nrow(X)

y01 <- sample(@:1, size = n, replace = TRUE)
covar <- matrix(rnorm(n * 3), n)

X1 <= X[, 1] # only first column of the Filebacked Big Matrix

# Without covar

test <- big_univLogReg(X, y01)

## new class “mhtest”

class(test)

attr(test, "transfo")

attr(test, "predict”)

## plot results

plot(test)

plot(test, type = "Volcano")

## To get p-values associated with the test
test$p.value <- predict(test, logl@ = FALSE)
str(test)

summary (glm(y@1 ~ X1, family = "binomial”))$coefficients[2, ]

# With all data
str(big_univLogReg(X, y@1, covar.train = covar))
summary (glm(y@1 ~ X1 + covar, family = "binomial”))$coefficients[2, ]

# With only half of the data
ind.train <- sort(sample(n, n/2))
str(big_univLogReg(X, y@1[ind.train],
covar.train = covar[ind.train, 1],
ind.train = ind.train))
summary(glm(y@1l ~ X1 + covar, family = "binomial”,
subset = ind.train))$coefficients[2, ]



big_write

43

big_write

Write an FBM to a file

Description

Write a file from a Filebacked Big Matrix (by parts).

Usage

big_write(
X,
file,

every_nrow,

ind.row = rows_along(X),
ind.col = cols_along(X),

progress = FALSE

)

Arguments
X An object of class FBM.
file File to write to.

every_nrow

ind.row

ind.col

progress

Value

Number of rows to write at once.

Other arguments to be passed to data.table::fwrite, except x, file, append,
row.names, col.names and showProgress.

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

Show progress? Default is FALSE.

Input parameter file, invisibly.

Examples

X <- big_attachExtdata()
csv <- big_write(X, tempfile(), every_nrow = 100, progress = interactive())



44 covar_from_df

block_size Determine a correct value for the block.size parameter

Description

It determines the value of block.size such that a matrix of doubles of size n x block.size takes
less memory than getOption("bigstatsr.block.sizeGB") GigaBytes (default is 1GB).

Usage

block_size(n, ncores = 1)

Arguments
n The number of rows.
ncores The number of cores.
Value

An integer >= 1.

Examples

block_size(1e3)
block_size(1e6)
block_size(1e6, 6)

covar_from_df Numeric matrix from data frame

Description

Transform a data frame to a numeric matrix by one-hot encoding factors. The last factor value
is always omitted to prevent having a singular matrix when adding a column of Is (intercept) in
models.

Usage
covar_from_df (df)

Arguments

df A data frame.

Value

A numeric matrix.



FBM-class 45

Examples

mat <- covar_from_df(iris)
head(mat)

FBM-class Class FBM

Description

A reference class for storing and accessing matrix-like data stored in files on disk. This is very
similar to Filebacked Big Matrices provided by the bigmemory package (see the corresponding
vignette).

Convert a matrix (or a data frame) to an FBM.

Usage
FBM(
nrow,
ncol,
type = c("double”, "float”, "integer"”, "unsigned short”, "unsigned char"”, "raw"),
init = NULL,

backingfile = tempfile(tmpdir = getOption("FBM.dir")),
create_bk = TRUE,
is_read_only = FALSE

)

as_FBM(
X?
type = c("double”, "float”, "integer"”, "unsigned short”, "unsigned char”, "raw"),
backingfile = tempfile(tmpdir = getOption("FBM.dir")),
is_read_only = FALSE

)
Arguments
nrow Number of rows.
ncol Number of columns.
type Type of the Filebacked Big Matrix (default is double). Either

e "double” (double precision — 64 bits)

* "float” (single precision — 32 bits)

e "integer"

* "unsigned short"”: can store integer values from 0 to 65535. It has voca-
tion to become the basis for a FBM. code65536.

* "raw” or "unsigned char”: can store integer values from 0 to 255. It is
the basis for class FBM.code256 in order to access 256 arbitrary different
numeric values. It is used in package bigsnpr.


https://privefl.github.io/bigstatsr/articles/bigstatsr-and-bigmemory.html
https://privefl.github.io/bigstatsr/articles/bigstatsr-and-bigmemory.html
https://goo.gl/pHCCmo

46 FBM-class

init Either a single value (e.g. @) or as many value as the number of elements of the
FBM. Default doesn’t initialize the matrix.

backingfile Path to the file storing the FBM data on disk. An extension '.bk' will be
automatically added. Default stores in the temporary directory, which you can
change using global option "FBM.dir".

create_bk Whether to create a backingfile (the default) or use an existing one (which should
be named by the backingfile parameter and have an extension ".bk"). For
example, this could be used to convert a filebacked big.matrix from package
bigmemory to a FBM (see the corresponding vignette).

is_read_only = Whether the FBM is read-only? Default is FALSE.

X A matrix or an data frame (2-dimensional data).

Details
An object of class FBM has many fields:

* $address: address of the external pointer containing the underlying C++ object for read-only
mapping, to be used as a XPtr<FBM> in C++ code

* $extptr: (internal) use $address instead

* $address_rw: address of the external pointer containing the underlying C++ object for read/write
mapping, to be used as a XPtr<FBM_RW> in C++ code

e $extptr_rw: (internal) use $address_rw instead

* $nrow: number of rows

¢ $ncol: number of columns

e $type: (internal) use type_size or type_chr instead

* $type_chr: FBM type as character, e.g. "double"

* $type_size: size of FBM type in bytes (e.g. "double" is 8 and "float" is 4)

e $bhackingfile or $bk: File with extension 'bk’ that stores the numeric data of the FBM
* $rds: ’rds’ file (that may not exist) corresponding to the "bk’ file

* $is_saved: whether this object is stored in $rds?

* $is_read_only: whether it is (not) allowed to modify data?

And some methods:

* $save(): Save the FBM object in $rds. Returns the FBM.

* add_columns(<ncol_add>): Add some columns to the FBM by appending the backingfile
with some data. Returns the FBM invisibly.

* $bm(): Get this object as a filebacked.big.matrix to be used by package {bigmemory}.
* $bm.desc(): Get this object as a filebacked.big.matrix descriptor to be used by package

{bigmemory}.
* $check_write_permissions(): Error if the FBM is read-only.

See Also

big_attach big_copy


https://privefl.github.io/bigstatsr/articles/bigstatsr-and-bigmemory.html

FBM-methods 47

Examples

mat <- matrix(1:4, 2)
X_from_mat <- as_FBM(mat)

## You can save this object in an .rds file to use it in another session
X_from_mat$is_saved

X_from_mat$save ()

X_from_mat$is_saved

(rds <- X_from_mat$rds)

## Use big_attach() to load the FBM object in another session

X_from_mat <- big_attach(rds)

## Standard accessors

X <- FBM(10, 10)

typeof (X)

X[J] <= rnorm(length(X))

X[, 1:6]

X[] <- 1:100

X[, 11

X[1, 1 # not recommended for large matrices
XL, -11

X[, c(TRUE, FALSE)]
X[cbind(1:10, 1:10)] <- NA_real_

X[] # access as standard R matrix

X <- FBM(150, 5)

X[] <- iris  ## you can replace with a df (but factors -> integers)
X2 <- as_FBM(iris)

identical (X[1, X2[]1)

FBM-methods Methods for the FBM class

Description

Methods for the FBM class

Accessor methods for class FBM. You can use positive and negative indices, logical indices (that are
recycled) and also a matrix of indices (but only positive ones).

Dimension and type methods for class FBM.

Usage

## S4 method for signature 'FBM,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

## S4 replacement method for signature 'FBM,ANY,ANY,ANY'



48 FBM.code256-class

x[i, j, ...] <= value

## S4 method for signature 'FBM'
dim(x)

## S4 method for signature 'FBM'
length(x)

## S4 method for signature 'FBM'
typeof (x)

## S4 method for signature 'FBM'

diag(x)
Arguments

X A FBM object.

i A vector of indices (or nothing). You can use positive and negative indices,
logical indices (that are recycled) and also a matrix of indices (but only positive
ones).

j A vector of indices (or nothing). You can use positive and negative indices,
logical indices (that are recycled).

Not used. Just to make nargs work.

drop Whether to delete the dimensions of a matrix which have one dimension equals
to 1.

value The values to replace. Should be of length 1 or of the same length of the subset
to replace.

FBM. code256-class Class FBM.code256
Description

A reference class for storing and accessing up to 256 arbitrary different values using a Filebacked
Big Matrix of type unsigned char. Compared to a Filebacked Big Matrix, it adds a slot code
which is used as a lookup table of size 256.

Usage
FBM. code256(
nrow,
ncol,
code = rep(NA_real_, 256),
init = NULL,

backingfile = tempfile(tmpdir = getOption("FBM.dir")),
create_bk = TRUE,



FBM.code256-class 49

is_read_only = FALSE
)

add_code256(x, code)

Arguments
nrow Number of rows.
ncol Number of columns.
code A numeric vector (of length 256). You should construct it with rep(NA_real_,
256) and then replace the values which are of interest to you.
init Either a single value (e.g. @) or as many value as the number of elements of the

FBM. Default doesn’t initialize the matrix.

backingfile Path to the file storing the FBM data on disk. An extension '.bk' will be
automatically added. Default stores in the temporary directory, which you can
change using global option "FBM.dir".

create_bk Whether to create a backingfile (the default) or use an existing one (which should
be named by the backingfile parameter and have an extension ".bk"). For
example, this could be used to convert a filebacked big.matrix from package
bigmemory to a FBM (see the corresponding vignette).

is_read_only = Whether the FBM is read-only? Default is FALSE.
X A FBM.

Examples

X <- FBM(10, 10, type = "raw")

X[] <- sample(as.raw(@:3), size = length(X), replace = TRUE)
X1

# From an FBM of type 'raw' ('unsigned char')
code <- rep(NA_real_, 256)
code[1:3] <- c(1, 3, 5)

X.code <- add_code256(X, code)
X.code[]

# Or directly
.code2 <- FBM.code256(10, 10, code, init = sample(as.raw(@:3), 100, TRUE))
X.code2[]

>

# Get a new FBM.code256 object with another code (but same underlying data)
X.code3 <- X.code$copy(code = rnorm(256))
all.equal(X.code$code256, code)


https://privefl.github.io/bigstatsr/articles/bigstatsr-and-bigmemory.html

50 pasteLoc

get_beta Combine sets of coefficients

Description

Combine sets of coefficients

Usage
get_beta(betas, method = c("geometric-median”, "mean-wise”, "median-wise"))
Arguments
betas Matrix of coefficient vectors to be combined.
method Method for combining vectors of coefficients. The default uses the geometric
median.
Value

A vector of resulting coefficients.

pastelLoc Get coordinates on plot

Description

Get coordinates on a plot by mouse-clicking.

Usage

pasteLoc(nb, digits = c(3, 3))

Arguments
nb Number of positions.
digits 2 integer indicating the number of decimal places (respectively for x and y co-
ordinates).
Value

A list of coordinates. Note that if you don’t put the result in a variable, it returns as the command
text for generating the list. This can be useful to get coordinates by mouse-clicking once, but then
using the code for convenience and reproducibility.


https://en.wikipedia.org/wiki/Geometric_median
https://en.wikipedia.org/wiki/Geometric_median

pcor 51

Examples

## Not run:

plot(runif (20, max = 5000))

# note the negative number for the rounding of $y
coord <- pasteLoc(3, digits = c(2, -1))
text(coord, c(”a", "b", "c"))

## End(Not run)

pcor Partial correlation

Description

Partial correlation between x and y, after having adjusted both for z.

Usage

pcor(x, y, z, alpha = 0.05)

Arguments
X A numeric vector.
y A numeric vector.
z A data frame, which can contain characters or factors.
alpha Type-I error for the confidence interval (CI). Default is . @5, corresponding to
a95% CI.
Value

The partial correlation, and the lower and upper bounds of its CI.

Examples

pcor(iris[[1]], iris[[2]1], iris[-(1:2)1)



52

plot.big_SVD

plot.big_sp_list

Plot method

Description

Plot method for class big_sp_list.

Usage

## S3 method for class 'big_sp_list'
plot(x, coeff =1,

Arguments

X

coeff

Value

An object of class big_sp_list.

Relative size of text. Default is 1.

Not used.

A ggplot2 object. You can plot it using the print method. You can modify it as you wish by
adding layers. You might want to read this chapter to get more familiar with the package ggplot2.

plot.big_SVD

Plot method

Description

Plot method for class big_SVD.

Usage
## S3 method for class 'big_SVD'
plot(
X,
type = c("screeplot”, "scores”,
nval = length(x$d),
scores = c(1, 2),
loadings = 1,
ncol = NULL,
coeff = 1,
viridis = TRUE,
cols = 2,

"loadings"),


https://r4ds.had.co.nz/data-visualisation.html

plot.big_SVD

Arguments

X

type

nval

scores

loadings

ncol
coeff
viridis

cols

Value

An object of class big_SVD.
Either

* "screeplot": plot of decreasing singular values (the default).

* "scores": plot of the scores associated with 2 Principal Components.
* "loadings": plot of loadings associated with 1 Principal Component.

Number of singular values to plot. Default plots all computed.

53

Vector of indices of the two PCs to plot. Default plots the first two PCs. If

providing more than two, it produces many plots.

Indices of PC loadings to plot. Default plots the first vector of loadings.

If multiple vector of loadings are to be plotted, this defines the number of

columns of the resulting multiplot.
Relative size of text. Default is 1.
Deprecated argument.
Deprecated. Use ncol instead.

Not used.

A ggplot2 object. You can plot it using the print method. You can modify it as you wish by
adding layers. You might want to read this chapter to get more familiar with the package ggplot2.

See Also

big_SVD, big_randomSVD and asPlotlyText.

Examples

set.seed(1)

X <- big_attachExtdata()
svd <- big_SVD(X, big_scale(), k = 10)

# screeplots

plot(svd) # 3 PCs seems "significant”
plot(svd, coeff = 1.5) # larger font for papers

# scores plot
plot(svd, type
plot(svd, type
plot(svd, type

"scores”) # first 2 PCs
"scores”, scores = c(1, 3))
"scores”, scores = 1:4, ncol = 2, coeff = 0.7)

## add color (recall that this return a “ggplot2™ object)
class(obj <- plot(svd, type = "scores"))

pop <- rep(c("POP1", "POP2", "POP3"), c(143, 167, 207))
library(ggplot2)
print(obj2 <- obj + aes(color = pop) + labs(color = "Population”))
## change the place of the legend


https://r4ds.had.co.nz/data-visualisation.html

54 plot.mhtest

print(obj3 <- obj2 + theme(legend.position = c(0.82, 0.17)))
## change the title and the labels of the axes
obj3 + ggtitle("Yet another title”) + xlab("with an other 'x' label”)

# loadings

plot(svd, type = "loadings”, loadings
## all loadings

plot(svd, type = "loadings”, loadings = 1:2, coeff = @.7, ncol = 1)

2)

# Percentage of variance explained by the PCs
# See https://github.com/privefl/bigstatsr/issues/83

# dynamic plots, require the package **plotlyx*
## Not run: plotly::ggplotly(obj3)

plot.mhtest Plot method

Description

Plot method for class mhtest.

Usage

## S3 method for class 'mhtest'’

plot(x, type = c("hist”, "Manhattan”, "Q-Q", "Volcano"), coeff =1, ...)
Arguments

X An object of class mhtest.

type Either.

* "hist": histogram of p-values (the default).

* "Manhattan": plot of the negative logarithm (in base 10) of p-values.

* "Q-Q": Q-Q plot.

* "Volcaco": plot of the negative logarithm of p-values against the estimation
of coefficients (e.g. betas in linear regression)

coeff Relative size of text. Default is 1.
Not used.

Value
A ggplot2 object. You can plot it using the print method. You can modify it as you wish by
adding layers. You might want to read this chapter to get more familiar with the package ggplot2.
See Also
big_univLinReg, big_univLogReg, plot.big_SVD and asPlotlyText.


https://r4ds.had.co.nz/data-visualisation.html

predict.big_sp

Examples

set.seed(1)

55

X <- big_attachExtdata()
y <= rnorm(nrow(X))
test <- big_univLinReg(X, y)

plot(test)
plot(test, type
plot(test, type

plot(test, type =
plot(test, type =

"Volcano")

IIQ_QII)

"Manhattan")

"Manhattan”) + ggplot2::ggtitle(NULL)

predict.big_sp

Predict method

Description

Predict method for class big_sp.

Usage
## S3 method for class 'big_sp'
predict(object, X, ind.row, ind.col, covar.row = NULL, ncores =1, ...)
Arguments
object Object of class big_sp.
X An object of class FBM.
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
covar.row Matrix of covariables to be added in each model to correct for confounders (e.g.
the scores of PCA), corresponding to ind. row. Default is NULL and corresponds
to only adding an intercept to each model. You can use covar_from_df () to
convert from a data frame.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Not used.
Value

A vector of scores, corresponding to ind. row.

See Also

big_spLinReg and big_spLogReg.



56 predict.big_sp_list

predict.big_sp_list Predict method

Description

Predict method for class big_sp_list.

Usage

## S3 method for class 'big_sp_list'
predict(
object,
X,
ind.row = rows_along(X),
ind.col = attr(object, "ind.col"),
covar.row = NULL,

proba = (attr(object, "family"”) == "binomial”),
base.row = NULL,
ncores = 1,
)
Arguments
object Object of class big_sp_list.
X An object of class FBM.
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
covar.row Matrix of covariables to be added in each model to correct for confounders (e.g.
the scores of PCA), corresponding to ind. row. Default is NULL and corresponds
to only adding an intercept to each model. You can use covar_from_df () to
convert from a data frame.
proba Whether to return probabilities?
base.row Vector of base predictions, corresponding to ind. row.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
Not used.
Value

A vector of scores, corresponding to ind. row.

See Also

big_spLinReg and big_spLogReg.



predict.big_SVD 57

predict.big_SVD Scores of PCA

Description

Get the scores of PCA associated with an svd decomposition (class big_SVD).

Usage

## S3 method for class 'big_SVD'
predict(
object,
X = NULL,
ind.row = rows_along(X),
ind.col = cols_along(X),
block.size = block_size(nrow(X)),

Arguments
object A list returned by big_SVD or big_randomSVD.
X An object of class FBM.
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
block.size Maximum number of columns read at once. Default uses block_size.
Not used.
Value

A matrix of size n X K where n is the number of samples corresponding to indices in ind. row and
K the number of PCs computed in object. If X is not specified, this just returns the scores of the
training set of object.

See Also
predict big_SVD big_randomSVD

Examples
set.seed(1)

X <- big_attachExtdata()
n <- nrow(X)



58 predict.mhtest

# Using only half of the data
ind <- sort(sample(n, n/2))

test <- big_SVD(X, fun.scaling = big_scale(), ind.row = ind)
str(test)
plot(test$u)

pca <- prcomp(X[ind, 1, center = TRUE, scale. = TRUE)

# same scaling
all.equal(test$center, pca$center)
all.equal(test$scale, pca$scale)

# scores and loadings are the same or opposite

# except for last eigenvalue which is equal to 0

# due to centering of columns

scores <- test$u %*% diag(test$d)

class(test)

scores2 <- predict(test) # use this function to predict scores
all.equal(scores, scores2)

dim(scores)

dim(pca$x)

tail(pca$sdev)

plot(scores2, pca$x[, 1:ncol(scores2)])

plot(test$v[1:100, 1, pca$rotation[1:100, 1:ncol(scores2)])

# projecting on new data

X2 <- sweep(sweep(X[-ind, 1, 2, test$center, '-'), 2, test$scale, '/'")
scores.test <- X2 %*% test$v

ind2 <- setdiff(rows_along(X), ind)

scores.test2 <- predict(test, X, ind.row = ind2) # use this
all.equal(scores.test, scores.test2)

scores.test3 <- predict(pca, X[-ind, ])

plot(scores.test2, scores.test3[, 1:ncol(scores.test2)])

predict.mhtest Predict method

Description

Predict method for class mhtest.

Usage

## S3 method for class 'mhtest'
predict(object, scores = object$score, logl@ = TRUE, ...)



sub_bk 59

Arguments
object An object of class mhtest from you get the probability function with possibly
pre-transformation of scores.
scores Raw scores (before transformation) that you want to transform to p-values.
logio Are p-values returned on the 1og1@ scale? Default is TRUE.
Not used.
Value

Vector of 1log10(p-values) associated with scores and object.

See Also

big_univLinReg and big_univLogReg.

sub_bk Replace extension ’.bk’

Description

Replace extension *.bk’

Usage

sub_bk(path, replacement = "", stop_if_not_ext = TRUE)
Arguments

path String with extension ’.bk’.

replacement Replacement of *.bk’. Default replaces by nothing.

stop_if_not_ext
If replacement !="", whether to error if replacement is not an extension (i.e.
starting with a dot).

Value

String with extension ’.bk’ replaced by replacement.

Examples

path <- "toto.bk"
sub_bk (path)
sub_bk(path, ".rds")



60 theme_bigstatsr

summary.big_sp_list Summary method

Description

Summary method for class big_sp_list.

Usage
## S3 method for class 'big_sp_list'
summary(object, best.only = FALSE, sort = FALSE, ...)
Arguments
object An object of class big_sp_list.
best.only Whether to return only one row corresponding to the best model? The best
model is the one smallest $validation_loss.
sort Whether to sort by $validation_loss. Default is FALSE.
Not used.
Value

A tibble with, for each $alpha, a mean $validation_loss, a mean vector of coefficients $beta,
the corresponding number of non-zero coefficients $nb_var, and the reasons of method completion
$message.

theme_bigstatsr Theme ggplot2

Description

Theme ggplot2 used by this package.

Usage

theme_bigstatsr(size.rel = 1)

Arguments

size.rel Relative size. Default is 1.

Examples

library(ggplot2)

(p <- ggplot(mapping = aes(x = 1:10, y = 1:10)) + geom_point())
p + theme_bw()

p + theme_bigstatsr()



without_downcast_warning

61

without_downcast_warning
Temporarily disable downcast warning

Description

Temporarily disable downcast warning

Usage

without_downcast_warning(expr)

Arguments

expr The expression to evaluate without downcast warning.

Value

The result of the evaluated expression.

Examples

without_downcast_warning(FBM(10, 10, type = "integer”, init = 1.5))



Index

[,FBM, ANY, ANY, ANY-method (FBM-methods),
47

[<-,FBM, ANY, ANY, ANY-method
(FBM-methods), 47

%*%,FBM, matrix-method (big_prodMat), 20

%*%,matrix,FBM-method (big_prodMat), 20

add_code256 (FBM.code256-class), 48
apply, 8

as_FBM (FBM-class), 45
as_scaling_fun, 4, 27
as_scaling_fun(), 16, 23, 35, 37
asPlotlyText, 3, 53, 54

AUC, 4

AUCBoot (AUC), 4

big_apply, 6, 19
big_attach, 46
big_colstats, 7
big_copy, 8, 46
big_cor, 10
big_counts, 11
big_cprodMat, 12
big_cprodVec, 14
big_crossprodSelf, 10, 15
big_increment, 17
big_parallelize, 7, 18
big_prodMat, 20
big_prodVec, 21
big_randomSVD, 22, 34, 35, 53,57
big_read, 25
big_scale, 26
big_spLinReg, 27, 55, 56
big_splLogReg, 30, 55, 56
big_SVD, 34, 53, 57
big_tcrossprodSelf, 36
big_transpose, 38
big_univLinReg, 39, 54, 59
big_univLogReg, 41, 54, 59
big_write, 43

62

bigparallelr: :split_parapply, 7, 19
bigreadr::big_fread2, 26
block_size, 6,9, 10, 13, 16, 20, 35, 37,44, 57

colSums, 8

COPY_biglasso_main, 29, 32

cor, 10

covar_from_df, 44

covar_from_df (), 28, 31, 39,41, 55, 56

crossprod, /16

crossprod,FBM,matrix-method
(big_cprodMat), 12

crossprod, FBM, missing-method
(big_crossprodSelf), 15

crossprod,matrix, FBM-method
(big_cprodMat), 12

data.table::fwrite, 43
diag,FBM-method (FBM-methods), 47
dim, FBM-method (FBM-methods), 47

FBM, 6, 7,9, 10, 13-16, 18, 20, 22, 23, 28, 31,
34,37-39,41,43, 46, 48, 49, 55-57

FBM (FBM-class), 45

FBM-class, 45

FBM-methods, 47

FBM.code256, 9, 11, 25,45

FBM.code256 (FBM. code256-class), 48

FBM. code256-class, 48

FBM. code256_RC (FBM. code256-class), 48

FBM_RC (FBM-class), 45

Filebacked Big Matrix, 6, 18,48

get_beta, 50
glm, 41, 42
glmnet, 30, 33

length, FBM-method (FBM-methods), 47
1m, 40

nargs, 48



INDEX 63

nb_cores, 6, 7, 13, 14, 18, 20, 22, 23, 29, 32,
39,41, 55, 56

pasteloc, 50

pcor, 51
plot.big_sp_list, 52
plot.big_SVD, 52, 54
plot.mhtest, 54
prcomp, 36
predict, 24, 35, 57
predict.big_sp, 55
predict.big_sp_list, 56
predict.big_SVD, 57
predict.mhtest, 58

round, 5

set.seed, 5

sub_bk, 59
summary.big_sp_list, 60
svds, 23, 24

tcrossprod, 37

tcrossprod, FBM, matrix-method
(big_cprodMat), 12

tcrossprod, FBM, missing-method
(big_tcrossprodSelf), 36

tcrossprod,matrix, FBM-method
(big_cprodMat), 12

theme_bigstatsr, 60

typeof, FBM-method (FBM-methods), 47

wilcox.test, 5
without_downcast_warning, 61



	asPlotlyText
	as_scaling_fun
	AUC
	big_apply
	big_colstats
	big_copy
	big_cor
	big_counts
	big_cprodMat
	big_cprodVec
	big_crossprodSelf
	big_increment
	big_parallelize
	big_prodMat
	big_prodVec
	big_randomSVD
	big_read
	big_scale
	big_spLinReg
	big_spLogReg
	big_SVD
	big_tcrossprodSelf
	big_transpose
	big_univLinReg
	big_univLogReg
	big_write
	block_size
	covar_from_df
	FBM-class
	FBM-methods
	FBM.code256-class
	get_beta
	pasteLoc
	pcor
	plot.big_sp_list
	plot.big_SVD
	plot.mhtest
	predict.big_sp
	predict.big_sp_list
	predict.big_SVD
	predict.mhtest
	sub_bk
	summary.big_sp_list
	theme_bigstatsr
	without_downcast_warning
	Index

