An Introduction to Estimating Exponential Random Graph Models
for Large Networks with bigergm

This vignette briefly introduces how to use the R package bigergm, which estimates Hierarchical Exponential-
Family Random Graph Models (HERGMs, Schweinberger and Handcock 2015). The package bigergm builds
on the R packages lighthergm (Martinez Dahbura et al. 2021) and hergm (Schweinberger and Luna 2018)
and applies scalable algorithms to scale the estimation up to big networks with up to 50 K population
members (see Martinez Dahbura et al. (2021) and Fritz et al. (2024)).

Exponential Random Graph Models for Large Networks

Exponential Random Graph Models (ERGMs) are a popular class of models for network data. They model
the probability of observing a network as a function of network statistics, such as the number of edges and
triangles. ERGMs are commonly employed in social network analysis but have some limitations when applied
to large networks. The main limitation is that the likelihood function is intractable for large networks, making
it difficult to estimate the model parameters. At the same time, larger networks warrant more complex
models to capture the underlying structure of the network.

To address these limitations, bigergm implements a scalable algorithm for estimating HERGMs, which
generalize ERGMs that allow for local dependence induced by non-overlapping blocks of nodes with network
data. Introduced by Schweinberger and Handcock (2015), complex dependence is allowed only between nodes
within the same block. Thereby, we obtain a more flexible model that can capture the cohesive subgroups in
the network globally while accounting for dependence within these subgroups on the local level.

Model Specification

Consider a network of N population members encompassed in the set P = {1,..., N}. Define the adjacency
matrix corresponding to this network as Y = (V; ;) € RV*N where Y; ; is the entry in the i-th row and j-th
column of the matrix. If ¥; ; = 1, nodes ¢ and j are connected; otherwise, they are not connected. In this
vignette we only regard undirected networks, thus the adjacency matrix is symmetric, i.e., Y; ; = Y; ;.
Note, however, that the package bigergm also supports directed networks. The number of blocks is denoted
as K and z = (z;) € RN*K is the block membership matrix with entries z; 1, equal to 1 if node 7 belongs to
block k and 0 otherwise. Let Y} ; be the submatrix of Y of the connections between blocks £ and [, i.e.,
the matrix including the connections between population members ¢ and j € P with 2;;, = z;;, = 1. The
submatrix Yy ; of Y contains the connections within block £, i.e., the matrix including the connections
between population members ¢ and j € P with z;, = 2z, = 1. Let x = (2;,) € RV XP be a matrix of nodal
covariates, where p is the number of covariates and z; ;, refers to the pth nodal covariate of population member
i. For the context of bigergm, assume that all nodal covariates are categorical. Generally, we refer to random
variables by capitalized letters and their realizations by lowercase letters.

Given this notation, the probability of observing the network Y for a given the block membership matrix Z

is given by:

Py(Y=y|Z=2X=x)=[[Pa(YrilZ =2X=x)[[Ps(YrlZ =2X =x),
k£l k

where P, (Y |Z = z) is the probability of observing the edges between blocks k and [given z and
Ps(Yy k|Z = z) is the probability of observing the edges within block k given z. The parameter vectors

« and [are the coefficients of the between-block and within-block networks, respectively. How these two
models are specified is sketched in the next two paragraphs.

Between-block Model

For the probability model for edges between population members of blocks k and I, we employ a network
model assuming dyadic independence between the edges:

Po(Yii=yrilZ=2X=x)= H P.(Yi; =vijlZ=12,X=x),
(4,9); zik=1, zj;=1
where

Po(Yij =yij|Z =2,X =x) = (mp(0, %)) (1 — g1 (0, x)) Y09

is the probability distribution of a Bernoulli distribution with parameter 7y, ;(a, x) evaluated at y; ;.
The parameter 7 (o, x) is the probability of observing an edge between nodes ¢ and j with 2z, = z;; =1
and have different forms:

o For the standard Stochastic Block Model (SBM), the probability of observing an edge between nodes i
and j is given by az ;.

o Extending this simplistic model, the current implementation allows the usage of nodematch statistics to
include the nodal covariates x in the model, implying the following probability for y; ; with z; , = z;; = 1:

P
Tra(o, x) = logit ™! (a +) apl(miy = xj,p)) :

p=1

where all parameters (« and «, for p=1,..., P) can vary for each pair of blocks k and .

Within-block Model

The probability of observing the edges within block % is modeled as a function of network statistics, such as
the number of edges or triangles within block k. We specify the within-block networks as exponential-family
random graph models:

Ps(Yir=yrirlZ=2X=x)=exp (ﬂTs(ykyk,x)) /c(B,z,%),

where s(yg k, X) is a vector of sufficient statistics counting, e.g., the edges within block k and ¢(3, z,x) is
a normalizing constant guaranteeing that the probability distribution sums to one. Examples of network
statistics include the number of edges, triangles, and degree statistics (see Morris, Handcock, and Hunter
(2008) and all references therein).

Estimation

Since the block membership matrix z is usually unobserved, we estimate it. Therefore, we assume that the
now random block membership matrix Z is a latent variable and following a multinomial distribution:

Z ~ Multinomial(1;v1,...,7x),

where 7y is the marginal probability that a node belongs to block k£ for k =1,..., K. Given this context, the
model is estimated in two steps by the algorithm proposed by Babkin, Stewart, and Schweinberger (2020):

1. Recover the block membership matrix Z by maximizing a lower bound of the likelihood from the
observed network Y (see Babkin, Stewart, and Schweinberger (2020) and Vu, Hunter, and Schweinberger
(2013) for details).

2. Given the estimated block membership matrix Z, estimate the coefficients « and 5 by maximizing
the pseudo-likelihood of the observed network Y. The pseudo-likelihood of the observed network Y
given the estimated block membership matrix 7 is equivalent to the likelihood of a logistic regression
model and can, therefore, be estimated by standard optimization algorithms. For this step, the entire
computational machinery implemented in the ergm package is used.

However, note that the first step is unnecessary if the block membership matrix is known.

The package bigergm implements a scalable algorithm for estimating HERGMSs even for large networks by
exploiting the structure of the model and the network data (details are provided in Martinez Dahbura et al.
(2021) and Fritz et al. (2024)).

Installation

You can install the CRAN version of bigergm by running the following command:

install.packages("bigergm")

A simple example

Let’s start with a simple example using the toy network included in the package. The toy network is a small
network with a clear community structure, which is helpful for testing the package.

Load the network object.

data(toyNet)

Plot the network.

plot(toyNet, vertex.col = rep(c("tomato", "steelblue", "darkgreen", "black"),
each = toyNetgaln/4))

It is visible that this network has a cluster or community structure. Although this is an artificial network,
we often observe such community structures in real-world social networks. Exploiting this stylized fact, we
model the way population members in a network get connected differently for connections across and within
communities:

e Connections across communities happen by luck, influenced by homophily

e Connections within communities also consider interdependencies among links. For example, the
probability that population members ¢ and j get connected may be influenced by a third population
member k.

To estimate an Exponential Random Graph model with local dependence, we first need to specify the model

formula that specifies the model. As described in the previous section, the model consists of two parts: the
between-block model and the within-block model. To ease this step, both parts are specified in one formula
very similar to specifying a model in ergm: :ergm(). All terms that induce dependence are excluded from the
between block model, while the within block model includes all terms. In the following example, we include
the number of edges, the number of triangles, and nodematch statistics for the nodal covariates x and y in
the model.

model_formula <- toyNet ~ edges + nodematch("x") + nodematch('"y") + triangle

Assuming that covariate ‘x’ is the first and covariate ‘y’ is the second covariate, the probability of observing
Y; ;j with z; 1, = 25, = 1 is specified by:

7Tk7l(04, X) = logit_l (040 —+ o]I(ZL’Z'J = xj,l) + Qo]I(xLQ = Z’jyg))

and the sufficient statistics of the within-block model are:

Ykka Zym,ZH L1, = T1,5 yu,zﬂ L1, = T1,5 yl,mz Z Yi,5 Yi,h Yh,j

1<J 1<J 1<J 1<j h#i,j

We can estimate the specified model with the bigergm() function, which takes the following parameters:

o object: A formula specifying the model to estimate (as detailed in the previous paragraph). See
help(bigergm) for how providing a fitted bigergm object can be used to continue the estimation.

e clustering_with_features: boolean value set to TRUE, if the algorithm should consider nodal
covariates in the first step of the estimation.

e n_blocks: Number of blocks to recover (in the above explanations, K).
e n_MM_step_max: Maximum number of MM algorithm steps.

e tol_MM_step: Threshhold when convergence is reached. Following Vu, Hunter, and Schweinberger
(2013), we stop the algorithm when the relative change in the lower bound of the objective function is
less than tol_MM_step.

e estimate_parameters: boolean value set to TRUE, if the algorithm should estimate the parameters
after the block recovery step.

e check_block_membership: boolean value set to TRUE, if the algorithm should keep track of block
memberships at each MM iteration.

There are other parameters that you can specify, which are detailed in the documentation (see help (bigergm)).

res <-bigergm(
The model you would like to estimate
object = model_formula,
The number of blocks
n_blocks = 4, initialization = toyNet’v’), "block",
The mazimum number of MM algorithm steps
n_MM_step_max = 100,
The tolarence for the MM algorithm
tol_MM_step = le-6,
Perform parameter estimation after the block recovery step
estimate_parameters = TRUE,
Indicate that clustering must take into account nodematch on characteristics
clustering_with_features = TRUE,
Keep track of block memberships at each EM iteration
check_block_membership = TRUE

We can plot the estimated the objective function of the first estimation step recovering the latent community
structure over iterations. This allows us to check whether this step has converged.

plot(1l:length(res$MM_lower_bound),

res$MM_lower_bound, type = "1", xlab = "Iterations", ylab = "Lower Bound")
o
<
‘—{ p—
<
|
<t
2 3
c —
- <t
o]
oM _
¢ o
s <
(@) — —
= F
A
Lo
H p—
Y
[[[[[[[
2 4 6 8 10 12 14
Iterations

The result indicates that the clustering step converged at the early stage. Note that the number of iterations
you need to perform (n_MM_step_max) varies depending on the network’s size and clarity in community
structure. The convergence of the lower bound does, however, not guarantee the convergence of the clustering
step to a unique maximizer. Therefore, restarting the algorithm with different initializations may be advisable
in practice.

You can check the clustering result by plotting the network with nodes colored by the estimated block
membership. The edges are grey if the two population members are from different blocks and black otherwise.

plot(res)

The parameter estimates of & and may be inspected using the summary () function.

For the between mnetworks
summary (res$est_between)

#> Results:

#>

#> Estimate Std. Error MCMC J z value Pr(>/z/)

#> edges —4.21749 0.07482 0 -56.369 <le-04 **x
#> nodematch.z 0.78273 0.16144 0 4.848 <le-0f #x+*
#> nodematch.y 0.38854 0.18433 0 2.108 0.035 *

#> ——-

#> Signif. codes: 0 '¥*x' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Warning: The standard errors are based on naive pseudolikelihood and are suspect. Set control.ergm$.
#>

#> Null Pseudo-deviance: 2576 on 8 degrees of freedom
#> Restdual Pseudo-deviance: 2551 on 5 degrees of freedom
#>

#> AIC: 2557 BIC: 2558 (Smaller is better. MC Std. Err. = NA)

For the within networks
summary (res$est_within)

#> Call:

#> ergm: :ergm(formula = within_formula, offset.coef = offset.coef,
#> estimate = method, control = control)

#>

#> Maximum Pseudolikelthood Results:

#>

#> Estimate Std. Error MCMC J z value Pr(>/[z/)

#> edges -1.80056 0.06660 0 -27.036 <le-04 **x*
#> nodematch.xz 0.86683 0.10351 0 8.375 <le-04 ***
#> nodematch.y 0.96478 0.10368 0 9.305 <le-04 ***
#> triangle 0.14615 0.01744 0 8.382 <le-04 **x*
#> ——-

#> Signif. codes: 0 '#**x' 0.001 'xx' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Warning: The standard errors are based on naive pseudolikelihood and are suspect. Set control.ergm$.
#>

#> Null Pseudo-deviance: 6793 on 4900 degrees of freedom
#> Restdual Pseudo-deviance: 5154 on 4896 degrees of freedom
#>

#> AIC: 5162 BIC: 5188 (Smaller is better. MC Std. Err. = 0)

Currently, only nodematch() terms are supported as a way to include covariates in the model.

Simulation

You can simulate networks with local dependence by using bigergm () and simulate_bigergm() functions.
The simulate.bigergm() function is a wrapper around the simulate_bigergm() function for a particular
fitted bigergm object. To apply the simulate.bigergm() function, you only need to provide the fitted
bigergm object.

simulate(res)

#> Network attributes:

#> wertices = 200

#> directed = FALSE

#> hyper = FALSE
#> loops = FALSE
#> multiple = FALSE
#> bipartite = FALSE
#> total edges= 1324

#> missing edges= 0

#> non-missing edges= 1324
#>

#> Vertex attridbute mames:

#> block vertex.names x y
#>

#> Edge attribute names mot shown

The simulate_bigergm() function allows you to simulate networks with local dependence from scratch. The
function requires coeflicients for the between and within connections, the formula for the model, the number
of simulations to return, and the output format. Depending on the output format, the function returns a list
with the network statistics for the between and within connections, the adjacency matrix of the simulated
network, or the network object itself.

sim_net <- bigergm::simulate_bigergm(
formula = model_formula,
The coefficients for the between connections
coef _between = res$est_between$coefficients,
The coefficients for the within connections
coef_within = resest_withincoefficients,
Number of simulations to return
n_sim = 1,
If “stats’ a list with network statistics
for the between and within connections ts returned
output = "network"

)

After simulating the network, you can plot it to assess whether the community structure is preserved.

plot(sim_net)

Goodness-of-fit

Following the estimation, consider evaluating the goodness-of-fit of the model. In line with the ERGM
literature, we provide a goodness-of-fit assessment that evaluates how good simulations from the model fit
the observed network. We provide a function gof () to carry out this task:

gof_res <- gof(
The object returned by bigergm::bigergm()
object = res,
The number of simulations to use
n_sim = 100,
Compute the geodesic distance for the observed and each simulated network
compute_geodesic_distance = TRUE,
Set a seed for reproducibility
seed = 1234,
Start at the observed network
start_from_observed = TRUE,
The control parameters for the simulation

control_within = ergm::control.simulate.formula(MCMC.burnin = 1000, MCMC.interval = 1000)

)

The parameter control_within is used to control the MCMC simulation carried out to simulate from
the model. For details we refer to help(ergnm: :control.simulate.formula). The function evaluates the
following metrics for a hundred simulated and observed networks:

1. network statistics used in the fit or formula provided,

2. normalized network statistics (the network statistics normalized around the observed statistics),
3. degree distribution,

4. geodesic distance, and

5. edgewise shared partners.

The function bigergm::gof_bigergm() returns a list of data frames for these matrices, allowing you to
create plots that match your needs flexibly. Below is an example plot for the degree distribution on the log
scale.

degree_gof <-
gof_res$simulated$degree_dist %>%
dplyr: :group_by(degree) %>%
dplyr: :summarise(log_mean_share = mean(log(share)),
log_sd_share = sd(log(share))) %>/
dplyr: :ungroup ()
plot(degree_gof$degree, degree_gof$log_mean_share,
xlab = "Degree", ylab = "Log Prop. of Nodes",
ylim = ¢(-5.5,-1.8), xlim = c(6,20), type = "1", 1ty = 2)

lines(degree_gof$degree, degree_gof$log_mean_share+ 1.96 * degree_gof$log_sd_share, type =
lines(degree_gof$degree, degree_gof$log_mean_share- 1.96 * degree_gof$log_sd_share, type =

tmp_info <- gof_res$original$degree_dist %>’
dplyr::filter(share > 0 & degree < 22)
lines(tmp_info$degree, log(tmp_info$share), 1ty = 1)

nqn s 1ty
nn R lty

(7]
3 o
o |
Z
Y—
(@]
°
S <
(Al
(@]
o
-
L0

I I I I I I I I
6 8 10 12 14 16 18 20

Degree

Alternatively, you can use the plot() function to visualize the goodness-of-fit results. Three plots are
generated checking whether the estimated model can adequately capture the degree distribution, edgewise-
shared partner distribution, and geodesic distances of the observed network. In a fourth plot, the simulated
network statistics are plotted normalized around the observed statistics. For a good fit, all values should
be around zero. In all plots, the red line represents the observed network, and the boxplot represents the
simulated networks.

plot(gof_res)

o)
\—!_
o
o

o < -
S ©O
e
7p]
o)
O__
o
o
O__
o

0O 2 46 8 11 14 17 20 23 26 29 32 35

Degree

Geodesic Distance
10

- 3
___T o
i (il
- B
S
o
b ffl 1 Lo 3
=
||||| o | |
+ > 3
»\+ - < W * °
a 5
---{o — o
M#;o o~
-] L
[[[[[[[[[[
00¢ 00T 09 O 0000T 0009 000¢ O

JaquinN JaquinN

™ - o
0 o
9o
2 N 4 . : T
i ! ' — '
7 : : | :
© ! ! ! 1
g T : I !
= ' :
g]
G o
°
QJ 1
N i r : |
T T ! : | |
£ ! | | |
o ' ' — |
=z cl\j] X !
| | | |
edges nodematch.x ~ nodematch.y triangle
Statistics

When you work with large networks

If you would like to estimate an bigergm with a large network (say, when the number of nodes > 50,000):

e Select features sparse enough to fit into memory. Covariates such as gender or race will be too dense to
construct feature matrices. This is a non-negligible limitation of our algorithm and will be solved in the
future.

e Use Python’s infomap to initialize clusters. This is because it is much faster to implement cluster
initialization than R functions such as igraph::cluster_infomap(). Set use_infomap_python =
TRUE in bigergm: :bigergm().

e When the MM estimation does not seem to have converged by inspecting the lower bound plot, you can
further continue iterating by passing the bigergm class object to bigergm: :bigergm() as follows (all
parameters such as the number of MM iterations will be inherited from the previous estimation unless
specified).

e You can also set the parameter only_use_preprocessed = TRUE, if you do not want to preprocess it
again and start the estimation again from a different initial value.

res_second <-
bigergm: :bigergm(object = res)

References

Babkin, Sergii, Jonathan Stewart, and Michael Schweinberger. 2020. “Large-Scale Estimation of Random
Graph Models with Local Dependence.” Computational Statistics € Data Analysis 152: 107029.

Fritz, Cornelius, Co-Piere Georg, Angelo Mele, and Michael Schweinberger. 2024. “A Strategic Model of
Software Dependency Networks,” Working Paper. Available at https://arxiv.org/abs/2402.13375.

Martinez Dahbura, Juan Nelson, Shota Komatsu, Takanori Nishida, and Angelo Mele. 2021.
“A Structural Model of Business Card FExchange Networks,” Working Paper. Available at
https://arxiv.org/abs/2105.12704.

Morris, Martina, Mark S Handcock, and Dave Hunter. 2008. “Specification of Exponential-Family Random
Graph Models: Terms and Computational Aspects.” Journal of Statistical Software 24 (4).

11

Schweinberger, Michael, and Mark S Handcock. 2015.

“Local Dependence in Random Graph Models:
Characterization, Properties and Statistical Inference.” Journal of the Royal Statistical Society B 77 (3)
647-76.

Schweinberger, Michael, and Pamela Luna. 2018. “Hergm: Hierarchical Exponential-Family Random Graph
Models.” Journal of Statistical Software 85 (1): 1-39.

Vu, Duy, David Hunter, and Michael Schweinberger. 2013. “Model-Based Clustering of Large Networks.”
The Annals of Applied Statistics 7 (2): 1010-39.

12

	Exponential Random Graph Models for Large Networks
	Model Specification
	Between-block Model
	Within-block Model

	Estimation

	Installation
	A simple example
	Simulation
	Goodness-of-fit
	When you work with large networks
	References

