Package ‘bigchess’

October 12, 2022

Type Package

Title Read, Write, Manipulate, Explore Chess PGN Files and R API to
UCI Chess Engines

Version 1.9.1
Author Wojciech Rosa
Maintainer Wojciech Rosa <w.rosa@pollub.pl>

Description Provides functions for reading *.PGN files with more than one game, includ-
ing large files without copying it into RAM (using 'ff' package or 'RSQLite' package). Han-
dle chess data and chess aggregated data, count figure moves statistics, create player pro-
file, plot winning chances, browse openings. Set of functions of R API to communi-
cate with UCI-protocol based chess engines.

License GPL-3

Imports processx

Suggests ff,ffbase,RSQLite,rjson,magrittr
Encoding UTF-8

LazyData true

RoxygenNote 7.0.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-08-05 16:10:02 UTC

R topics documented:

analyze_game oL e e e e e
analyze_position L e e e e
browse_eco_Openingot e e e e e
browse_openingo e e e e e e e

EXIraCt_MOVES v it e
FirstTWoMOVES o e e
Jan2sano . e e

2 analyze_game
NLIMOVES & v v v v v e e e e e e e e e e e e 8
player_profile L e 9
PIOL_LTEE_€CO o o e e e e e e 10
PIOL_LIEE_MOVE o o o e e e e e e e 10
read. PN . ..o L e 11
read.pgn.db 13
read.pgn.df L e 14
san2lan L L e e e e 15
StAL IMOVES . . o v v v v v e e e e e e e e e s, 16
TEE_ECO . . v v v e e e e e e s 16
EE_IMOVE . . . v v o o o e e e e e e e e e e e 17
uci_cmd . .. e 18
uci_debug e 18
UCI_ENZINEt ot et et e e e e e e e e e 19
UCI_ZO .« o o o o e e e e 20
uci_isready e 21
UCL_PAISE . . v v v v e o e 22
uci_ponderhit L e e 23
UCI_POSILION o o o o e e e e e e e e e 23
UCI_qUIt o o 24
uci_read L e s 25
UCI_TEZISIET o v v o e ittt e e e e e e e e 25
UCI_SELOPLION v v it e e e e e e e e e e e 26
UCL_SIOD .« « . v o v e e e 27
UCL UCL . « v v v o e e e e e e e e e e e 27
UCI_UCINEWZAME . . . o o o vt v e e bt e e e e e e e e e e 28
A2 LT o 4 s 29

Index 30

analyze_game Analyze game

Description

Analyze game using UCI engine and R API

Usage

analyze_game(engine, san = NULL, lan = NULL, quiet = FALSE, ...)

Arguments
engine engine path or engine object from uci_engine()
san movetext in short algebraic notation, default NULL
lan movetext in long algebraic notation, default NULL
quiet boolean, hide system messages? Default FALSE

further arguments passed directly to uci_go(), i.e. depth = 10

analyze_position 3

Value

list containg analyze_position() result (score and bestlines) for each move in the game. Note that if
black moves, then score is multiplied by -1.

Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

g <- "1. e4 e5 2. Nf3 Nc6 3. d4 exd4 4. Bc4 Nf6 5. 0-O Be7"
G <- analyze_game(engine_path,san = g ,depth = 20)

G[[1]] # handles info about first move in the game
GL[1]]$comment # "book”

GL[10]]1$curmove_san # "Be7"

G[[10]]1$score # 62

analyze_position Analyze position

Description

Analyze position using UCI engine and R API

Usage

analyze_position(engine, san = NULL, lan = NULL, ...)
Arguments

engine engine path or engine object from uci_engine()

san movetext in short algebraic notation, default NULL

lan movetext in long algebraic notation, default NULL

further arguments passed directly to uci_go()

Value

list containg bestomove, score and bestlines

4 browse_eco_opening

Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"
require(magrittr)

ap <- analyze_position(engine_path,san = "1. e4",depth = 20)
ap$bestmove_lan

"e7e5"

ap$score

-7

ap$bestmove_san

"eb5"”

ap$curpos_lan

"e2e4”

ap$curpos_san

"1, e4"

ap$bestline_san

"e5 2. Nf3 Nc6 3. d4 exd4 4. Bc4 Nf6 5. 0-0 Be7
6. Rel d6 7. Nxd4 Ne5 8. Bb3 0-0 9. Nc3 c5

10. Nf5 Bxf5 11. exf5 c4 12. Ba4 a6 13. Qe2"
ap$bestline_lan

"e7e5 g1f3 b8c6 d2d4 e5d4 f1c4 g8f6 elgl f8e7
flel d7d6 f3d4 c6e5 c4b3 e8g8 blc3 c7c5 d4fb

c8f5 e4f5 c5c4 b3a4 a7a6 dile2”

browse_eco_opening Browse ECO opening

Description

Browse ECO opening winning and drawing percentages by table and barplot

Usage

browse_eco_opening(df, topn = 0)

Arguments
df data frame with imported chess games from read.pgn() function.
topn integer, default is 0, passed to tree_eco function (indicating how many top open-
ings should be included).
Value

Data frame from tree_eco function and plot from plot_tree_eco function.

browse_opening 5

Examples

f <- system.file("extdata”, "Kasparov.gz", package = "bigchess")

con <- gzfile(f,encoding = "latin1")

df <- read.pgn(con,quiet = TRUE, ignore.other.games = TRUE,stat.moves = FALSE, add.tags = "EC0")
Analyze 20 best ECO Kasparov openings:

bo <- browse_eco_opening(subset(df,grepl(”"Kasparov",White)),20)

browse_opening Browse opening

Description

Browse opening winning and drawing percentages by table and barplot

Usage
browse_opening(df, movetext = "")
Arguments
df data frame with imported chess games from read.pgn() function.
movetext movetext string, default is "" means browse first move for White. The standard
English values are required: pawn = "P" (often not used), knight = "N", bishop
="B", rook = "R", queen = "Q", and king = "K".
Value

Data frame from tree_move function and plot from plot_tree_move function.

Examples

f <- system.file("extdata", "Kasparov.gz", package = "bigchess")

con <- gzfile(f,encoding = "latinl1")

df <- read.pgn(con,quiet = TRUE,ignore.other.games = TRUE,stat.moves = FALSE)

Analyze best Kasparov openings:

bo <- browse_opening(subset(df,grepl("Kasparov",White)))

Analyze 'best' answer to Kasparov Ruy Lopez:

bo <- browse_opening(subset(df,grepl("Kasparov”,White)),"”1.e4 e5 2.Nf3 Nc6 3.Bb5")
Analyze best answer to "1.e4 e5 2.Nf3"” in aggregated data
browse_opening(FirstTwoMoves,"1.e4 e5 2.Nf3")

extract_moves

eco ECO

Description
A dataset containing 2014 ECO (Encyclopedia of Chess Openings) openings
* ECO
* Opening
* Variation
* Movetext: Standard algebraic notation
* NMoves

* LAN: Movetext converted into long algebraic notation

Usage

data(eco)

Format

A data frame with ECO openings

extract_moves Extract first N moves

Description

Extract first N moves from pgn movetext into data frame

Usage

extract_moves(movetext, N = 10, last.move = T)

Arguments
movetext movetext string (or string vector). The standard English values are required:
pawn = "P" (often not used), knight = "N", bishop = "B", rook = "R", queen =
IIQ”’ and king = ”KH-
N integer (default 10) determines how many first N moves will be extracted. De-

fault is 10, should be greater than 0.

last.move boolean (default TRUE) indicating whether to calculate the last move

FirstTwoMoves 7

Value

Data frame containing first N moves for white and for black, named as W1, B1, W2 and so on, up
to WN and BN (where N is input argument). If N is greater than total moves number then NA’s

sn

generated. Column complete.movetext flag is indicating if movetext string begin with "1.’move’".

Examples

extract_moves("1. e4 e5 2. Nf3 Nf5 3. d5 ",N
e4 e5 Nf3 Nf5 d5 NA TRUE

extract_moves("”1. e4 e5 2. Nf3 Nf5 3. d5 ",N = 3, last.move = TRUE)
e4 e5 Nf3 Nf5 d5 NA d5 TRUE

3

FirstTwoMoves Example dataset

Description

A dataset containing 10,894 results after first two moves in 2,395,869 high-quality chess games
played over the board by players with ELO > 2000. Source data OTB-HQ.7z downloaded from:
https://sourceforge.net/projects/codekiddy-chess/ and converted to PGN in SCID software.

¢ Result:

W1: White first move

B1: Black first move

* W2: White second move

B2: Black second move

* Freq: Number of games played in database

Usage

data(FirstTwoMoves)

Format

A data frame with popular positions in classic chess

8 n_moves

lan2san Movetext conversion from LAN to SAN

Description
Convert LAN movetext (long algebraic notation used by chess engines) to SAN movetext (standard
algebraic notation required by FIDE)

Usage

lan2san(movetext.lan)

Arguments
movetext.lan movetext string in long algebraic notation (LAN), but without comments, vari-
ants etc.
Value

movetext in standard algebraic notation

Examples

lan2san("e2e4 c7c5")

n_moves Compute number of moves

Description

Compute total number of moves given movetext string (or string vector)

Usage

n_moves(movetext)

Arguments

movetext movetext string (or string vector)

Value

n integer (or integer vector)

Examples

n_moves(c("1. e4 e5 2. Nf3 Nf5 3. d5 ","1. d4 d5"))
31

player_profile 9

player_profile Compute player profile

Description

Computes players profile from data frame obtained from read.pgn() function into data frame

Usage
player_profile(df, player)

Arguments
df data frame from read.pgn or read.pgn.ff files with stats computed.
player string used in grepl(player,White) and grepl(player,Black)

Value

Data frame with player (column prefix P_) and opponent (column prefix O_) figure move counts.
Column Player_Col indicating pieces colour for player (factor White or Black). Example column
P_Q_moves means number of player Queen moves count.

Examples

f <- system.file("extdata", "Kasparov.gz", package = "bigchess")
con <- gzfile(f,encoding = "latinl1")

df <- read.pgn(con,quiet = TRUE,ignore.other.games = TRUE)
nrow(df) # 2109

df_pp <- player_profile(df, "Kasparov, Gary")

nrow(df_pp) # 1563

df_pp <- player_profile(df,"Kasparov,G")

nrow(df_pp) # 543

df_pp <- player_profile(df,"Kasparov, G\\.")

nrow(df_pp) # 2

df_pp <- player_profile(df, "Kasparov")

nrow(df_pp) # 2109 - correct

boxplot (P_Q_moves/NMoves~Player_Col,df_pp,

main = "Average Queen Moves\n Kasparov as Black (909 games) vs Kasparov as White (1200 games)",
col = c("black”,"white"),border = c("black”,"black”),notch = TRUE)
Magnus Carlsen data example

f <- system.file("extdata”, "Carlsen.gz", package = "bigchess")
con <- gzfile(f,encoding = "latin1")

df <- read.pgn(con,quiet = TRUE,ignore.other.games = TRUE)
nrow(df) # 2410

df_pp <- player_profile(df,"Carlsen”)

nrow(df_pp) # 2411 - ??

One game was played by Carlsen,H

df_pp <- player_profile(df,"Carlsen,M")

nrow(df_pp) # 2410 - correct

10 plot_tree_move
plot_tree_eco Plot tree for a given tree ECO table
Description
Plot tree (barplot percentages) for a given tree ECO data frame.
Usage
plot_tree_eco(tr, main = "", add.lines = T, add.labels = T)
Arguments
tr data frame containg tree ECO
main string for main title, default is ""
add.lines boolean (default TRUE) add weighted mean lines?
add.labels boolean (default TRUE) add labels?
Value
Barplot with white scores, draws percent and black scores.
Examples
f <- system.file("extdata", "Kasparov.gz", package = "bigchess")
con <- gzfile(f,encoding = "latinl1")
df <- read.pgn(con,quiet = TRUE,stat.moves = FALSE, add.tags = "EC0")
tr <- tree_eco(subset(df,W1=="e4"),20)
plot_tree_eco(tr,”1. e4 ... ?")
plot_tree_move Plot tree for a given tree move table
Description
Plot tree (barplot percentages) for a given tree move data frame.
Usage
plot_tree_move(tr, main = "", add.lines = T, add.labels = T)
Arguments
tr data frame containg tree move
main string for main title, default is ""
add.lines boolean (default TRUE) add weighted mean lines?

add.labels boolean (default TRUE) add labels?

read.pgn 11

Value

Barplot with white scores, draws percent and black scores.

Examples

f <- system.file("extdata", "Kasparov.gz", package = "bigchess")
con <- gzfile(f,encoding = "latin1")

df <- read.pgn(con,quiet = TRUE,stat.moves = FALSE)

tr <- tree_move(subset(df,Wi=="e4"),"B1")

plot_tree_move(tr,”1. e4 ... ?")

Plot tree move openings in aggregated data

tr <- tree_move(FirstTwoMoves, "W1")

plot_tree_move(tr,paste@(”1. ... ?2\n",sum(FirstTwoMoves$Freq)," total games"”))
read.pgn Reads PGN files into data frame
Description

Reads PGN files into data frame

Usage

read. pgn(
con,
add.tags = NULL,
n.moves = T,
extract.moves = 10,
last.move = T
stat.moves =
big.mode = F,
quiet = F,
ignore.other.games = F,
source.movetext = F

T,

)
Arguments
con connection argument passed directly to readLines() function. String - the name
of the file which the data are to be read from or connection object or URL.
add. tags string vector containing additional tags to be parsed. According to Seven Tag

Roster rule: http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm#c8.1.1
The STR tag pairs appear before any other tag pairs: "Event", "Site", "Date",
"Round", "White", "Black" and "Result". Using this argument you can spec-
ify supplemental tag names, such as: Player related information, Event re-
lated information, Opening information (locale specific), Opening information

12

n.moves

extract.moves

last.move

stat.moves

big.mode

quiet

read.pgn

(third party vendors), Time and date related information, Time control, Alter-
native starting positions, Game conclusion and Miscellaneous. Most popular:
"WhiteElo", "BlackElo","ECO","SetUp" or "FEN". Case sensitive.

boolean (default TRUE), compute number of moves?

integer (default 10) passed to extract_moves function. Additionaly value -1 will
extract all moves from movetext (not recommended for big files). Value 0 means
that moves will not be extracted.

boolean (default TRUE) passed to extract_moves, ignored when extract.moves
=0

boolean (default TRUE), compute moves count statistics? Could take a long
time for big file.

boolean (default FALSE) used in read.pgn.ff function
boolean (default FALSE), indicating if messages should appear.

ignore.other.games

source.movetext

Value

boolean (default FALSE) if TRUE result is subset of original dataset without
games with result marked as "*", i.e. ongoing games

boolean (default FALSE, experimental!) if TRUE column with original movetext
will be added

Data frame containg STR, additional tags (conditionally), Movetext, NMoves (conditionally), ex-
tracted moves (conditionally) with complete.movetext flag, figure moves count statistics (condition-

ally).

Examples

f <- system.file("extdata”, "2016_Candidates.pgn”, package = "bigchess")

df <- read.pgn(f)

...successfully imported 56 games...

Example downloaded from https://www.pgnmentor.com/files.html#players and gzipped:
f <- system.file("extdata”, "Carlsen.gz", package = "bigchess")

con <- gzfile(f,encoding = "latin1")

df <- read.pgn(con,quiet = TRUE)

Fastest mode:

con <- gzfile(f,encoding = "latin1")

df <- read.pgn(con,quiet = TRUE,n.moves = FALSE,extract.moves = FALSE,

stat.moves = FALSE, ignore.other.games = FALSE)

Parse additional tags and extract all moves:

con <- gzfile(f,encoding = "latinl1")

df <- read.pgn(con,add.tags = c("WhiteElo"”, "BlackElo", "EC0"),extract.moves = -1)
Example of direct downloading data from chess.com using API:

df <- read.pgn("https://api.chess.com/pub/player/fabianocaruana/games/2013/03/pgn")
Warning of incomplete line could appear

Example of scraping all of games given user:

read.pgn.db 13

user <- "fabianocaruana”

library("rjson")

json_file <- paste@("https://api.chess.com/pub/player/”, user,"/games/archives"”)
json_data <- fromJSON(paste(readLines(json_file), collapse=""))

result <- data.frame()

for(i in json_data$archives)

result <- rbind(result,read.pgn(paste@(i,"/pgn")))

read.pgn.db Reads PGN files into database table

Description

Reads PGN files into database table

Usage
read.pgn.db(con, batch.size = 10”6, conn, table.name = "pgn", ...)
Arguments
con connection argument passed directly to readLines() function. String - the name
of the file which the data are to be read from or connection object or URL.
batch.size number of lines to read in one batch, default is 10°6.
conn connection argument created by dbConnect
table.name string (default "pgn"), table name, used in dbWriteTable(conn, table.name, read.pgn(batch))
further arguments passed directly to read.pgn() function (besides ignore.other.games
and big.mode)
Examples

f <- system.file("extdata”, "Carlsen.gz", package = "bigchess")

con <- gzfile(f,"rbt",encoding = "latin1")

require(RSQLite)

conn <- dbConnect(SQLite())

read.pgn.db(con,stat.moves = FALSE,conn = conn)

dbGetQuery(conn, "SELECT COUNT(x) FROM pgn") #2410
dbDisconnect(conn)

Works with all types of connections (also gz or zip files).

con argument is passed directly to readlLines(con,batch.size)

so (if total number of lines to read is greater then batch.size)

depending on platform use it correctly:

Windows ('rb' opening mode for loop over readlLines):

con <- gzfile(system.file("extdata"”, "Carlsen.gz", package = "bigchess"”),"rb",encoding = "latinl1")
con <- file("path_to_big_chess_file.pgn","rb",encoding = "latin1")
read.pgn.db(con,conn = conn)

14 read.pgn.ff

Linux/Mac 0S X ('r' opening mode for loop over readlLines):

con <- gzfile(system.file("extdata”, "Carlsen.gz", package = "bigchess”),"r"”,encoding = "latin1")
con <- file("path_to_big_chess_file.pgn","r",encoding = "latin1")

read.pgn.db(con,conn = conn)

Windows (example of zipped file handling)
unzf <- unzip(”zipped_pgn_file.zip")
read.pgn.db(con,conn = conn)

read.pgn.ff Reads PGN files into [f data frame

Description

Reads PGN files into ff data frame

Usage
read.pgn.ff(con, batch.size = 10”6, ignore.other.games = F, ...)
Arguments
con connection argument passed directly to readLines() function. String - the name
of the file which the data are to be read from or connection object or URL.
batch.size number of lines to read in one batch, default is 10°6.

ignore.other.games
boolean (default FALSE) if TRUE result is subset of original dataset without
games with result marked as "*", i.e. ongoing games. The only one argument
which is not passed directly to read.pgn function.

further arguments passed directly to read.pgn() function (besides ignore.other.games
and big.mode)

Value

ff data frame like from read.pgn() function. Since character values are not supported in ffdf object,
"Movetext" column is ommited.

Examples

require(ff)

require(ffbase)

f <- system.file("extdata", "Carlsen.gz", package = "bigchess")
con <- gzfile(f,"rbt",encoding = "latin1")

options("fftempdir"="/path/"...) # if necessarily

san2lan 15

fdf <- read.pgn.ff(con,stat.moves = FALSE)

delete(fdf)

Works with all types of connections (also gz or zip files).

con argument is passed directly to readlLines(con,batch.size)

so (if total number of lines to read is greater then batch.size)

depending on platform use it correctly:

Windows ('rb' opening mode for loop over readlLines):

con <- gzfile(system.file("extdata"”, "Carlsen.gz", package = "bigchess"),"rb",encoding = "latin1")
con <- file("path_to_big_chess_file.pgn"”,"rb",encoding = "latin1")
fdf <- read.pgn.ff(con)

delete(fdf)

Linux/Mac 0S X ('r' opening mode for loop over readlLines):

con <- gzfile(system.file("extdata”, "Carlsen.gz", package = "bigchess”),"r",encoding = "latinl1")
con <- file("path_to_big_chess_file.pgn”,"r",encoding = "latin1")

fdf <- read.pgn.ff(con)

delete(fdf)

Windows (example of zipped file handling)
unzf <- unzip(”zipped_pgn_file.zip")

fdf <- read.pgn.ff(file(unzf,"rb"))
delete(fdf)

san2lan Movetext conversion from SAN to LAN

Description

Convert SAN movetext (FIDE) to LAN movetext (used by chess engines)

Usage

san2lan(movetext.san)

Arguments
movetext.san movetext string in standard algebraic notation (SAN) required by FIDE, but
without comments, variants etc.
Value

movetext in long algebraic notation

Examples

san2lan("1. e4 e5 2. Nf3 Nf5 3. d5 ")

16

tree_eco

stat_moves

Extract statistics of moves

Description

Extract statistics of moves (counts figure moves) from movetext vector into data frame

Usage
stat_moves(movetext, sides = "both")
Arguments
movetext movetext string (or string vector). The standard English values are required:
pawn = "P" (often not used), knight = "N", bishop = "B", rook = "R", queen =
"Q", and king = "K".
sides "both" (default),"white" or "black"
Value

Data frame containing moves count statistics for white and for black and total.

Examples

stat_moves("1. e4 e5 2. Nf3 Nf5 3. d5 ")

tree_eco

Compute ECO tree

Description

Compute ECO tree (frequencies and winning percent)

Usage

tree_eco(df, topn = 0)

Arguments

df
topn

data frame containg ECO and Result columns

integer, default O, indicating how many top openings should be included, O
means show all openings

tree_move 17

Value

Data frame containg White_score (White winning percent), Draws_percent, Black_score and N
(number of games). Sorted by power of ECO (White_score * N which describes popularity and
score of move) descending.

Examples

f <- system.file("extdata", "Kasparov.gz", package = "bigchess")
con <- gzfile(f,encoding = "latin1")
df <- read.pgn(con,quiet = TRUE,stat.moves = FALSE, add.tags = "ECO")

tree_move Compute tree for a given move

Description

Compute tree for a given move (frequencies and winning percent)

Usage

tree_move(df, move)

Arguments
df data frame containg move and Result column from pgn function or data frame
containing aggregated data from such df (containg columns: Result, W1, B1,
W2, ..., WN, BN, Freq)
move character indicating which move should be browsed, example "W1"
Value

Data frame containg White_score (White winning percent), Draws_percent, Black_score and N
(number of games). Sorted by power of move (White_score times N which describes popularity
and score of move) descending.

Examples

f <- system.file("extdata”, "Kasparov.gz", package = "bigchess")

con <- gzfile(f,encoding = "latin1")

df <- read.pgn(con,quiet = TRUE,stat.moves = FALSE)

Analyze best answers to 1. e4 in Kasparov games (both white and black)
tree_move(subset (df,W1=="e4") ,move = "B1")

Analyze openings in aggregated data

tree_move(FirstTwoMoves, "W1")

18 uci_debug

uci_cmd Sending command to chess engine

Description

Sending command to chess engine

Usage

uci_cmd(engine, command = "")
Arguments

engine engine object

command string command
Value

engine object

Examples

Linux (make sure you have executable permission):

engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

e <- uci_engine(engine_path)

e <- uci_command(e,"go depth 10")

uci_quit(e)

Using pipe '%>%' from magrittr:

require(magrittr)

uci_engine(engine_path) %>% uci_command(”go depth 10") %>% uci_quit()

uci_debug Sending command debug for chess engine

Description

Sending command debug for chess engine. Info about debug command from http://wbec-ridderkerk.nl/html/UCIProtocol.htm
switch the debug mode of the engine on and off. In debug mode the engine should sent additional

infos to the GUI, e.g. with the "info string" command, to help debugging, e.g. the commands that

the engine has received etc. This mode should be switched off by default and this command can be

sent any time, also when the engine is thinking.

uci_engine

Usage

uci_debug(engine, on = TRUE)

Arguments

engine engine object

on boolean default TRUE
Value

engine object

19

uci_engine Create an engine handler in R

Description

Create an engine handler in R and send command isready

Usage

uci_engine(path)

Arguments

path path to engine file. Make sure you have executable permission on this file.

Value

engine object (list of two: pipe to engine and temp as a result from stdout engine)

Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

e <- uci_engine(engine_path)

uci_quit(e)

Using pipe '%>%' from magrittr:
require(magrittr)
uci_engine(engine_path) %>% uci_quit()

20 uci_go

uci_go Sending command go for chess engine

Description

Sending command go for chess engine. Info about go command from http://wbec-ridderkerk.nl/html/UCIProtocol.html
start calculating on the current position set up with the "position" command. There are a number of

commands that can follow this command, all will be sent in the same string. If one command is not

send its value should be interpreted as it would not influence the search.

Usage

uci_go(
engine,
depth = NULL,
infinite = FALSE,
stoptime = 1,

wtime = NULL,
btime = NULL,
winc = NULL,
binc = NULL
)
Arguments
engine engine object
depth integer depth (search x plies only)
infinite boolean default FALSE. If TRUE, stoptime (next argument) should be defined
stoptime integer default 1. Used in Sys.sleep after go infinite in egine. After this, uci_stop()
is executed
wtime integer default NULL (white has x msec left on the clock)
btime integer default NULL (black has x msec left on the clock)
winc integer default NULL (white increment per move in mseconds if x > 0)
binc integer default NULL (black increment per move in mseconds if x > 0)
Value

engine object
Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

uci_isready 21

e <- uci_engine(engine_path)

e <- uci_go(e,depth = 10)

uci_quit(e)

Using pipe '%>%' from magrittr:

require(magrittr)

uci_engine(engine_path) %>% uci_go(depth = 10) %>% uci_quit()

Find best answer for black after 1. e4 in 100 seconds:

uci_engine(engine_path) %>% uci_position(moves = "e2e4") %>%
uci_go(depth = 20) %>% uci_quit() %>% uci_parse()

Find best answer for black after 1. e4 in 100 seconds:

uci_engine(engine_path) %>% uci_position(moves = "e2e4") %>%
uci_go(infinite = TRUE,stoptime = 100) %>% uci_quit() %>% uci_parse()

uci_isready Checking if chess engine is ready

Description

Checking if chess engine is ready - sending command isready and parsing GUI until readyok is
obtained. Info about isready command from http://wbec-ridderkerk.nl/html/UCIProtocol.html This
is used to synchronize the engine with the GUI. When the GUI has sent a command or multiple
commands that can take some time to complete, this command can be used to wait for the engine to
be ready again or to ping the engine to find out if it is still alive. E.g. this should be sent after setting
the path to the tablebases as this can take some time. This command is also required once before
the engine is asked to do any search to wait for the engine to finish initializing. This command must
always be answered with "readyok" and can be sent also when the engine is calculating in which
case the engine should also immediately answer with "readyok" without stopping the search.

Usage

uci_isready(engine)

Arguments

engine engine object

Value

engine object
Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

e <- uci_engine(engine_path)

e <- uci_isready(e)

22

uci_quit(e)

Using pipe '%>%' from magrittr:

require(magrittr)

uci_engine(engine_path) %>% uci_isready() %>% uci_quit()

uci_parse

uci_parse Parse GUI commands from chess engine

Description

Parse GUI commands from chess engine.

Usage

uci_parse(ucilog, filter = "bestmove")
Arguments

ucilog strings from uci_quit() or uci_read()$temp

filter string, one of "bestmove’ (default), ’score’ or ’bestline’
Value

strings with parsed information from engine

Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"
require(processx)

e <- uci_engine(engine_path)

e <- uci_go(depth = 10)

rslt <- uci_quit(e)

uci_parse(rslt)

Using pipe '%>%' from magrittr:

require(magrittr)

uci_engine(engine_path) %>% uci_go(depth = 10) %>% uci_quit() %>% uci_parse()

uci_ponderhit 23

uci_ponderhit Sending command ponderhit for chess engine

Description

Sending command ponderhit for chess engine. Info about ponderhit command from http://wbec-
ridderkerk.nl/html/UCIProtocol.html the user has played the expected move. This will be sent if
the engine was told to ponder on the same move the user has played. The engine should continue
searching but switch from pondering to normal search.

Usage

uci_ponderhit(engine)

Arguments

engine engine object

Value

engine object

uci_position Sending command position for chess engine

Description

Sending command position for chess engine. Info about position command from http://wbec-
ridderkerk.nl/html/UCIProtocol.html set up the position described in fenstring on the internal board
and play the moves on the internal chess board. if the game was played from the start position the
string "startpos" will be sent Note: no "new" command is needed. However, if this position is from
a different game than the last position sent to the engine, the GUI should have sent a "ucinewgame"
inbetween.

Usage

uci_position(engine, moves = NULL, startpos = TRUE, fen = NULL)

Arguments
engine engine object
moves string in long algebraic notation
startpos boolean default TRUE

fen string

24

Value

engine object
Examples

Linux (make sure you have executable permission):

engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

<- uci_engine(engine_path)

<- uci_position(e,moves = "e2e4")

<- uci_go(e,depth = 10)

uci_quit(e)

Using pipe '%>%' from magrittr:

require(magrittr)

uci_engine(engine_path) %>% uci_position(moves = "e2e4") %>%
uci_go(depth = 10) %>% uci_quit() %>% uci_parse()

™ ® d® HF H

uci_quit

uci_quit Sending quit command to chess engine

Description

Sending quit command to chess engine and cleaning temps from R

Usage

uci_quit(engine)

Arguments

engine engine object

Value

strings from uci chess engine GUI

Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

e <- uci_engine(engine_path)

uci_quit(e)

Using pipe '%>%' from magrittr:

require(magrittr)

uci_engine(engine_path) %>% uci_quit()

uci_read 25

uci_read Read current stdout from chess engine

Description

Read current stdout from chess engine

Usage

uci_read(engine)

Arguments

engine engine object

Value

engine object

Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

e <- uci_engine(engine_path)

e <- uci_read(e)

e$temp

uci_quit(e)

uci_register Sending command register for chess engine

Description

Sending command register for chess engine. Info about register command from http://wbec-ridderkerk.nl/html/UCIProtocol.h
this is the command to try to register an engine or to tell the engine that registration will be done

later. This command should always be sent if the engine has send "registration error" at program

startup.

Usage

uci_register(engine, later = TRUE, name = NULL, code = NULL)

26 uci_setoption

Arguments
engine engine object
later boolean default TRUE
name string
code string
Value

engine object

uci_setoption Sending command setoption for chess engine

Description

Sending command setoption for chess engine. Info about setoption command from http://wbec-
ridderkerk.nl/html/UCIProtocol.html this is sent to the engine when the user wants to change the
internal parameters of the engine. For the "button" type no value is needed. One string will be sent
for each parameter and this will only be sent when the engine is waiting. The name of the option in
should not be case sensitive and can inludes spaces like also the value. The substrings "value" and
"name" should be avoided in and to allow unambiguous parsing, for example do not use = "draw
value".

Usage

uci_setoption(engine, name = NULL, value = NULL)

Arguments
engine engine object
name string option name
value string option value
Value

engine object

uci_stop 27

uci_stop Sending command stop for chess engine

Description

Sending command stop for chess engine. Info about stop command from http://wbec-ridderkerk.nl/html/UCIProtocol.html
stop calculating as soon as possible, don’t forget the "bestmove" and possibly the "ponder" token
when finishing the search

Usage

uci_stop(engine)

Arguments

engine engine object

Value

engine object
Examples

Linux (make sure you have executable permission):
engine_path <- "./stockfish_10_x64"

Windows

engine_path <- "./stockfish_10_x64.exe"

e <- uci_engine(engine_path)

e <- uci_go(depth = 100)

Sys.sleep(1)

e <- uci_stop(e)

uci_quit(e)

uci_uci Sending command uci for chess engine

Description

Sending command uci for chess engine. Info about uci command from http://wbec-ridderkerk.nl/html/UCIProtocol.html
tell engine to use the uci (universal chess interface), this will be send once as a first command after

program boot to tell the engine to switch to uci mode. After receiving the uci command the engine

must identify itself with the "id" command and sent the "option" commands to tell the GUI which

engine settings the engine supports if any. After that the engine should sent "uciok" to acknowledge

the uci mode. If no uciok is sent within a certain time period, the engine task will be killed by the

GUL

28 uci_ucinewgame
Usage

uci_uci(engine)

Arguments

engine engine object

Value

engine object

uci_ucinewgame Sending command ucinewgame for chess engine

Description

Sending command ucinewgame for chess engine. Info about ucinewgame command from http://wbec-
ridderkerk.nl/html/UCIProtocol.html this is sent to the engine when the next search (started with
"position" and "go") will be from a different game. This can be a new game the engine should
play or a new game it should analyse but also the next position from a testsuite with positions only.
If the GUI hasn’t sent a "ucinewgame" before the first "position" command, the engine shouldn’t
expect any further ucinewgame commands as the GUI is probably not supporting the ucinewgame
command. So the engine should not rely on this command even though all new GUIs should sup-
port it. As the engine’s reaction to "ucinewgame" can take some time the GUI should always send
"isready" after "ucinewgame" to wait for the engine to finish its operation.

Usage

uci_ucinewgame(engine)

Arguments

engine engine object

Value

engine object

write.pgn 29

write.pgn Write PGN data.frames into file

Description

Write PGN data.frames into file

Usage
write.pgn(df, file, add.tags = NULL, append = FALSE)

Arguments
df data.frame from read.pgn()
file string path to destination file
add.tags string vector containing additional tags to be parsed. According to Seven Tag
Roster rule: http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm#c8.1.1
The STR tag pairs appear before any other tag pairs: "Event", "Site", "Date",
"Round", "White", "Black" and "Result". Using this argument you can spec-
ify supplemental tag names, such as: Player related information, Event re-
lated information, Opening information (locale specific), Opening information
(third party vendors), Time and date related information, Time control, Alter-
native starting positions, Game conclusion and Miscellaneous. Most popular:
"WhiteElo", "BlackElo","ECO","SetUp" or "FEN". Case sensitive.
append boolean (default FALSE), should games be appended to current file?
Examples

f <- system.file("extdata”, "2016_Candidates.pgn”, package = "bigchess")
df <- read.pgn(f)

write.pgn(df, file = "my_file.pgn")

df2 <- read.pgn("my_file.pgn")

all.equal(df,df2) # TRUE

unlink("my_file.pgn") # clean up

Index

x datasets
eco, 6
FirstTwoMoves, 7

analyze_game, 2
analyze_position, 3

browse_eco_opening, 4
browse_opening, 5

eco, 6
extract_moves, 6

FirstTwoMoves, 7
lan2san, 8
n_moves, 8

player_profile, 9
plot_tree_eco, 10
plot_tree_move, 10

read.pgn, 11
read.pgn.db, 13
read.pgn.ff, 14

san2lan, 15
stat_moves, 16

tree_eco, 16
tree_move, 17

uci_cmd, 18
uci_debug, 18
uci_engine, 19
uci_go, 20
uci_isready, 21
uci_parse, 22
uci_ponderhit, 23
uci_position, 23
uci_quit, 24

30

uci_read, 25
uci_register, 25
uci_setoption, 26
uci_stop, 27
uci_uci, 27
uci_ucinewgame, 28

write.pgn, 29

	analyze_game
	analyze_position
	browse_eco_opening
	browse_opening
	eco
	extract_moves
	FirstTwoMoves
	lan2san
	n_moves
	player_profile
	plot_tree_eco
	plot_tree_move
	read.pgn
	read.pgn.db
	read.pgn.ff
	san2lan
	stat_moves
	tree_eco
	tree_move
	uci_cmd
	uci_debug
	uci_engine
	uci_go
	uci_isready
	uci_parse
	uci_ponderhit
	uci_position
	uci_quit
	uci_read
	uci_register
	uci_setoption
	uci_stop
	uci_uci
	uci_ucinewgame
	write.pgn
	Index

