Package ‘bigBits’

June 18, 2025
Type Package

Title Perform Boolean Operations on Large Numbers
Version 1.4

Date 2025-06-11

Description A set of Boolean operators which accept integers of any size, in any base from 2 to 36, in-
cluding 2's complement format, and perform ac-
tions like * *AND," " "OR", " *NOT", * " SHIFTR/L" etc. The output can be in any base speci-
fied. A direct base to base converter is included.

License LGPL-3

Imports Rmpfr, gmp, methods
NeedsCompilation no

Author Carl Witthoft [aut, cre]

Maintainer Carl Witthoft <cellocgw@gmail.com>
Repository CRAN

Date/Publication 2025-06-18 17:40:02 UTC

Contents
bigBits-package L. e e 2
base2base e 3
bigAnd L 4
buildBinaries e 6
fracB2B e 7
NOEXp e 9

Index 10

bigBits-package

bigBits-package Perform Boolean Operations on Large Numbers

Description

A set of Boolean operators which accept integers of any size, in any base from 2 to 36, including 2’s
complement format, and perform actions like "AND," "OR", "NOT", "SHIFTR/L" etc. The output
can be in any base specified. A direct base to base converter is included.

Details
The DESCRIPTION file:
Package: bigBits
Type: Package
Title: Perform Boolean Operations on Large Numbers
Version: 1.4
Date: 2025-06-11
Authors@R: c(person(given = "Carl", family = "Witthoft", email = "cellocgw @gmail.com", role = c("aut", "cre")))
Description: A set of Boolean operators which accept integers of any size, in any base from 2 to 36, including 2’s complem
License: LGPL-3
Imports: Rmpfr, gmp, methods
Author: Carl Witthoft [aut, cre]
Maintainer: Carl Witthoft <cellocgw @ gmail.com>
Author(s)

Carl Witthoft [aut, cre]

Maintainer: Carl Witthoft <cellocgw @ gmail.com>

References

https://en.wikipedia.org/wiki/Two’s_complement

See Also

bitwAnd and other "bitw*" functions

https://en.wikipedia.org/wiki/Two's_complement

baseZbase 3
base2base Function which converts arbitrary-size integers from any base to any
base.
Description

This function accepts inputs in any base from 2 through 36 and produces the same value in any
selected base from 2 through 36. This includes options for signed and 2s complement binary data.

Usage

base2base(x, frombase=10, tobase=2, classOut=c('bigz', 'mpfr',
'numeric', 'character') , binSize = @, inTwosComp = FALSE,
outTwosComp = FALSE)

Arguments

X

frombase

tobase

classOut

binSize

inTwosComp

outTwosComp

Details

A value or vector or list of values which are to be converted. The class can
generally be numeric, mpfr, bigz, or character strings. Any fractional part is
removed, leaving just the integer portion. See Details for more information.

The base of the input x. If the contents of x are incompatible with the specified
base, a warning is issued and that value is skipped (i.e. if x has multiple values,
base2base will keep running and process the other values). Default is 10

The desired base of the output. Default is 2.

Specify the class of the output. This only has meaning when tobase is 10; all
other bases are returned as character strings. Warning: if the input is larger than
the max integer size on your system and "numeric" is selected, there will be a
roundoff/truncation error.

Specifies how many digits are to be generated. If this value is less than that
necessary to contain the output value, the number of digits will be increased to
match. If the output is binary, the final number of digits is expanded to a 4*N
value. The default is zero, which allows the function to calculate the minimum
bits required. Note: for obvious reasons, this only applies to character-class
outputs.

Only checked if frombase is 2. If FALSE, (the default), the input is positive un-
less a negative sign is present. If TRUE, the input is handled as a 2s complement
binary.

Only checked if tobase is 2. If FALSE, (the default), the output, if negative,
includes a "-" sign. If TRUE, a 2’s complement binary.

In general, when submitting an input in other than base 10, it’s safest to provide a character string(s).
There is some automagical conversion that will take, e.g., a numeric 364 with frombase = 8 and
treat as base 8 (thus decimal 244), but this is not guaranteed. Further, keep in mind that numeric

4 bigAnd

values with more than roughly 16 digits will likely run into floating-point precision errors. For
base-10 inputs, use of bigz form is recommended. Inputs in hex format must be character strings.
This is because the command parser converts, e.g., 0x3a, to the decimal value 58 prior to passing
the value to the function body. Since, as noted above, base2base will attempt to convert a numeric
input into the value in the base specified, base2base(0x3a, inbase= 16, ...) will in fact process
the input as 58hex, i.e. 88 decimal.

Value

A list containing the converted value(s). Unless tobase is 10, each element is a character string.
When tobase is equal to 10, the output class is specified with the argument classOut . Note: if
an input or output is incompatible with the specified input or output base, a dummy value "%no" if
character, or "NA" if a number-like class, is returned along with a warning message describing the
error.

Author(s)

Author and Maintainer:Carl Witthoft <carl@witthoft.com>

See Also

strtoi as.hexmode fracB2B

Examples

(base2base(12.4e1,10,16))

(base2base(12.4e-2,10,16))

(base2base(101101,2,10)) # magic. it works!!!
(base2base('1111',2,2, inTwosComp=TRUE, outTwosComp=TRUE))
(base2base('0111',2,2,inTwosComp=TRUE, outTwosComp=TRUE))
(base2base('1111',2,2,inTwosComp=TRUE, outTwosComp=FALSE))
(base2base('0111',2,2,inTwosComp=TRUE, outTwosComp= FALSE))
(base2base(1e55,10,16)) #loses precision before even starting
(base2base('1e55',10,16)) #works
(base2base('1767707668033969' , 10, 36))

bigAnd Functions to perform binary operations on integers of arbitrary size,
and of arbitrary base (up to 36).

Description

These functions extend the capabilities of the matching base bitw* functions (which are limited to
32-bit integers). Not only can any integer be processed, at least up to the machine limits as deter-
mined with the gmp library, but the inputs and outputs can be in any base. Further, both unsigned (a
minus sign indicates negative) and 2s complement base-2 values are allowed.

bigAnd

Usage

bigOr(x, y, inBase = 10, outBase = 10, inTwosComp = TRUE)

bigAnd(x, y, inBase = 10, outBase = 10, inTwosComp = TRUE)

bigXor(x, y, inBase = 10, outBase = 10, inTwosComp = TRUE)
bigNot(x,inBase=10,outBase=10,binSize = 32,inTwosComp = TRUE, outTwosComp = TRUE)
bigShiftL(x, shift =1, inBase =10 , outBase = 10, binSize = 32, inTwosComp = TRUE)
bigShiftR(x, shift =1, inBase = 10, outBase = 10, binSize = 32, inTwosComp = TRUE)
bigRotate(x, shift, inBase = 10,binSize = 32, outBase = 10, inTwosComp = TRUE)

Arguments

X’y

inBase
outBase

inTwosComp

binSize

outTwosComp

shift

Details

The integers to be processed. These can be numeric, integer, mpfr, bigz , or
character class. These two items must be of the same class. List variables are
acceptable so long as the contents are all of one class. They can be any base
from 2 through 36 as specified by inBase. If these are character strings, formats
such as "-37e+5" or "Ox4e" (for hex data) are accepted. See the Details section
for the capabilities and limits on "translation" of inputs. If the lengths of x and
y differ, the shorter one will be silently recycled.

Specify the designated base of the input(s) . Default is 10.
Specify the designated base of the output(s) . Default is 10.

When inBase is 2, the input(s) is treated as being in 2s complement format
when this is TRUE (the default). Otherwise the input(s) is treated as a positive
base-2 value unless a negative sign is present. . If inBase is not equal to 2, this
arg is ignored.

Specify the number of binary bits for the output calculation. If this is set to zero
(the default), the minimum number is set to 4*N such that the current value of
the input and output is containable. But see the Details section for a discussion
of 2s complement behavior.

Whent outBase is 2, return the 2s complement version of the value(s). Default
is TRUE; when False, return a binary value(s) with a negative sign as necessary.

The number of bits to shift the input by. Only positive values are allowed for
bigShiftL and bigShiftR, which shift to the "left" and "right" respectively.
bigRotate accepts positive or negative values and rotates in the prescribed di-
rection accordingly. See the Details section for comments on 2s complement
inputs.

The inputs, when not in base 10, are expected to follow the common encoding where the letters "a"
through "z" correspond to the decimal values 10 through 35. Values in bases greater than 10 must
be character strings. If the input is base 16 ("hex’), the character string can begin with or without
’0x’. Inputs specified as base 2 through 10 can be provided in any of the numeric formats and the
functions automagically interpret them correctly. For example, when x is numeric 1101 and inBase
is 2, the functions will interpret the input as 13 if inTwosComp is FALSE and as -3 if TRUE.

Shifting to the right when 2s complement is in use can lead to unexpected results. bigShiftR
assumes 32-bit binary 2scomp for compatibility with bitwShiftR. But for an arbitrarily large

6 buildBinaries

binary 2s complement input, the output, for a shift of one, will move -1 (11111...) to 2*(N-
1) -1 , where N is the number of bits including the sign bit. bigShiftR defaults to max(32,
min_needed_for_magnitude_of_x) bits. Similarly, bigShiftL by default provides sufficient bits
to handle the shifted value. This is unlike bitwShiftL which returns the value of the 32 LSBs (in
2s complement form) if the shifted value exceeds 2731-1 . If binSize is not zero (the default),
bigShiftL will truncate to the specified bit size (or 32, whichever is greater).

bigRotate converts input 2s complement binaries to unsigned binaries (with a negative sign when
needed). This is because the behavior of different compilers with respect to rotating 2s complement
binary data can be different or even unspecified. When the input is negative (in any base), the
rotation is applied to the positive unsigned binary equivalent and a negative sign attached to the
output. In particular, this means that 2s complement output is disallowed.

Note that, for compability with the base bitw* functions, the value is internally extended to (at
least) 32 bits prior to bitwise operations. In particular, the value of the NOT function when 2s
complement is in use depends on the specified size of the binary data. Remember that there will be
precision errors if large numerics are entered, possibly leading to roundoff errors. In general, it is
safer to enter values in bigz format or as character strings.

Value

A list object with one value per entry, corresponding to the input value(s) of X (or y if y is the longer
input). In most cases the entries are character strings. However, if the input and the output are
specified as base 10, then the output is converted to the class of the input.

Author(s)

Author and Maintainer:Carl Witthoft <carl@witthoft.com>

See Also

bitwAnd and other "bitw*" functions

buildBinaries Function to convert values to binary form

Description

This function is intended primarily for internal use by the big* Boolean functions. Its job is to take
an input in any base, in almost any class (numeric, character, etc) and generate the binary form of
the same value.

Usage

buildBinaries(x, y= NULL,inBase, inTwosComp = FALSE, binSize = 32)

fracB2B 7

Arguments
X,y The values to be converted. Typically these are the x,y values provided to one
of the Boolean functions in this package. If only x is input, y defaults to NULL
inBase The base (2 thru 36) of the input values.
inTwosComp When the input inBase is 2, this specifies whether the input is positive unless a
negative sign is present, or 2’s complement format .
binSize The minimum number of bits to use for the output binary data. If insufficient for
the size of the input(s), this will be increased to the next 4*N size. When there
are two inputs, both outputs are set to the same number of bits. ~
Value
xbin A vector of numeric ones and zeroes representing the binary form of x
ybin A vector of numeric ones and zeroes representing the binary form of y. If the
input is NULL, a single value of @ is returned.
Author(s)

Author and Maintainer:Carl Witthoft <carl@witthoft.com>

Examples

buildBinaries(73,-73,inBase=10)

fracB2B Function which converts fractions (between I and 0) from any base to
any other base.

Description
This function accepts inputs in any base from 2 through 36 and generates the fractional portion of
the input values in any selected base from 2 through 36.

Usage

fracB2B(x, inBase = 10, outBase = 16, maxdig = 0)

Arguments

X A value or vector or list of values which are to be converted. The class can
generally be numeric, mpfr,bigz,bigq, or character strings. Any integer part is
removed, as only the fractional part is converted with this function. See Details
for more information.

8 fracB2B

inBase The base of the input x, in the range 2 through 36. If the contents of x are in-
compatible with the specified base, a warning is issued and that value is skipped
(i.e. if x has multiple values, base2base will keep running and process the other
values). Default is 10.

outBase The desired base of the output, in the range 2 through 36. Default is 16.

maxdig The maximum number of digits to return in each result. This avoids an infinite
loop when a given decimal does not terminate in the output base. The default
value of @ causes the function to generate a "reasonable" estimate for the number
of places needed to maintain precision.

Details

In general, it’s safest to provide a character string(s). There is some automagical conversion that
will take, e.g., a numeric 364 with inBase = 8 and treat as base 8 (thus decimal 244), but this is not
guaranteed. Further, keep in mind that numeric values with more than roughly 16 digits will likely
run into floating-point precision errors. Inputs in any base greater than 10 must be character strings.
This is because the command parser converts, e.g., 0x3a, to the decimal value 58 prior to passing
the value to the function body.

Value

A vector containing the converted value(s) as strings. A negative sign is included for negative
inputs.

Author(s)

Author and Maintainer:Carl Witthoft <carl@witthoft.com>

See Also

base2base

Examples

(fracB2B(12.43e2,10,16)) # no decimal part
(fracB2B(12.43e-2,10,16))
(fracB2B(101.101,2,10)) # magic. it works!!!
fracB2B('.357') # "0.5b64"
fracB2B('.357',maxdig = 10) #"0.5b645alcac”
fracB2B(".5b64",16,10)
fracB2B(".5b645alcac"”,16,10)

noExp 9

noExp Function to convert character-string numbers in exponential notation
to "pure" integers.

Description

This is a helper function for base2base. When an input value is a character string with exponential
notation, e.g., "2.65e4" , this function rebuilds the character string as a pure integer, e.g., "26500" .
Decimal portions are removed.

Usage
noExp(x)
Arguments
X An input character string, assumed only to contain numerals 0-9, "+,-,e,E" and
the decimal separator character defined in the current locale.
Details

Both input and output must be base 10, as exponentiation in other bases is outside the current scope
of this package.

Value
A character string representing the input as an integer written "longhand," i.e. no exponent. This
string will contain only numerals and possibly a lead minus sign in the case of negative inputs.

Author(s)

Author and Maintainer:Carl Witthoft <carl@witthoft.com>

Examples

noExp('37e3")
noExp('-2.345e4")

this returns zero
noExp('234e-5")

Index

* package
bigBits-package, 2

as.hexmode, 4

base2base, 3, 9
bigAnd, 4

bigBits (bigBits-package), 2
bigBits-package, 2
bigNot (bigAnd), 4
bigOr (bigAnd), 4
bigRotate (bigAnd), 4
bigShiftL (bigAnd), 4
bigShiftR (bigAnd), 4
bigXor (bigAnd), 4
bitwAnd, 2, 6
bitwShiftL, 6
bitwShiftR, 5
buildBinaries, 6

fracB2B, 4, 7
noExp, 9

strtoi, 4

	bigBits-package
	base2base
	bigAnd
	buildBinaries
	fracB2B
	noExp
	Index

