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Introduction

biClassify is a package for adapting Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA), and Kernel Discriminant Analysis to a variety of situations where the conventional methods may not
work. In particular, this package has methodology for the following problems:

1. Linear and Quadratic classification in the large-sample case with small-to-medium sized number of
features. The available compressed LDA and QDA methods provide alternatives to random sub-sampling
which are shown to produce lower mean misclassification error rates and lower standard error in the
misclassification error rates (see e.g. [3]).

2. Kernel classification where the data has a medium-to-large number of features. In this case, one would
like to learn a non-linear decision boundary and have simultaneous sparse feature selection. The sparse
kernel discriminant analysis method provided, Sparse Kernel Optimal Scoring, is presented in [2].



Quick Start

The purpose of this section is to give the user a quick overview of the package and the types of problems it
can be used to solve. Accordingly, we implement only the basic versions of the available methods, and more
detailed presentations are given in later sections.

We first load the package

library(biClassify)

Quick LDA Example

Our first example illustrates the compressed LDA function on data well-suited for LDA. The first two features

of the training data in LDA_Data are plotted below:
data(LDA_Data)

Scatter Plot of LDA Training Data
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This data set has n = 10,000 training samples with p = 10 features. It is normally distributed, and the two
classes have equal covariance matrices. The test data was independently generated from the same distribution,
but it has only n = 1,000 samples.

Let us use compressed LDA to predict the test data labels.

> test_pred <- LDA(TrainData = LDA_Data$TrainData,
TrainCat LDA_Data$TrainCat,
TestData = LDA_Data$TestData,
Method = "Compressed")$Predictions

> mean(test_pred !'= LDA_Data$TestCat)
[11 o



The automatic impementation of compressed LDA predicted the Test labels perfectly! However, this is due,
in part, to the classes being well-separated and having the same covariance structure. Let us now consider an
example of where LDA will not perform well.

Quick QDA Example
Our next example illustrates the compressed QDA function on data well-suited for QDA. The first two

features of the training data in QDA_Data are plotted below:

data(QDA_Data)

Scatter Plot of QDA Training Data
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A modification of Quadratic Discriminant Analysis is well-suited to such data. The package comes with a
function QDA for such purposes.

> test_pred <- QDA(TrainData = QDA_Data$TrainData,
TrainCat QDA_Data$TrainCat,
TestData = QDA_Data$TestData,
Method = "Compressed")

> mean(test_pred !'= QDA_Data$TestCat)
[11 o

Compressed QDA gives perfect class prediction

Quick Sparse Kernel Optimal Scoring Example

What happens if the data is not well-suited to either Linear or Quadratic Discriminant Analysis? Moreover,
what happens if, in addtion to a non-linear decision boundary between classes, there also appear to be
variables which do not contribute to group separation?



For example, consider the KOS_Data shown below.
data(KOS_Data)
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For this data set, neither LDA or QDA would suffice. The function KOS is the sparse kernel optimal scoring
algorithm presented in [2]. It is particularly well-suited to such problems, as can be seen from the following.

> output <- KOS(TrainData = KOS_Data$TrainData,
TrainCat KOS_Data$TrainCat,
TestData = KOS_Data$TestData)

> output$Weight

[11 1100

> mean (output$Predictions != KOS_Data$TestCat)
(11 o

> summary (output$Dvec)
Vi
Min. :-0.03002
1st Qu.:-0.01953
Median :-0.01445

Mean : 0.00000
3rd Qu.: 0.03788
Max. : 0.05799

Weight in the output is how much weight the kernel classifier gives to each feature. The weight values lie in
[—1, 1], and zero weight means that the feature does not contribute to computing the discriminant function.
The KOS function correctly identifies that the first two features are important for class separation, and gives
them full weight. It also correctly identifies Features 3 and 4 as being “noise”, and it gives them zero weight.

Predictions are the predicted class labels for the test data. As we can see, KOS has perfect classification.

Dvec are the coefficients of the kernel classifier.



Compressed Linear Discriminant Analysis

This section provides a more in-depth treatment to the Linear Discriminant methods available in biClassify.
There are five seperate linear discriminant methods avilable through the LDA wrapper function:
1. Full Linear Discriminant Analsysis, which is LDA trained on the full data as presented in [4].
2. Compressed Linear Discriminant Analysis in [3].
3. Projected LDA in [3].
4. Subsampled LDA, where LDA is trained on data which is sub-sampled uniformly from both classes.
5. FashRandomFisher Discriminant Analysis as presented in [5].
The individual methods are invoked by setting the Method argument. Let us first load the data for notational

convenience.

TrainData <- LDA_Data$TrainData
TrainCat <- LDA_Data$TrainCat
TestData <- LDA_Data$TestData
TestCat <- LDA_Data$TestCat

Full LDA

This method is the result of setting Method equal to "Full". This method is traditional Linear Discriminant
Analysis, as presented in [4]. No additional parameters need to be supplied, and the code will run as stated.

test_pred <- LDA(TrainData, TrainCat, TestData)$Predictions
table(test_pred)

#> test_pred

#> 1 2

#> 700 300

mean(test_pred != TestCat)

#> [1] 0

which produces a list containing a vector of predicted class labels for TestData and the discriminant vector
used in LDA.

Compressed LDA

Compressed LDA seeks to solve the LDA problem on reduced-size data. It first compressed the groups of
centered data (X9 — X ;) via a compression matrix Q9. The entries f’ ; are i.i.d. sparse radamacher random
variables with distribution

p
P(Q{; =1) =P( fyj:—l)ziandﬂ"( 7, =0 =1-p.

This method is the result of setting Method equal to "Compressed". It is compressed LDA, as presented in
[3]. Compressed LDA reduces the group sample amounts from n; and ng to m; and mq respectively.
Compressed LDA requires the parameters m1, m2, s.

The easiest way to run Compressed LDA is to set Mode to Automatic and not worry about supplying
additional parameters.



test_pred <- LDA(TrainData, TrainCat, TestData,
Method = "Compressed", Mode = "Automatic")$Predictions
table(test_pred)
#> test_pred
#> 1 2
#> 700 300
mean(test_pred != TestCat)
#> [1] 0O

Automatic is the default value for Mode, and so one could simply run

test_pred <- LDA(TrainData, TrainCat, TestData, Method = "Compressed")$Predictions
table(test_pred)

#> test_pred

#> 1 2

#> 700 300

mean(test_pred != TestCat)

#> [1] 0

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the compression amounts my, ms, and
sparsity level s to be used in compression. The user will type in the amounts:

output <- LDA(TrainData, TrainCat, TestData,

Method = "Compressed", Mode = "Interactive")$Predictions
"Please enter the number ml of group 1 compression samples: "700
"Please enter the number m2 of group 2 compression samples: "300
"Please enter sparsity level s used in compression: "0.01

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they may wish to
give the LDA function all parameters.
test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Compressed", Mode = "Research",
ml = 700, m2 = 300, s = 0.01)$Predictions

table(test_pred)

#> test_pred

#> 1 2

#> 700 300

mean(test_pred != TestCat)
#> [1] 0

WARNING: The argument Mode will override any supplied parameters if its value is Automatic or Research.

Sub-Sampled LDA

Sub-sampled LDA is just LDA trained on data sub-sampled uniformly from both classes.
To run sub-sampled LDA, set Method equal to Subsampled. It requires the additional parameters m1 and m2.

The easiest way to run Compressed LDA is to set Mode to Automatic and not worry about supplying
additional parameters.



test_pred <- LDA(TrainData, TrainCat, TestData,
Method = "Subsampled", Mode = "Automatic")$Predictions
table(test_pred)
#> test_pred
#> 1 2
#> 700 300

Automatic is the default value for Mode, and so one could simply run

test_pred <- LDA(TrainData, TrainCat, TestData,
Method = "Subsampled")$Predictions

table(test_pred)

#> test_pred

# 1 2

#> 700 300

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the sub-sample amounts my, ms for each
group to be used. The user will type in the amounts:

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Subsampled", Mode = "Interactive")$Predictions
"Please enter the number ml of group 1 sub-samples: "700
"Please enter the number m2 of group 2 sub-samples: "300

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they may wish to
give the LDA function all parameters.

output <- LDA(TrainData, TrainCat, TestData,
Method = "Subsampled", Mode = "Research",
ml = 700, m2 = 300)$Predictions

table (output)

#> output

#> 1 2

#> 700 300

mean (output != TestCat)
#> [1] 0

WARNING: The argument Mode will override any supplied parameters if its value is Automatic or Research.

Projected LDA

This method is the result of setting Method equal to "PRojected". It is Projected LDA, as presented in [3].
Projected LDA creates the discriminant vector on compressed data and then projects the full training data
onto the discriminant vector.

Projected LDA requires the parameters m1, m2, s.

The easiest way to run Projected LDA is to set Mode to Automatic and not worry about supplying additional
parameters.

output <- LDA(TrainData, TrainCat, TestData,
Method = "Projected", Mode = "Automatic")$Predictions
table (output)



#> output

#> 1 2

#> 700 300

mean(output != TestCat)
#> [1] 0

Automatic is the default value for Mode, and so one could simply run

output <- LDA(TrainData, TrainCat, TestData,
Method = "Projected")$Predictions

table (output)

#> output

#> 1 2

#> 700 300

mean (output != TestCat)

#> [1] 0

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the compression amounts mi, ms, and
sparsity level s to be used in compression. The user will type in the amounts:

output <- LDA(TrainData, TrainCat, TestData,

Method = "Projected", Mode = "Interactive")$Predictions
"Please enter the number ml of group 1 compression samples: "700
"Please enter the number m2 of group 2 compression samples: "300
"Please enter sparsity level s used in compression: "0.01

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they may wish to
give the LDA function all parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,
Method = "Projected", Mode = "Research",
ml = 700, m2 = 300, s = 0.01)$Predictions

table(test_pred)

#> test_pred

#> 1 2

#> 700 300

mean (output != TestCat)
#> [1] 0

WARNING: The argument Mode will override any supplied parameters if its value is Automatic or Research.

Fast Random Fisher Discriminant Analysis

This method is the result of setting Method equal to "fastRandomFisher". It is the Fast Random Fisher
Discriminant Analysis algorithm, as presented in [5]. Fast Random fisher creates the discriminant vector on
reduced sample amounts m, and then projects the full training data onto the learned discriminant vector.
The difference between Fast Random Fisher Discriminant Analysis and Projected LDA is that Fast Random
Fisher mixes the groups together when forming the discriminant vector, but Projected LDA does not.

Fast Random Fisher requires the parameters m, and s.



The easiest way to run Fast Random Fisher is to set Mode to Automatic and not worry about supplying
additional parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,
Method = "fastRandomFisher", Mode = "Automatic")$Predictions
table(test_pred)
#> test_pred
#> 1 2
#> 700 300
mean(test_pred != TestCat)
#> [1] 0

Automatic is the default value for Mode, and so one could simply run

test_pred <- LDA(TrainData, TrainCat, TestData,
Method = "fastRandomFisher")$Predictions
table(test_pred)
#> test_pred
#> 1 2
#> 698 302
mean(test_pred != TestCat)
#> [1] 0.002

and obtain the same output.
When Mode is set to Interactive, prompts will appear asking for the total amount of compressed samples
m and sparsity level s to be used in compression. The user will type in the amounts:

output <- LDA(TrainData, TrainCat, TestData,

Method = "fastRandomFisher", Mode = "Interactive")$Predictions
"Please enter the number m of total compressed samples: "1000
"Please enter sparsity level s used in compression: "0.01

and the output is produced.
If the user is interested in running simulation studies or has mastery over the functionality, they may wish to
give the LDA function all parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,
Method = "fastRandomFisher", Mode = "Research",
m = 1000, s = 0.01)$Predictions

table(test_pred)

#> test_pred

#> 1 2

#> 700 300

mean(test_pred != TestCat)
#> [1] 0

WARNING: The argument Mode will override any supplied parameters if its value is Automatic or Research.

Quadratic Discriminant Analysis

This section provides a more in-depth treatment to the Linear Discriminant methods available in biClassify.
There are three seperate quadratic discriminant methods avilable through the QDA wrapper function:

1. Full Quadratic Discriminant Analsysis, which is QDA trained on the full data as presented in [4].



2. Compressed Qinear Discriminant Analysis as presented in [3].
3. Subsampled QDA, where QDA is trained on data which is sub-sampled uniformly from both classes.

The individual methods are invoked by setting the Method argument. Let us first load the data for notational
convenience.

TrainData <- QDA_Data$TrainData
TrainCat <- QDA_Data$TrainCat
TestData <- QDA_Data$TestData
TestCat <- QDA_Data$TestCat

Full QDA

This method is the result of setting Method equal to "Full". This method is traditional Quadratic Discriminant
Analysis, as presented in [4]. No additional parameters need to be supplied, and the code will run as stated.
Unlike the LDA function, only the class predictions are produced:

Predictions <- QDA(TrainData, TrainCat, TestData, Method = "Full")
table(Predictions)

#> Predictions

#> 1 2

#> 700 300

Compressed QDA

This method is the result of setting Method equal to "Compressed". It is compressed QDA, as presented in
[3]. Compressed QDA reduces the group sample amounts from n; and ns to m; and mgy respectively via
compression and trains QDA on the reduced samples.

Compressed QDA requires the parameters m1, m2, s.

The easiest way to run Compressed QDA is to set Mode to Automatic and not worry about supplying
additional parameters.

output <- QDA(TrainData, TrainCat, TestData, Method = "Compressed", Mode = "Automatic")
table (output)

#> output

#> 1 2

#> 700 300

Automatic is the default value for Mode, and so one could simply run

output <- QDA(TrainData, TrainCat, TestData, Method = "Compressed")
table (output)

#> output

#> 1 2

#> 700 300

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the compression amounts mi, ms, and
sparsity level s to be used in compression. The user will type in the amounts:

output <- QDA(TrainData, TrainCat, TestData, Method = "Compressed", Mode = "Interactive")
"Please enter the number ml of group 1 compression samples: "700

"Please enter the number m2 of group 2 compression samples: "300

"Please enter sparsity level s used in compression: "0.01

10



table (output)

and the output is produced.
If the user is interested in running simulation studies or has mastery over the functionality, they may wish to
give the QDA function all parameters.

output <- QDA(TrainData, TrainCat, TestData, Method = "Compressed",
Mode = "Research", ml1 = 700, m2 = 300, s = 0.01)

summary (output)
#> Min. 1st Qu. Median Mean 3rd Qu. Mazx.
#> 1.0 1.0 1.0 1.3 2.0 2.0

Sub-Sampled QDA

Sub-sampled QDA is just QDA trained on data sub-sampled uniformly from both classes. To run sub-sampled
QDA, set Method equal to Subsampled.

It requires the additional parameters m1 and m2.
The easiest way to run sub-sampled QDA is to set Mode to Automatic and not worry about supplying
additional parameters.

output <- QDA(TrainData, TrainCat, TestData, Method = "Subsampled", Mode = "Automatic")
table (output)

#> output

#> 1 2

#> 700 300

Automatic is the default value for Mode, and so one could simply run

output <- QDA(TrainData, TrainCat, TestData, Method = "Subsampled")

summary (output)
#> Min. 1st Qu. Median Mean 3rd Qu. Maz.
#> 1.0 1.0 1.0 1.3 2.0 2.0

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the sub-sample amounts my, ms for each
group to be used. The user will type in the amounts:

output <- QDA(TrainData, TrainCat, TestData, Method = "Subsampled", Mode = "Interactive")
"Please enter the number ml of group 1 sub-samples: "700
"Please enter the number m2 of group 2 sub-samples: "300

summary (output)

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they may wish to
give the QDA function all parameters.

output <- QDA(TrainData, TrainCat, TestData, Method = "Subsampled",
Mode = "Research", ml = 700, m2 = 300)

summary (output)
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#> Min. 1st Qu. Median Mean 3rd Qu. Mazx.
#> 1.0 1.0 1.0 1.3 2.0 2.0

WARNING: The argument Mode will override any supplied parameters if its value is Automatic or Research.

Sparse Kernel Discriminant Analysis

This section presents the kernel optimal scoring method available in the biClassify package. Kernel optimal
scoring is presented in [2].

Kernel optimal scoring finds the kernel discriminant coefficients o € R™ by solving a kernelized form of the
optimal scoring problem

1 5 = 1
i {3 Lol (@)~ 1), 711 f = i { 1179~ OKCal 707K}

It is equivalent to kernel discriminant analysis.

We include simultaneous sparse feature selection by weighting the features using w € [—1,1]", so that the
weighted samples are
wr = (wyxy, . .. ,wpa;p)T

The weighted kernel matrix K,, is defined by (K,);,; := k(wz;, wz;). To perform sparse feature selection,
we add a sparsity penalty on the weight vector A||w|; and minimize

1 ~

min {HYGC’KwCozH% + w1 +'yaTKwa}.
aeR  wel-1,17 (N

Let us load the data set used in kernel optimal scoring

TrainData <- KOS_Data$TrainData
TrainCat <- KOS_Data$TrainCat
TestData <- KOS_Data$TestData
TestCat <- KOS_Data$TestCat

Parameter Selection

This subsection details how KOS selects the parameters o2, v, and .

The gaussian kernel parameter o2, is selected based on the {.05,.1,.2,.3,.5} quantiles of the set of squared
distances between the classes
{lzi, — il : @i, € C1, @4, € Ca}

The ridge parameter « is selected by adapting a kernel matrix shrinkage technique Lancewicki (2018) to the
setting of ridge regression. For more details, see [2].

The sparsity parameter ) is selected using 5-fold cross-validation to minimize the error rate over a grid of 20
equally-spaced values.

The function SelectParams implements these methods automatically. For more details, see [2].

> SelectParams(TrainData, TrainCat)

$Sigma
[1] 0.7390306

12



$Gamma
[1] 0.137591

$Lambda
[1] 0.0401767

If parameters are not supplied to KOS, the function first invokes SelectParams to generate any missing
parameters.

Hierarchical Parameters

Sparse kernel optimal scoring has three parameters: a Gaussian kernel parameter Sigma, a ridge parameter
Gamma, and a sparsity parameter Lambda. They have a hierarchical dependency, in that Sigma influences
Gamma, and both influence Lambda. The ordering is

Top Sigma

Middle Gamma

Bottom Lambda

When using either of the functions, the user is only allowed to specify parameter combinations which adhere
to the hierarchical ordering above. That is, they can only input parameters which go from Top to Bottom.
For example, they could specify both Sigma and Gamma, but leave Lambda as the default NULL value. On the
other hand, the user would not be allowed to specify only Lambda while leaving Sigma and Gamma as their
default NULL values.

> SelectParams(TrainData, TrainCat, Sigma = 1, Gamma = 0.1)

$Sigma
(11 1

$Gamma
[1] 0.1

$Lambda
[1] 0.06186337

If the user supplies parameter values which violate the hierarchical ordering, the error message Hierarchical
order of parameters violated. will be returned.

SelectParams(TrainData, TrainCat, Gamma = 0.1)

Error in SelectParams(TrainData, TrainCat, Gamma = 0.1)
Hierarchical order of parameters violated.
Please specify Sigma before Gamma, and both Sigma and Gamma before Lambda.

KOS

This package comes with an all-purpose function for running kernel optimal scoring.

Sigma <- 1.325386
Gamma <- 0.07531579
Lambda <- 0.002855275
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> output <- KOS(TestData, TrainData, TrainCat, Sigma

Gamma = Gamma, Lambda = Lambda)

> output$Weight
[11 1100

> table(output$Predictions)
1 2
26 68

> summary (output$Dvec)
Vi
Min. :-0.05860
1st Qu.:-0.03711
Median :-0.02539

Mean 0.00000
3rd Qu.: 0.06983
Max. : 0.10192
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