Package ‘bench’

January 16, 2025
Title High Precision Timing of R Expressions

Version 1.1.4

Description Tools to accurately benchmark and analyze execution times for
R expressions.

License MIT + file LICENSE
URL https://bench.r-1lib.org/, https://github.com/r-1ib/bench

BugReports https://github.com/r-1lib/bench/issues
Depends R (>=4.0.0)

Imports glue (>= 1.8.0), methods, pillar (>= 1.10.1), profmem (>=
0.6.0), rlang (>= 1.1.4), stats, tibble (>= 3.2.1), utils

Suggests covr, dplyr, forcats, ggbeeswarm, ggplot2 (>=3.5.1),
ggridges, parallel, scales, testthat (>= 3.2.3), tidyr (>=
1.3.1), vctrs (>= 0.6.5), withr

Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3
Config/usethis/last-upkeep 2025-01-16
Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Jim Hester [aut],
Davis Vaughan [aut, cre],
Drew Schmidt [ctb] (read_proc_file implementation),
Posit Software, PBC [cph, fnd]

Maintainer Davis Vaughan <davis@posit.co>
Repository CRAN
Date/Publication 2025-01-16 22:40:07 UTC

https://bench.r-lib.org/
https://github.com/r-lib/bench
https://github.com/r-lib/bench/issues

2 as_bench_time
Contents
as_bench _mark L e 2
as_bench_time e 2
autoplot.bench_mark 3
bench_bytes L 4
bench_load_average e 5
bench_memory 5
bench_process_memory e 6
bench_time 7
hires_time e e 8
knit_printbench_mark Lo 8
mark . ..o e e 9
PIESS . v v o e e e e e e e e e e e e e e 11
summary.bench_mark oL 12
WOrkout e e 14
Index 15
as_bench_mark Coerce to a bench mark object Bench mark objects
Description
This is typically needed only if you are performing additional manipulations after calling mark().
Usage
as_bench_mark(x)
Arguments
X Object to be coerced
as_bench_time Human readable times
Description
Construct, manipulate and display vectors of elapsed times in seconds. These are numeric vectors,
so you can compare them numerically, but they can also be compared to human readable values
such as *10ms’.
Usage

as_bench_time(x)

autoplot.bench_mark 3

Arguments
X A numeric or character vector. Character representations can use shorthand sizes
(see examples).
Examples

as_bench_time("1ns")
as_bench_time("1")
as_bench_time("1us")
as_bench_time("1ms")
as_bench_time("1s")

as_bench_time("100ns") < "1ms"

sum(as_bench_time(c("1MB", "5MB", "500KB")))

autoplot.bench_mark Autoplot method for bench_mark objects

Description

Autoplot method for bench_mark objects

Usage
autoplot.bench_mark(
object,
type = c("beeswarm”, "jitter"”, "ridge", "boxplot”, "violin"),
)
S3 method for class 'bench_mark'
plot(x, ..., type = c("beeswarm”, "jitter"”, "ridge", "boxplot"”, "violin"), y)
Arguments
object A bench_mark object.
type The type of plot. Plotting geoms used for each type are

¢ beeswarm - ggbeeswarm: : geom_quasirandom()
e jitter - ggplot2::geom_jitter()
* ridge - ggridges: :geom_density_ridges()
* boxplot - ggplot2: :geom_boxplot()
e violin - ggplot2::geom_violin()
Additional arguments passed to the plotting geom.
X A bench_mark object.

y Ignored, required for compatibility with the plot () generic.

4 bench_bytes

Details

This function requires some optional dependencies. ggplot2, tidyr, and depending on the plot type
ggbeeswarm, ggridges.

For type of beeswarm and jitter the points are colored by the highest level garbage collection
performed during each iteration.

For plots with 2 parameters ggplot2::facet_grid() is used to construct a 2d facet. For other
numbers of parameters ggplot2: : facet_wrap() is used instead.

Examples

dat <- data.frame(x = runif(10000, 1, 1000), y=runif (10000, 1, 1000))

res <- bench: :mark(
dat[dat$x > 500, 1,
dat[which(dat$x > 500), 1,
subset(dat, x > 500))

if (require(ggplot2) && require(tidyr) && require(ggbeeswarm)) {

Beeswarm plot
autoplot(res)

ridge (joyplot)
autoplot(res, "ridge")

If you want to have the plots ordered by execution time you can do so by
ordering factor levels in the expressions.
if (require(dplyr) && require(forcats)) {

res %>%

mutate(expression = forcats: :fct_reorder(as.character(expression), min, .desc = TRUE)) %>%
as_bench_mark() %>%
autoplot(”violin")

bench_bytes Human readable memory sizes

Description

Construct, manipulate and display vectors of byte sizes. These are numeric vectors, so you can com-
pare them numerically, but they can also be compared to human readable values such as *10MB’.

Usage

as_bench_bytes(x)

bench_bytes(x)

bench_load_average 5

Arguments
X A numeric or character vector. Character representations can use shorthand sizes
(see examples).
Details

These memory sizes are always assumed to be base 1024, rather than 1000.

Examples

bench_bytes("1")
bench_bytes("1K")
bench_bytes("1Kb")
bench_bytes("1KiB")
bench_bytes("1MB")

bench_bytes("1KB") < "1MB"

sum(bench_bytes(c(”"1MB", "5MB", "500KB")))

bench_load_average Get system load averages

Description

Uses OS system APISs to return the load average for the past 1, 5 and 15 minutes.

Usage

bench_load_average()

bench_memory Measure memory that an expression used.

Description

Measure memory that an expression used.

Usage

bench_memory (expr)

Arguments

expr A expression to be measured.

6 bench_process_memory

Value
A tibble with two columns

* The total amount of memory allocated

* The raw memory allocations as parsed by profmem: : readRprofmem()

Examples

if (capabilities("profmem”)) {
bench_memory(1 + 1:10000)
}

bench_process_memory Retrieve the current and maximum memory from the R process

Description

The memory reported here will likely differ from that reported by gc(), as this includes all mem-
ory from the R process, including any child processes and memory allocated outside R’s garbage
collector heap.

Usage

bench_process_memory ()

Details

The OS APIs used are as follows

Windows:

* PROCESS_MEMORY_COUNTERS.WorkingSetSize
* PROCESS_MEMORY_COUNTERS.PeakWorkingSetSize

macOS:

e task_info(TASK_BASIC_INFO)

¢ rusage.ru_maxrss

linux:

* /proc/pid/status VmSize
e /proc/pid/status VmPeak

https://learn.microsoft.com/en-us/windows/win32/api/psapi/ns-psapi-process_memory_counters
https://learn.microsoft.com/en-us/windows/win32/api/psapi/ns-psapi-process_memory_counters
https://developer.apple.com/documentation/kernel/1537934-task_info?language=occ
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/getrusage.2.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html

bench_time 7

bench_time Measure Process CPU and real time that an expression used.

Description

Measure Process CPU and real time that an expression used.

Usage

bench_time(expr)

Arguments

expr A expression to be timed.

Details

On some systems (such as macOS) the process clock has lower precision than the realtime clock, as
a result there may be cases where the process time is larger than the real time for fast expressions.

Value
A bench_time object with two values.

* process - The process CPU usage of the expression evaluation.

* real - The wallclock time of the expression evaluation.

See Also

bench_memory () To measure memory allocations for a given expression.

Examples

This will use ~.5 seconds of real time, but very little process time.
bench_time(Sys.sleep(.5))

8 knit_print.bench_mark

hires_time Return the current high-resolution real time.

Description

Time is expressed as seconds since some arbitrary time in the past; it is not correlated in any way to
the time of day, and thus is not subject to resetting or drifting. The hi-res timer is ideally suited to
performance measurement tasks, where cheap, accurate interval timing is required.

Usage

hires_time()

Examples

hires_time()

R rounds doubles to 7 digits by default, see greater precision by setting
the digits argument when printing
print(hires_time(), digits = 20)

Generally used by recording two times and then subtracting them
start <- hires_time()

end <- hires_time()

elapsed <- end - start

elapsed

knit_print.bench_mark Custom printing function for bench_mark objects in knitr documents

Description

By default, data columns (result, memory, time, gc) are omitted when printing in knitr. If you
would like to include these columns, set the knitr chunk option bench.all_columns = TRUE.

Usage

knit_print.bench_mark(x, ..., options)
Arguments

X An R object to be printed

Additional arguments passed to the S3 method. Currently ignored, except two
optional arguments options and inline; see the references below.

options A list of knitr chunk options set in the currently evaluated chunk.

mark 9

Details
You can set bench.all_columns = TRUE to show all columns of the bench mark object.
“**{r, bench.all_columns = TRUE}

bench: :mark(
subset(mtcars, cyl == 3),

mtcars[mtcars$cyl == 3,]
mark Benchmark a series of functions
Description

Benchmark a list of quoted expressions. Each expression will always run at least twice, once to
measure the memory allocation and store results and one or more times to measure timing.

Usage

mark (

min_time = 0.5,
iterations = NULL,

min_iterations = 1,
max_iterations = 10000,

check = TRUE,

memory = capabilities("profmem"),
filter_gc = TRUE,

relative = FALSE,

time_unit = NULL,

exprs = NULL,
env = parent.frame()
)
Arguments
Expressions to benchmark, if named the expression column will be the name,
otherwise it will be the deparsed expression.
min_time The minimum number of seconds to run each expression, set to Inf to always
run max_iterations times instead.
iterations If not NULL, the default, run each expression for exactly this number of iterations.

This overrides both min_iterations and max_iterations.
min_iterations Each expression will be evaluated a minimum of min_iterations times.

max_iterations Each expression will be evaluated a maximum of max_iterations times.

10 mark
check Check if results are consistent. If TRUE, checking is done with all.equal(), if
FALSE checking is disabled and results are not stored. If check is a function that
function will be called with each pair of results to determine consistency.
memory If TRUE (the default when R is compiled with memory profiling), track memory
allocations using utils: :Rprofmem(). If FALSE disable memory tracking.
filter_gc If TRUE remove iterations that contained at least one garbage collection before
summarizing. If TRUE but an expression had a garbage collection in every itera-
tion, filtering is disabled, with a warning.
relative If TRUE all summaries are computed relative to the minimum execution time
rather than absolute time.
time_unit If NULL the times are reported in a human readable fashion depending on each
value. If one of ’ns’, ’us’, 'ms’, ’s’, 'm’, ’h’, ’d’, ’w’ the time units are in-
stead expressed as nanoseconds, microseconds, milliseconds, seconds, hours,
minutes, days or weeks respectively.
exprs A list of quoted expressions. If supplied overrides expressions defined in
env The environment which to evaluate the expressions
Value

A tibble with the additional summary columns. The following summary columns are computed

See Also

expression - bench_expr The deparsed expression that was evaluated (or its name if one
was provided).

min - bench_time The minimum execution time.
median - bench_time The sample median of execution time.
itr/sec - double The estimated number of executions performed per second.

mem_alloc - bench_bytes Total amount of memory allocated by R while running the expres-
sion. Memory allocated outside the R heap, e.g. by malloc() or new directly is not tracked,
take care to avoid misinterpreting the results if running code that may do this.

gc/sec - double The number of garbage collections per second.

n_itr - integer Total number of iterations after filtering garbage collections (if filter_gc
== TRUE).

n_gc - double Total number of garbage collections performed over all iterations. This is a
psudo-measure of the pressure on the garbage collector, if it varies greatly between to alterna-
tives generally the one with fewer collections will cause fewer allocation in real usage.

total_time - bench_time The total time to perform the benchmarks.

result - list A list column of the object(s) returned by the evaluated expression(s).
memory - 1list A list column with results from Rprofmem().

time - list A list column of bench_time vectors for each evaluated expression.

gc - list A list column with tibbles containing the level of garbage collection (0-2, columns)
for each iteration (rows).

press() to run benchmarks across a grid of parameters.

press 11

Examples

dat <- data.frame(x = runif(100, 1, 1000), y=runif(10, 1, 1000))
mark (
min_time = .1,

dat[dat$x > 500, 1,
dat[which(dat$x > 500), 1,
subset(dat, x > 500))

press Run setup code and benchmarks across a grid of parameters

Description

press() is used to run mark() across a grid of parameters and then press the results together.

The parameters you want to set are given as named arguments and a grid of all possible combina-
tions is automatically created.

The code to setup and benchmark is given by one unnamed expression (often delimited by \{).

If replicates are desired a dummy variable can be used, e.g. rep = 1:5 for replicates.

Usage
press(..., .grid = NULL, .quiet = FALSE)
Arguments
If named, parameters to define, if unnamed the expression to run. Only one
unnamed expression is permitted.
.grid A pre-built grid of values to use, typically adata.frame() or tibble: :tibble().
This is useful if you only want to benchmark a subset of all possible combina-
tions.
.quiet If TRUE, progress messages will not be emitted.
Examples

Helper function to create a simple data.frame of the specified dimensions
create_df <- function(rows, cols) {
as.data.frame(setNames(
replicate(cols, runif(rows, 1, 1000), simplify = FALSE),
rep_len(c("x", letters), cols)))
3

Run 4 data sizes across 3 samples with 2 replicates (24 total benchmarks)
press(

rows = c(1000, 10000),

cols = c(10, 100),

rep = 1:2,

12 summary.bench_mark

{
dat <- create_df(rows, cols)
bench: :mark(
min_time = .05,
bracket = dat[dat$x > 500,],
which = dat[which(dat$x > 500), 1,
subset = subset(dat, x > 500)

summary . bench_mark Summarize mark results.

Description

Summarize mark results.

Usage

S3 method for class 'bench_mark'

summary(object, filter_gc = TRUE, relative = FALSE, time_unit = NULL, ...)
Arguments

object bench_mark object to summarize.

filter_gc If TRUE remove iterations that contained at least one garbage collection before

summarizing. If TRUE but an expression had a garbage collection in every itera-
tion, filtering is disabled, with a warning.

relative If TRUE all summaries are computed relative to the minimum execution time
rather than absolute time.

time_unit If NULL the times are reported in a human readable fashion depending on each
value. If one of ’ns’, ’us’, 'ms’, ’s’, 'm’, ’h’, ’d’, ’w’ the time units are in-
stead expressed as nanoseconds, microseconds, milliseconds, seconds, hours,
minutes, days or weeks respectively.

Additional arguments ignored.

Details

If filter_gc == TRUE (the default) runs that contain a garbage collection will be removed before
summarizing. This is most useful for fast expressions when the majority of runs do not contain a
gc. Call summary(filter_gc = FALSE) if you would like to compute summaries with these times,
such as expressions with lots of allocations when all or most runs contain a gc.

summary.bench_mark 13

Value

A tibble with the additional summary columns. The following summary columns are computed
* expression - bench_expr The deparsed expression that was evaluated (or its name if one
was provided).
* min - bench_time The minimum execution time.
* median - bench_time The sample median of execution time.
* itr/sec - double The estimated number of executions performed per second.

* mem_alloc - bench_bytes Total amount of memory allocated by R while running the expres-
sion. Memory allocated outside the R heap, e.g. by malloc() or new directly is not tracked,
take care to avoid misinterpreting the results if running code that may do this.

* gc/sec - double The number of garbage collections per second.

* n_itr - integer Total number of iterations after filtering garbage collections (if filter_gc
== TRUE).

* n_gc - double Total number of garbage collections performed over all iterations. This is a
psudo-measure of the pressure on the garbage collector, if it varies greatly between to alterna-
tives generally the one with fewer collections will cause fewer allocation in real usage.

* total_time - bench_time The total time to perform the benchmarks.

* result - list A list column of the object(s) returned by the evaluated expression(s).
e memory - list A list column with results from Rprofmem().

e time - list A list column of bench_time vectors for each evaluated expression.

* gc - list A list column with tibbles containing the level of garbage collection (0-2, columns)
for each iteration (rows).

Examples

dat <- data.frame(x = runif(10000, 1, 1000), y=runif (10000, 1, 1000))

“bench::mark()” implicitly calls summary() automatically
results <- bench: :mark(

dat[dat$x > 500, 1,

dat[which(dat$x > 500), 1,

subset(dat, x > 500))

However you can also do so explicitly to filter gc differently.
summary(results, filter_gc = FALSE)

Or output relative times
summary(results, relative = TRUE)

14 workout

workout Workout a group of expressions individually

Description

Given an block of expressions in {} workout() individually times each expression in the group.
workout_expressions() is a lower level function most useful when reading lists of calls from a
file.

Usage

workout (expr, description = NULL)

workout_expressions(exprs, env = parent.frame(), description = NULL)

Arguments
expr one or more expressions to workout, use {} to pass multiple expressions.
description A name to label each expression, if not supplied the deparsed expression will be
used.
exprs A list of calls to measure.
env The environment in which the expressions should be evaluated.
Examples
workout ({
x <- 1:1000

evens <- X %% 2 ==
y <- x[evens]
length(y)
length(which(evens))
sum(evens)

b

The equivalent to the above, reading the code from a file
workout_expressions(as.list(parse(system.file("examples/exprs.R", package = "bench"))))

Index

all.equal(), 10

as_bench_bytes (bench_bytes), 4
as_bench_mark, 2
as_bench_time, 2
autoplot.bench_mark, 3

bench_bytes, 4
bench_load_average, 5
bench_mark, 12
bench_mark (mark), 9
bench_memory, 5
bench_memory(), 7
bench_process_memory, 6
bench_time, 7

data.frame(), 11

ggbeeswarm, 4
ggbeeswarm: : geom_quasirandom(), 3
ggplot2, 4

ggplot2: :geom_boxplot(), 3
ggplot2::geom_jitter(), 3
ggplot2::geom_violin(), 3
ggridges, 4

ggridges: :geom_density_ridges(), 3

hires_time, 8
knit_print.bench_mark, 8

mark, 9, 12
mark(), 2, 11

plot.bench_mark (autoplot.bench_mark), 3
press, 11

press(), 10

profmem: : readRprofmem(), 6

Rprofmem(), 10, 13

summary.bench_mark, 12

15

system_time (bench_time), 7

tibble, 10, 13
tibble::tibble(), 11
tidyr, 4

utils: :Rprofmem(), 10

workout, 14

workout (), 14
workout_expressions (workout), 14
workout_expressions(), /4

	as_bench_mark
	as_bench_time
	autoplot.bench_mark
	bench_bytes
	bench_load_average
	bench_memory
	bench_process_memory
	bench_time
	hires_time
	knit_print.bench_mark
	mark
	press
	summary.bench_mark
	workout
	Index

