Maximum likelihood estimation and analysis with

the bbmle package

Ben Bolker
December 8, 2023

Contents

1 Example: Orobanche/overdispersed binomial
1.1 Test basic fit to simulated beta-binomial data
1.2 Real data (Orobanche, Crowder (1978)) . . .

2 Example: reed frog size predation
3 Newer stuff

4 Technical details
4.1 Profiling and confidence intervals
4.1.1 Estimating standard error
4.1.2 Profiling L.
4.1.3 Confidence intervals
4.1.4 Profile plotting

20

The bbmle package, designed to simplify maximum likelihood estimation and
analysis in R, extends and modifies the mle function and class in the stats4
package that comes with R by default. mle is in turn a wrapper around the
optim function in base R. The maximum-likelihood-estimation function and
class in bbmle are both called mle2, to avoid confusion and conflict with the
original functions in the stats4 package. The major differences between mle

and mle2 are:

e mle2 is more robust, with additional warnings (e.g. if the Hessian can’t be
computed by finite differences, mle2 returns a fit with a missing Hessian

rather than stopping with an error)

e mle2 uses a data argument to allow different data to be passed to the

negative log-likelihood function

e mle2 has a formula interface like that of (e.g.) gls in the nlme pack-
age. For relatively simple models the formula for the maximum likelihood

can be written in-line, rather than defining a negative log-likelihood func-
tion. The formula interface also simplifies fitting models with categorical
variables. Models fitted using the formula interface also have applicable
predict and simulate methods.

e bbmle defines anova, AIC, AICc, and BIC methods for mle2 objects, as
well as AICtab, BICtab, AICctab functions for producing summary tables
of information criteria for a set of models.

Other packages with similar functionality (extending GLMs in various ways)
are

e on CRAN: aods3 (overdispersed models such as beta-binomial); vgam (a
wide range of models); betareg (beta regression); pscl (zero-inflated, hur-
dle models); maxLik (another general-purpose maximizer, with a different
selection of optimizers)

¢ In Jim Lindsey’s code repository (http://popgen.unimaas.nl/~jlindsey/
rcode.html): gnlr and gnlr3
1 Example: Orobanche/overdispersed binomial

This example will use the classic data set on Orobanche germination from Crow-
der (1978) (you can also use glm(. ..,family="quasibinomial") or the aods3
package to analyze these data).

1.1 Test basic fit to simulated beta-binomial data

First, generate a single beta-binomially distributed set of points as a simple test.
Load the emdbook package to get functions for the beta-binomial distribution

(random-deviate function rbetabinom — these functions are also available in

Jim Lindsey’s rmutil package).

library(emdbook)

Generate random deviates from a random beta-binomial:

set.seed(1001)
x1 <- rbetabinom(n=1000,prob=0.1,size=50,theta=10)

Load the package:

library(bbmle)

Construct a simple negative log-likelihood function:

http://popgen.unimaas.nl/~jlindsey/rcode.html
http://popgen.unimaas.nl/~jlindsey/rcode.html

mtmp <- function(prob,size,theta) {
-sum(dbetabinom(x1,prob,size,theta,log=TRUE))

}

Fit the model — use data to pass the size parameter (since it wasn’t hard-
coded in the mtmp function):

suppressWarnings(

m0 <- mle2(mtmp,start=1list(prob=0.2,theta=9),data=list(size=50))

)

(here and below, I'm suppressing lots of warnings about NaNs produced)

The summary method for mle2 objects shows the parameters; approximate
standard errors (based on quadratic approximation to the curvature at the max-
imum likelihood estimate); and a test of the parameter difference from zero
based on this standard error and on an assumption that the likelihood surface
is quadratic (or equivalently that the sampling distribution of the estimated
parameters is normal).

summary (m0)

Maximum likelihood estimation

##

Call:

mle2(minuslogl = mtmp, start = list(prob = 0.2, theta = 9), data
#i#

Coefficients:

Estimate Std. Error z value Pr(z)

prob 0.1030974 0.0031626 32.599 < 2.2e-16 **x*

theta 10.0758090 0.6213319 16.216 < 2.2e-16 **x*

——-

Signif. codes: O 's*xx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#it

-2 log L: 5446.995

Construct the likelihood profile (you can apply confint directly to m0, but
if you’re going to work with the likelihood profile [e.g. plotting, or looking for
confidence intervals at several different o values] then it is more efficient to
compute the profile once):

suppressWarnings (
pO <- profile(m0)
)

Compare the confidence interval estimates based on inverting a spline fit to
the profile (the default); based on the quadratic approximation at the maximum

list(size

50))

likelihood estimate; and based on root-finding to find the exact point where the
profile crosses the critical level.

confint (p0)

#it 2.5 % 97.5 Y
prob 0.09709228 0.1095103
theta 8.91708205 11.3559592

confint (m0,method="quad")

2.5 % 97.5 %
prob 0.09689875 0.1092961
theta 8.85802088 11.2935972

confint (m0,method="uniroot")

#it 2.5 % 97.5 %
prob 0.09709908 0.1095033
theta 8.91691019 11.3559746

All three types of confidence limits are similar.
Plot the profiles:

par (mfrow=c(1,2))
plot (pO,plot.confstr=TRUE)

Likelihood profile: prob Likelihood profile: theta
n
@ 4
o
2 4
v |
— -
N
e
-
n
@
o
T T T T T T T T T T T
0.095 0.100 0.105 0.110 85 90 95 100 105 110 115 120
prob theta

By default, the plot method for likelihood profiles displays the square root of
the the deviance difference (twice the difference in negative log-likelihood from
the best fit), so it will be V-shaped for cases where the quadratic approximation
works well (as in this case). (For a better visual estimate of whether the profile
is quadratic, use the absVal=FALSE option to the plot method.)

You can also request confidence intervals calculated using uniroot, which
may be more exact when the profile is not smooth enough to be modeled ac-
curately by a spline. However, this method is also more sensitive to numeric
problems.

Instead of defining an explicit function for minuslogl, we can also use the
formula interface. The formula interface assumes that the density function
given (1) has x as its first argument (if the distribution is multivariate, then x
should be a matrix of observations) and (2) has a log argument that will return
the log-probability or log-probability density if 1og=TRUE. Some of the extended
functionality (prediction etc.) depends on the existence of an s- variant function
for the distribution that returns (at least) the mean and median as a function
of the parameters (currently defined: snorm, sbinom, sbeta, snbinom, spois).

m0f <- mle2(x1~dbetabinom(prob,size=50,theta),
start=1list (prob=0.2,theta=9) ,data=data.frame(x1))

Note that you must specify the data via the data argument when using the
formula interface. This may be slightly more unwieldy than just pulling the
data from your workspace when you are doing simple things, but in the long
run it makes tasks like predicting new responses much simpler.

It’s convenient to use the formula interface to try out likelihood estimation
on the transformed parameters:

mOcf <- mle2(x1~dbetabinom(prob=plogis(lprob),size=50,theta=exp(ltheta)),
start=1ist (lprob=0,ltheta=2),data=data.frame(x1))
confint (mOcf ,method="uniroot")

#i 2.5 % 97.5 %
lprob -2.229960 -2.095759
ltheta 2.187954 2.429738

confint (mOcf ,method="spline")

#it 2.5 % 97.5 %
lprob -2.229963 -2.095756
ltheta 2.187948 2.429742

In this case the answers from uniroot and spline (default) methods barely
differ.

1.2 Real data (Orobanche, Crowder (1978))

Data are copied from the aods3 package (but a copy is saved with the package
to avoid depending on the aods3 package):

load(system.file("vignetteData","orobl.rda",package="bbmle"))
summary (orobl)

dilution n m

1/1 :6 Min. : 7.00 Min. : 0.00
1/25 :5 1st Qu.: 17.50 1st Qu.: 8.00
1/625:5 Median : 47.50 Median :13.50

#i# Mean : 44 .25 Mean :27.19
3rd Qu.: 57.50 3rd Qu.:46.25
Max. :104.00 Max. :90.00

Now construct a negative log-likelihood function that differentiates among
groups:

X <- model.matrix(~“dilution, data = orobl)

ML1 <- function(probl,prob2,prob3,theta,x) {
prob <- c(probl,prob2,prob3) [as.numeric(x$dilution)]
size <- x$n
-sum(dbetabinom(x$m,prob,size,theta,log=TRUE))

}

Results from Crowder (1978):

model probl prob2 prob3 theta sd.probl sd.prob2 sd.prob3 NLL

prop diffs 0.132 0.871 0.839 78.424 0.027 0.028 0.032 —34.991
full model —34.829
homog model —56.258

(m1 <- mle2(ML1,
start=1ist (prob1=0.5,prob2=0.5,prob3=0.5,theta=1),
data=list(x=orobl)))

##

Call:

mle2(minuslogl = ML1, start = list(probl = 0.5, prob2 = 0.5,
it prob3 = 0.5, theta = 1), data = list(x = orobl))
##

Coefficients:

#it probl prob2 prob3 theta

0.1318261 0.8706219 0.8382650 73.7195747

#i#

Log-likelihood: -34.99

##

Warning: optimization did not converge (code 1:)

Or:

(m1B <- mle2(m~dbetabinom(prob,size=n,theta),
param=1list(prob~dilution),
start=1list(prob=0.5,theta=1),

data=orobil))

The result warns us that the optimization has not converged; we also don’t
match Crowder’s results for 0 exactly. We can fix both of these problems by
setting parscale appropriately.

Since we don’t bound 6 (or below, o) we get a fair number of warnings with
this and the next few fitting and profiling attempts. We will ignore these for
now, since the final results reached are reasonable (and match or nearly match
Crowder’s values); the appropriate, careful thing to do would be either to fit on
a transformed scale where all real-valued parameter values were legal, or to use
method="L-BFGS-B" (or method="bobyqa" with the optimx package) to bound
the parameters appropriately. You can also use suppressWarnings() if you're
sure you don’t need to know about any warnings (beware: this will suppress all
warnings, those you weren’t expecting as well as those you were ...)

(m2 <- mle2(ML1,start=as.list(coef(ml)),
control=list(parscale=coef(ml)),
data=list (x=orobl)))

##

Call:

mle2(minuslogl = ML1, start = as.list(coef(ml)), data = list(x = orobl),
#it control = list(parscale = coef(ml)))

##

Coefficients:

#it probl prob2 prob3 theta

0.1322123 0.8708914 0.8393195 78.4227877

#i#

Log-likelihood: -34.99

Calculate likelihood profile (restrict the upper limit of 4, simply because it
will make the picture below a little bit nicer):

p2 <- profile(m2,prof.upper=c(Inf,Inf,Inf,theta=2000))

Get the curvature-based parameter standard deviations (which Crowder used
rather than computing likelihood profiles):

round (stdEr (m2) ,3)

probl prob2 prob3 theta
0.028 0.029 0.032 74.238

We are slightly off Crowder’s numbers — rounding error?
Crowder also defines a variance (overdispersion) parameter o2 = 1/(1 + 6).

sqrt (1/(1+coef (m2) ["theta"]))

theta
0.1122089

Using the delta method (via the deltavar function in the emdbook package)
to approximate the standard deviation of o:

sqrt (deltavar (sqrt(1/(1+theta)) ,meanval=coef (m2) ["theta"],
vars="theta",Sigma=vcov(m2) [4,4]))

[1] 0.05244185

Another way to fit in terms of o rather than @ is to compute § = 1/0% — 1
on the fly in a formula:

m2b <- mle2(m~dbetabinom(prob,size=n,theta=1/sigma~2-1),
data=orobil,
parameters=list(prob~dilution,sigma~1),
start=1list (prob=0.5,sigma=0.1))

ignore warnings (we haven't bothered to bound sigma<1l)

round (stdEr (m2b) ["sigma"],3)

sigma
0.052

p2b <- profile(m2b,prof.lower=c(-Inf,-Inf,-Inf,0))

As might be expected since the standard deviation of ¢ is large, the quadratic
approximation is poor:

rl <- rbind(confint(p2) ["theta",],
confint (m2,method="quad") ["theta",])
rownames (rl) <- c("spline","quad")

rl
#it 2.8 % 97.5 %
spline 19.67166 NA

quad -67.08082 223.9264

Plot the profile:

plot(p2, which="theta",plot.confstr=TRUE, show.points = TRUE)

Likelihood profile: theta

15 2.0 2.5

1zl

1.0

0.5

0.0

0 500 1000 1500 2000

theta

What does the profile for o look like?

par(las = 1, bty = "1")
with(p2b@profile$sigma, plot(par.vals[,"sigma"], abs(z), type = "b"))

4 — e
O
/
(@)
/
3 - o)
/
(@)
O /
n] (@]
£ 7 /
(boo @)
14\ /
O\\\ ///O
0 o}
| | | | |
0.0 0.1 0.2 0.3 0.4

par.vals|, "sigma"]

Now fit a homogeneous model:

ml0 <- function(prob,theta,x) {
size <- x$n

-sum(dbetabinom(x$m,prob,size,theta,log=TRUE))
}

m0 <- mle2(mlO,start=list(prob=0.5,theta=100),
data=list (x=orobl))

The log-likelihood matches Crowder’s result:

logLik (m0)

'log Lik.' -56.25774 (df=2)
It’s easier to use the formula interface to specify all three of the models

10

fitted by Crowder (homogeneous, probabilities differing by group, probabilities
and overdispersion differing by group):

m0f <- mle2(m~dbetabinom(prob,size=n,theta),
parameters=list(prob~1,theta~1),
data=orobl,
start=1list (prob=0.5,theta=100))
m2f <- update (mOf,
parameters=1list(prob~dilution,theta™1),
start=1ist (prob=0.5,theta=78.424))
m3f <- update(mOf,
parameters=list(prob~dilution,theta~dilution),
start=1ist (prob=0.5,theta=78.424))

anova runs a likelihood ratio test on nested models:

anova (mOf ,m2f ,m3f)

Likelihood Ratio Tests

Model 1: mOf, m"dbetabinom(prob,size=n,theta): prob™1, theta™1

Model 2: m2f, m~dbetabinom(prob,size=n,theta): prob~dilution, theta™1

Model 3: m3f, m~dbetabinom(prob,size=n,theta): prob~dilution, theta~dilution
Tot Df Deviance Chisq Df Pr(>Chisq)

1 2 112.515

#i# 2 4 69.981 42.5341 2 5.805e-10 *xx

3 6 69.981 0.0008 2 0.9996

——-

Signif. codes: O 's*xx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The various ICtab commands produce tables of information criteria; by
default the results are sorted and presented as AIC; there are various options,
including printing model weights.

AICtab(mOf ,m2f ,m3f ,weights=TRUE)

#it dAIC df weight
m2f 0.0 4 0.88
m3f 4.0 6 0.12
mOf 38.5 2 <0.001

BICtab(mOf ,m2f ,m3f,nobs=nrow(orobl) ,weights=TRUE)

#it dBIC df weight
m2f 0.0 4 0.941
m3f 5.5 6 0.059
mOf 37.0 2 <0.001

11

AICctab (mOf ,m2f ,m3f ,nobs=nrow(orobl) ,weights=TRUE)

#it dAICc df weight
m2f 0.0 4 0.9922
m3f 9.7 6 0.0078
mOf 35.8 2 <0.001

2 Example: reed frog size predation

Data from an experiment by Vonesh (Vonesh and Bolker, 2005)

frogdat <- data.frame(
size=rep(c(9,12,21,25,37) ,each=3),
killed=c(0,2,1,3,4,5,rep(0,4),1,rep(0,4)))

frogdat$initial <- rep(10,nrow(frogdat))

library(ggplot2)

ggl <- ggplot(frogdat,aes(x=size,y=killed))+geom_point ()+
stat_sum(aes(size=..n..))+
labs(size="#")+scale_x_continuous(limits=c(0,40))+
scale_size(breaks=1:3)

m3 <- mle2(killed~dbinom(prob=c*(size/d) “g*exp(l-size/d),
size=initial),data=frogdat,start=list(c=0.5,d=5,g=1))

pdat <- data.frame(size=1:40,initial=rep(10,40))

pdatl <- data.frame(pdat,killed=predict(m3,newdata=pdat))

m4 <- mle2(killed~dbinom(prob=c*((size/d)*exp(1-size/d))"g,
size=initial) ,data=frogdat,start=list(c=0.5,d=5,g=1))
pdat2 <- data.frame(pdat,killed=predict(m4,newdata=pdat))

ggl + geom_line(data=pdatl,colour="red")+
geom_line(data=pdat2,colour="blue")

12

4 -t
3 -t
©
Q
§
2 -
1 -t
O -t
0 10 20 30 40
size
coef (m4)
#it @ d g

0.4138847 13.3517574 18.2511264

prof4 <- profile(m4)

Three different ways to draw the profile:
(1) Built-in method (base graphics):

plot(prof4)

13

Likelihood profile: ¢ Likelihood profile: d

X - 98% - - 5
N\ 80% - 5

1 %69 |

1zl

1zl

0.0 1.0 20
|

0.0 1.0 20
|

I I I I
0.2 04 06 0.8 10 12 14

Likelihood profile: g

1zl
r=—=-=-=-=-=-=-=-1

o -

0.0 1.0 20

(2) Using xyplot from the lattice package:

prof4_df <- as.data.frame(profd)
library(lattice)
xyplot(abs(z) “focal|param,data=prof4_df,

subset=abs(z)<3,

type="b",

xlab="",

ylab=expression(paste(abs(z),

" (square root of ",Delta," deviance)")),
scale=list(x=list(relation="free")),
layout=c(3,1))

14

3.0 4 -

25 4 =

1.5 -

1.0 + -

1l (square root of A deviance)

0.5 o -

0.0 o =

0.2 0.4 0.6 0.8 1.0 8 10 12 14 10 20 30 40

(3) Using ggplot from the ggplot2 package:

ss <-subset(prof4_df,abs(z)<3)

ggplot(ss,
aes(x=focal,y=abs(z)))+geom_line()+
geom_point () +
facet_grid(. param,scale="free_x")

c d
2]
\\\\V////////////// *\\\\\\\\\\\\\\////
.
o]
I ! !) |))) I
0.2 0.4 0.6 0.8 1.0 8 10 12 14

focal

abs(z)

Additions/enhancements/differences from stats4: :mle

e anova method

e warnings on convergence failure

15

more robust to non-positive-definite Hessian; can also specify skip.hessian
to skip Hessian computation when it is problematic

when profiling fails because better value is found, report new values
can take named vectors as well as lists as starting parameter vectors
added AICc, BIC definitions, ICtab functions

added "uniroot" and "quad" options to confint

more options for colors and line types etc etc. The old arguments are:

function (x, levels, conf = c(99, 95, 90, 80, 50)/100, nseg = 50,
absVal = TRUE, ...) {}

The new one is:

function (x, levels, which=1:p, conf = c(99, 95, 90, 80, 50)/100, nseg = 50,
plot.confstr = FALSE, confstr = NULL, absVal = TRUE, add = FALSE,
col.minval="green", lty.minval=2,
col.conf="magenta", lty.conf=2,
col.prof="blue", 1lty.prof=1,
xlabs=nm, ylab="score",
show.points=FALSE,
main, xlim, ylim, ...) {}

which selects (by character vector or numbers) which parameters to plot:
nseg does nothing (even in the old version); plot.confstr turns on the
labels for the confidence levels; confstr gives the labels; add specifies
whether to add the profile to an existing plot; col and 1ty options specify
the colors and line types for horizontal and vertical lines marking the
minimum and confidence vals and the profile curve; xlabs gives a vector
of x labels; ylab gives the y label; show.points specifies whether to show
the raw points computed.

mle.options()

data argument

handling of names in argument lists

can use alternative optimizers (nlminb, nlm, constrOptim, optimx, optimize)

uses code from numDeriv package to compute Hessians rather than built-in
optimizer code

by default, uses MASS: :ginv (generalized inverse) rather than solve to
invert Hessian (more robust to positive-semidefinite Hessians .. .)

can use vecpar=TRUE (and parnames()) to use objective functions with
parameters specified as vectors (for compatibility with optim etc.)

16

3 Newer stuff

To do:

e use predict, simulate etc. to demonstrate different parametric bootstrap
approaches to confidence and prediction intervals

— use predict to get means and standard deviations, use delta method?
— use vcov, assuming quadratic profiles, with predict(. . .,newparams=...)
— prediction intervals assuming no parameter uncertainty with simulate

— both together ...

4 Technical details

4.1 Profiling and confidence intervals

This section describes the algorithm for constructing profiles and confidence
intervals, which is not otherwise documented anywhere except in the code. *
indicates changes from the version in stats4:::mle

4.1.1 Estimating standard error

In order to construct the profile for a particular parameter, one needs an initial
estimate of the scale over which to vary that parameter. The estimated standard
error of the parameter based on the estimated curvature of the likelihood surface
at the MLE is a good guess.

e if std.err is missing, extract the standard error from the summary coef-
ficient table (ultimately computed from sqrt(diag(inverse Hessian))
of the fit)

e * a user-set value of std.err overrides this behavior unless the value is
specified as NA (in which case the estimate from the previous step is used)

e * if the standard error value is still NA (i.e. the user did not spec-
ify it and the value estimated from the Hessian is missing or NA) use
sqrt(1/diag(hessian)). This represents a (fairly feeble) attempt to
come up with a plausible number when the Hessian is not positive definite
but still has positive diagonal entries

e if all else fails, stop and * print an error message that encourages the user
to specify the values with std.err

There may be further tricks that would help guess the appropriate scale: for
example, one could guess on the basis of a comparison between the parameter
values and negative log-likelihoods at the starting and ending points of the fits.
On the other hand, (a) this would take some effort and still be subject to failure

17

for sufficiently pathological fits and (b) there is some value to forcing the user
to take explicit, manual steps to remedy such problems, as they may be signs
of poorly defined or buggy log-likelihood functions.

4.1.2 Profiling

Profiling is done on the basis of a constructed function that minimizes the
negative log-likelihood for a fixed value of the focal parameter and returns the
signed square-root of the deviance difference from the minimum (denoted by
z). At the MLE z = 0 by definition; it should never be < 0 unless something
has gone wrong with the original fit. The LRT significance cutoffs for z are
equal to the usual two-tailed normal distribution cutoffs (e.g. + =~ 1.96 for 95%
confidence regions).

In each direction (decreasing and increasing from the MLE for the focal
parameter):

e fix the focal parameter

e adjust control parameters etc. accordingly (e.g. remove the entry for
the focal parameter so that the remaining control parameters match the
non-fixed parameters)

e controls on the profiling (which can be set manually, but for which there
is not much guidance in the documentation):

— zmax Maximum z to aim for. (Default: sqrt(qchisq(1-alpha/2,
p))) The default maximum « (type I error) is 0.01. T don’t un-
derstand this criterion. It seems to erpand the size of the univari-
ate profile to match a cutoff for the multivariate confidence region
of the model. The x? cutoff for deviance to get the (1 — o) mul-
tivariate confidence region (i.e., on all p of the parameters) would
be qchisq(1l-alpha,p) — representing a one-tailed test on the de-
viance. Taking the square root makes sense, since we are working with
the square root of the deviance, but I don’t understand (1) why we are
expanding the region to allow for the multivariate confidence region
(since we are computing univariate profiles) [you could at least argue
that this is conservative, making the region a little bigger than it needs
to bel; (2) why we are using 1 —a/2 rather than 1 —«. For compar-
ison, MASS: :profile.glm (written by Bates and Venables in 1996,
ported to R by BDR in 1998) uses zmax=sqrt (qchisq(1-alpha,1))
(this makes more sense to me ...) . On the other hand, the profiling
code in 1me4a (the profile method for merMod, in profile.R) uses
qchisq(l-alphamax, nptot) ...

— del Step size (scaled by standard error) (Default: zmax/5.) Presum-
ably (?) copied from MASS: :profile.glm, which says (in ?profile.glm):
“[d]efault value chosen to allow profiling at about 10 parameter val-

”

ues.

18

— maxsteps Maximum number of profiling steps to try in each direc-
tion. (Default: 100)

e While step<maxsteps and abs(z) < zmax, set the value of the focal pa-
rameter to its MLE + sgn*stepxdel*std.err where sgn represents the
direction, step is the current (integer) step, and del and std.err are the
step size scaling factor and standard error estimate discussed above (i.e.
take steps of size (del*std.err) in the appropriate direction); evaluate z

e Stop the profiling:
— if z doesn’t change from the previous step (stop_flat) — unless
try_harder is TRUE

— * stop if z is less than tol.newmin (default: 0.001) units better than
the MLE fit, i.e. z < —tol.newmin (if —tol.newmin < z < 0, set z
to zero) (newpars_found)

— if z is NA (stop_na) — unless try_harder is TRUE

— if z is beyond zmax (i.e., we have reached our goal: stop_cutoff)

— if step==maxsteps

— if the focal parameter has hit its upper/lower bound (stop_bound)

e if we have hit the maximum number of steps but not reached the cutoff
(stop_maxstep but not stop_cutoff), “try a bit harder”: go almost one
more del*std.err unit out (in intervals of 0.2, 0.4, 0.6, 0.8, 0.9) (also
seems reasonable but don’t know where it comes from)

e *if we violated the boundary but did not reach the cutoff (!stop_cutoff && stop_bound),
evaluate z at the boundary

e if we got to the cutoff in < 5 steps, try smaller steps: start at step=0.5
and proceed to mxstep-0.5 in unit increments (rather than the original
scale which went from 0 to mxstep). (Again, it seems reasonable, but I
don’t know what the original justification was ...)

4.1.3 Confidence intervals

We are looking for the values where z (signed square root deviance difference) is
equal to the usual two-tailed normal distribution cutoffs for a specified « level,
e.g. z = £1.96 for 95% confidence intervals (this is equivalent to a one-tailed
test on the deviance difference with the cutoff value for x3).

Spline method (default)

e If necessary (i.e. if applied to a fitted object and not to an existing
profile), construct the profile

19

e * If the profile of the signed square root is non-monotonic, warn the
user and revert to linear approximation on the profiled points to find
the cutoffs:

e Otherwise, build an interpolation spline of z (signed square root de-
viance difference) based on profiled points (the default isn =3 x L
where L is the length of the original vector). Then use linear approx-
imation on the y (z) and x (focal parameter value) of the spline to
find the cutoffs (Why construct a spline and then interpolate linearly?
Why not use backSpline as in the profile plotting code?)

Quad method Use a quadratic approximation based on the estimated cur-
vature (this is almost identical to using confint.default, and perhaps
obsolete/could be replaced by a pointer to confint.default ...)

Uniroot For each direction (up and down):

e start by stepping 5 ¢ away from the MLE, or to the box constraint
on the parameter, whichever is closer (this standard error is based
on the curvature; I should allow it, or the intervals themselves, to be
overridden via a std.err or interval parameter)

e compute the difference between the deviance and the desired deviance
cutoff at this point; if it is NA, reduce the distance in steps of 0.25 o
until it is not, until you reduce the distance to zero

e if the product of the deviance differences at the MLE and at the
point you stopped at is NA or positive (indicating that you didn’t
find a root-crossing in the range [0, 50]), quit.

e otherwise, apply uniroot across this interval

method="uniroot" should give the most accurate results, especially when
the profile is wonky (it won’t care about non-smooth profiles), but it will
be the slowest — and different confidence levels will have to be computed
individually, whereas multiple confidence levels can be computed quickly
from a single computed profile. A cruder approach would be to use profil-
ing but decrease std.err a lot so that the profile points were very closely
spaced.

4.1.4 Profile plotting

Plot the signed (or unsigned) square root deviance difference, and (1 — «) confi-
dence regions/critical values designated by conf (default: {0.99,0.95,0.9,0.8,0.5}).

e * If the (signed) profile is non-monotonic, simply plot computed points
with type="1" (i.e., with the default linear interpolation)

e Construct the interpolation spline (using splines: : :interpSpline rather
than spline as in the confidence interval method (why this difference?)

20

e attempt to construct the inverse of the interpolation spline (using backSpline)

e * if this fails warn the user (assume this was due to non-monotonicity)
and try to use uniroot and predict to find cutoff values

e otherwise, use the inverse spline to find cutoff values

Why is there machinery in the plotting code to find confidence intervals? Shouldn’t
this call confint, for consistency/fewer points of failure?

Bugs, wishes, to do

e WISH: further methods and arguments: subset, predict, resid: sim?
e WISH: extend ICtab to allow DIC as well?

e minor WISH: better methods for extracting nobs information when pos-
sible (e.g. with formula interface)

e WISH: better documentation, especially for S4 methods

e WISH: variable-length (and shaped) chunks in argument list — cleaner
division between linear model specs/list of arguments/vector equivalent

e WISH: limited automatic differentiation (add capability for common dis-
tributions)

¢ WISH: store objectivefunction and objectivefunctiongr (vector-
ized objective/gradient functions) in the mle2 object (will break backward
compatibility!!); add accessors for these and for minuslogl

e WISH: document use of the objective function in MCMCpack to do post
hoc MCMC sampling (or write my own Metropolis-Hastings sampler .. .)

e WISH: polish profile plotting, with lattice or ggplot2 methods
e WISH: add in/document/demonstrate “slice” capabilities

e WISH: refactor profiling to use stored objective functions rather than re-
calling mle2 with fixed values mucked around with in the calls??? Strip
out and make generic for vectorized objective function? (profileModel
package only works for glm-like objects, with a linear predictor)

References

Crowder, M. J. (1978). Beta-binomial Anova for proportions. Applied Statis-
tics 27, 34-37.

Vonesh, J. R. and B. M. Bolker (2005). Compensatory larval responses shift
tradeoffs associated with predator-induced hatching plasticity. Ecology 86 (6),
1580-1591.

21

	Example: Orobanche/overdispersed binomial
	Test basic fit to simulated beta-binomial data
	Real data (Orobanche, Crowder1978)

	Example: reed frog size predation
	Newer stuff
	Technical details
	Profiling and confidence intervals
	Estimating standard error
	Profiling
	Confidence intervals
	Profile plotting

