Package 'bayesvl'

May 17, 2025

Type Package

Title Visually Learning the Graphical Structure of Bayesian Networks and Performing MCMC with 'Stan'

Version 1.0.0

Date 2025-05-17

Author Viet-Phuong La [aut, cre], Quan-Hoang Vuong [aut]

Maintainer Viet-Phuong La <lvphuong@gmail.com>

Imports coda, bnlearn, ggplot2, bayesplot, viridis, reshape2

Suggests loo (>= 2.0.0)

Depends R (>= 3.5.0), rstan (>= 2.10.0), StanHeaders (>= 2.18.0), stats, graphics, methods

Description Provides users with its associated functions for pedagogical purposes in visually learning Bayesian networks and Markov chain Monte Carlo (MCMC) computations. It enables users to: a) Create and examine the (starting) graphical structure of Bayesian networks; b) Create random Bayesian networks using a dataset with customized constraints; c) Generate Stan code for structures of Bayesian networks for sampling the data and learning parameters; d) Plot the network graphs; e) Perform Markov chain Monte Carlo computations and produce graphs for posteriors checks. The package refers to one reference item, which describes the methods and algorithms: Vuong, Quan-Hoang and La, Viet-Phuong (2019) <doi:10.31219/osf.io/w5dx6> The 'bayesvl' R package. Open Science Framework (May 18).

License GPL (>= 3)

BugReports https://github.com/sshpa/bayesvl/issues

URL https://github.com/sshpa/bayesvl

NeedsCompilation no

Repository CRAN

Date/Publication 2025-05-17 14:50:06 UTC

Contents

bayesvl-package	2
bayesvl bnlearn utilities	3
bayesvl graph utilities	5
bayesvl plot utilities	6
bayesvl-class	
bayesvl-news	
bayesvl-stan-utilities	
data1042	
DKAP1061	17
Legends345	22
C	
	24

Index

bayesvl-package

BayesVL: Visual Learning and Bayesian Statistical Analysis in R

Description

An R package for visually constructing graphical models of Bayesian networks and performing Hamiltonian Monte Carlo (HMC) via Stan, using functions such as bvl_model2Stan and bvl_modelFit.

Details

Package:	bayesvl
Type:	Package
Version:	0.8.0
Date:	2019-05-13
License:	GPL-3
Website:	https://github.com/sshpa/bayesvl

Author(s)

Quan-Hoang Vuong, Viet-Phuong La

References

For documentation, case studies, worked examples, and other tutorial materials, visit the References section on our GitHub:

• https://github.com/sshpa/bayesvl/tree/master/References

For case studies using the package in research articles, see:

• https://www.nature.com/articles/s41599-020-0442-3

bayesvl bnlearn utilities

See Also

bayesvl-class, bvl_modelFit, bvl_model2Stan

Examples

```
# Create a new model
model <- bayesvl()
# Add observed data nodes
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "B", "binom")
model <- bvl_addNode(model, "C", "binom")
model <- bvl_addNode(model, "T", "binom")
# Add directed arcs
model <- bvl_addArc(model, "B", "Lie", "slope")
model <- bvl_addArc(model, "C", "Lie", "slope")
model <- bvl_addArc(model, "T", "Lie", "slope")
# View model summary
summary(model)
```

bayesvl bnlearn utilities

```
bnlearn interface for bayesvl objects
```

Description

Provides the interface to the functions in the bnlearn package for network diagnostics of an object of class bayesv1.

Usage

```
# Interface to bn.fit function to fit the parameters of
# a Bayesian network conditional on its structure.
bvl_bnBayes(dag, data = NULL, method = "bayes", iss = 10, ...)
```

Interface to bnlearn score function to compute the score of the Bayesian network. bvl_bnScore(dag, data = NULL, ...)

```
# Interface to arc.strength function to measure the strength of the probabilistic
# relationships expressed by the arcs of a Bayesian network.
bvl_bnStrength(dag, data = NULL, criterion = "x2", ...)
```

```
# Interface to bn.fit.barchart function to plot fit
# the parameters of a Bayesian network conditional on its structure.
bvl_bnBarchart(dag, data = NULL, method = "bayes", iss = 10, ...)
```

```
bvl_modelData (net, data)
bvl_compareLoo (dag1, dag2, ...)
bvl_compareWAIC (dag1, dag2, ...)
```

Arguments

dag	an object of class bayesvl
data	a data frame containing the variables in the model.
method	a character string, either mle for Maximum Likelihood parameter estimation or bayes for Bayesian parameter estimation (currently implemented only for discrete data).
iss	a numeric value, the imaginary sample size used by the bayes method to estimate the conditional probability tables associated with discrete nodes
criterion	a character string, the method using for measuring
net	network graph
dag1	first model to compare
dag2	second model to compare
	extra arguments from the generic method

Value

bvl_bnScore() return a number, value of score.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies, worked examples, and other tutorial materials, visit the References section on our GitHub:

• https://github.com/sshpa/bayesvl/tree/master/References

For case studies using the package in research articles, see:

• https://www.nature.com/articles/s41599-020-0442-3

bayesvl graph utilities

Utilities to manipulate graphs

Description

Manipulate directed acyclic graph of an object of class bayesv1.

Usage

```
# added a new node to the graph.
bvl_addNode(dag, name, dist = "norm", priors = NULL, fun = NULL, out_type = NULL,
  lower = NULL, upper=NULL, test = NULL)
# added a new path between nodes to the graph.
bvl_addArc(dag, from, to, type = "slope", priors = NULL, fun = NULL)
# added a new path between nodes to the graph.
bvl_addArc(dag, from, to, type = "slope", priors = NULL, fun = NULL)
```

Arguments

dag	an object of class bayesvl
name	a character string, the name of a node.
dist	a character string, distribution code of the node (norm, binom).
priors	a vector of string, the priors of the node or path.
fun	a character string, the transform function of the node.
out_type	a character string, the variable data type (int, real,).
lower	integer or real, the lower bound of variable data type (int or real).
upper	integer or real, the upper bound of variable data type (int or real).
test	a vector of testing values for variable.
from	a character string, the name of node the path connect from.
to	a character string, the name of node the path connect to.
type	a character string, the path type between nodes (slope, varint,).

Value

bvl_addNode(), bvl_addArc() return object class bayesvl.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies, worked examples, and other tutorial materials, visit the References section on our GitHub:

https://github.com/sshpa/bayesvl/tree/master/References

For case studies using the package in research articles, see:

• https://www.nature.com/articles/s41599-020-0442-3

Examples

```
dag = bayesvl()
# add nodes to dag
dag = bvl_addNode(dag, "node1")
dag = bvl_addNode(dag, "node2")
# add the path between two nodes
dag = bvl_addArc(dag, "node1", "node2")
summary(dag)
```

bayesvl plot utilities

```
Plot utilities for bayesvl objects
```

Description

Provides plot methods and the interface to the MCMC module in the bayesplot package for plotting MCMC draws and diagnostics for an object of class bayesvl.

Usage

```
# Plot network diagram to visualize the model
bvl_bnPlot(dag, ...)
```

Plots historgram of regression parameters computed from posterior draws in grid layout bvl_plotParams (dag, row = 2, col = 2, credMass = 0.95, params = NULL)

```
# The interface to mcmc_intervals for plotting uncertainty intervals
# computed from posterior draws
bvl_plotIntervals (dag, params = NULL, fun = "mean", prob = 0.8,
    prob_outer = 0.95, color_scheme = "blue", labels = NULL)
```

The interface to mcmc_intervals for plotting density computed from posterior draws bvl_plotAreas (dag, params = NULL, fun = "mean",

prob = 0.8, prob_outer = 0.95, color_scheme = "blue", labels = NULL) bvl_plotPairs (dag, params = NULL, size = 1, color_scheme = "blue", labels = NULL) bvl_plotDensity (dag, params = NULL, size = 1, labels = NULL) bvl_plotDensity2d(dag, x, y, color = NULL, color_scheme = "red", labels = NULL) bvl_plotTrace (dag, params = NULL) bvl_plotDiag (dag) bvl_plotGelman (dag, params = NULL) bvl_plotGelmans (dag, params = NULL, row = 2, col = 2) bvl_plotAc (dag, params = NULL) bvl_plotAcf (dag, params = NULL) bvl_plotAcfs (dag, params = NULL, row = 2, col = 2) bvl_plotAcf_Bar (dag, params = NULL, color_scheme="pink",labels=NULL) bvl_plotDensOverlay (dag, n = 200, color_scheme = "blue") bvl_plotMCMCDiag (dag, parName, saveName=NULL , saveType="jpg") bvl_plotPPC (dag, fun = "stat", stat = "mean", color_scheme = "blue") bvl_plotTest (dag, y_name, test_name, n = 200, color_scheme = "blue")

Arguments

dag	an object of class bayesvl
params	Optional: character vector of parameter names.
fun	Optional: statistic function.
stat	Optional: the plotting function to call.
prob	Optional: the probability mass to include in the inner interval. Default is 0.8.
prob_outer	Optional: the probability mass to include in the outer interval. Default is 0.95.
row	Optional: number of rows of grid layout.
col	Optional: number of columns of grid layout.
credMass	Optional: specifying the mass within the credible interval. Default is 0.89.
size	Optional: the size of line width.
color_scheme	Optional: color scheme. Default is "blue"
	extra arguments from the generic method

y_name	a character string. Name of outcome variable
test_name	a character string. Name of test variable and test value
n	number of yrep values to plot
х	a character string. Name of x parameter to pair with
У	a character string. Name of y parameter to pair with
color	a character string. Variable for color of points on density plot
labels	Optional: character vector of parameter labels.
parName	parameter name for plotting.
saveName	file name for exporting plot.
saveType	type of file name for exporting plot (default is 'jpg').

Value

bvl_plotIntervals(), bvl_plotPairs() return a ggplot object that can be further customized using the ggplot2 package.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies, worked examples, and other tutorial materials, visit the References section on our GitHub:

• https://github.com/sshpa/bayesvl/tree/master/References

For case studies using the package in research articles, see:

• https://www.nature.com/articles/s41599-020-0442-3

Examples

```
## create network model
model <- bayesvl()
## add the observed data nodes
model <- bvl_addNode(model, "O", "binom")
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "Viol", "binom")
model <- bvl_addNode(model, "VB", "binom")
model <- bvl_addNode(model, "VC", "binom")
model <- bvl_addNode(model, "VT", "binom")
model <- bvl_addNode(model, "Int1", "binom")
model <- bvl_addNode(model, "Int2", "binom")
## add the tranform data nodes and arcs as part of the model
model <- bvl_addNode(model, "B_and_Viol", "trans")</pre>
```

bayesvl-class

```
model <- bvl_addNode(model, "C_and_Viol", "trans")</pre>
model <- bvl_addNode(model, "T_and_Viol", "trans")</pre>
                                             "B_and_Viol", "*")
model <- bvl_addArc(model, "VB",</pre>
model <- bvl_addArc(model, "Viol",</pre>
                                            "B_and_Viol", "*")
                                            "C_and_Viol", "*")
model <- bvl_addArc(model, "VC",</pre>
                                            "C_and_Viol", "*")
model <- bvl_addArc(model, "Viol",</pre>
                                             "T_and_Viol", "*")
model <- bvl_addArc(model, "VT",</pre>
model <- bvl_addArc(model, "Viol",</pre>
                                             "T_and_Viol", "*")
model <- bvl_addArc(model, "B_and_Viol", "O", "slope")</pre>
model <- bvl_addArc(model, "C_and_Viol",</pre>
                                              "0", "slope")
model <- bvl_addArc(model, "T_and_Viol",</pre>
                                               "0", "slope")
model <- bvl_addArc(model, "Viol",</pre>
                                         "0", "slope")
model <- bvl_addNode(model, "B_and_Lie", "trans")</pre>
model <- bvl_addNode(model, "C_and_Lie", "trans")</pre>
model <- bvl_addNode(model, "T_and_Lie", "trans")</pre>
                                           "B_and_Lie", "*")
model <- bvl_addArc(model, "VB",</pre>
                                           "B_and_Lie", "*")
model <- bvl_addArc(model, "Lie",</pre>
                                           "C_and_Lie", "*")
model <- bvl_addArc(model, "VC",</pre>
model <- bvl_addArc(model, "Lie",</pre>
                                           "C_and_Lie", "*")
model <- bvl_addArc(model, "VT",</pre>
                                           "T_and_Lie", "*")
model <- bvl_addArc(model, "Lie",</pre>
                                           "T_and_Lie", "*")
model <- bvl_addArc(model, "B_and_Lie", "0", "slope")</pre>
model <- bvl_addArc(model, "C_and_Lie", "0", "slope")</pre>
model <- bvl_addArc(model, "T_and_Lie", "0", "slope")</pre>
model <- bvl_addArc(model, "Lie",</pre>
                                        "0", "slope")
model <- bvl_addNode(model, "Int1_or_Int2", "trans")</pre>
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+")</pre>
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+")</pre>
model <- bvl_addArc(model, "Int1_or_Int2", "0", "varint")</pre>
## Plot network diagram to visualize the model
bvl_bnPlot(model)
```

bayesvl-class Class bayesvl: Object Class for BayesVL Models

Description

An S4 class that represents a Bayesian model created using the bayesvl package. This object is typically returned by functions such as bayesvl.

Slots

call Original function call that created the model.

bayesvl-class

nodes List of nodes in the model. arcs List of arcs (edges) connecting the nodes. pars List of model parameters. stanfit An object of class stanfit, representing the fitted Stan model. rawdata A data frame containing observed input data. standata Data list used for Stan sampling. posterior A data frame representation of posterior draws from the stanfit object. elapsed Elapsed time for the MCMC simulation (in seconds).

Methods

show signature(object = "bayesvl"): Prints a default summary of the model.
summary Displays a more detailed overview of the model structure and output.

References

For documentation, case studies, worked examples, and other tutorial materials, visit our GitHub:

https://github.com/sshpa/bayesvl/tree/master/References

For case studies using the package in research articles, refer to:

• https://www.nature.com/articles/s41599-020-0442-3

See Also

bayesvl

Examples

```
# Design the model in a directed acyclic graph
model <- bayesvl()
# Add observed data nodes to the model
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "B", "binom")
model <- bvl_addNode(model, "C", "binom")
model <- bvl_addNode(model, "T", "binom")
# Add paths between nodes
model <- bvl_addArc(model, "B", "Lie", "slope")
model <- bvl_addArc(model, "C", "Lie", "slope")
model <- bvl_addArc(model, "T", "Lie", "slope")
# Summarize the model
summary(model)
```

bayesvl-news

Description

This page documents major changes and updates in the development of the bayesvl package.

Changes in version 1.0.0

- Updated many functions.
- Added posterior predictive check (PPC) support.

Changes in version 0.9.0

- Added WAIC estimation functions.
- Added LOO 2.0 estimation functions.
- Added model comparison functions.
- Updated .Rd documentation and other metadata.

Changes in version 0.8.5

- Updated .Rd documentation and other metadata.
- Fixed bugs for CRAN submission.

Changes in version 0.7.6

- Fixed error in single-node models.
- Updated .Rd documentation and other metadata.

Changes in version 0.7.0

- Fixed alpha intercept in varying intercept models.
- Fixed lower = 0 constraint for varying intercept models.
- Renamed net2stan.r to bayesvl2stan.r.
- Added WAIC calculation support.

Changes in version 0.6.8

- Added arc templates.
- Added model validation functions.
- Added automatic generation of data list for Stan.
- Added log-likelihood comparison function.

bayesvl-news

Changes in version 0.6.5

- Supported node type Dummy for temporary parameters.
- Supported node type Trans for transformed data.
- Supported custom generated quantities block.
- Supported y_rep and log_lik output.
- Updated README.md.

Changes in version 0.6.0

- Added more distribution templates.
- Updated Stan code generator from network graph.
- Updated README.md.

Changes in version 0.5.1

• Numerous documentation updates.

Changes in version 0.5.0

- Added functions for Stan code generation.
- Added distribution templates.
- Updated README.md.

Changes in version 0.3.0

- Added bnPlot(), bnScore(), bnStrength() to interface with bnlearn.
- Added utilities to convert between bayesvl and bnlearn structures.
- Updated README.md.

Changes in version 0.2.0

- Added functions to add/remove nodes and arcs in the network graph.
- Added network initialization function.
- Implemented bayesvl class.
- First fully documented release.

Changes in version 0.1.0

- Initial package description and metadata.
- First public release.

bayesvl-stan-utilities

Build Stan Models from Directed Acyclic Graphs

Description

Functions to generate Stan code and run simulations using a model object of class bayesvl, which represents a Bayesian directed acyclic graph (DAG).

Usage

```
bvl_model2Stan(dag, ppc = "")
```

```
bvl_modelFit(dag, data, warmup = 1000, iter = 5000, chains = 2, ppc = "", ...)
```

bvl_stanPriors(dag)

bvl_stanParams(dag)

bvl_formula (dag, nodeName, outcome = T, re = F)

bvl_stanLikelihood (dag)

bvl_stanLoo (dag, ...)

bvl_stanWAIC (dag, ...)

Arguments

dag	An object of class bayesvl representing the model DAG.
data	A data frame or list containing the observed data for model fitting.
warmup	Number of warmup iterations; defaults to half of iter.
iter	Total number of iterations for sampling. Default is 5000.
chains	Number of MCMC chains to run. Default is 2.
ррс	Optional: a character string containing Stan code for posterior predictive checks.
	Additional arguments passed to underlying functions.
nodeName	The name of the node to generate formula for.
outcome	Logical. Whether to include outcome distribution. Default is TRUE.
re	Logical. Whether to recursively trace all upstream nodes. Default is FALSE.

Value

The following outputs are returned depending on the function used:

- bvl_model2Stan: Returns a character string containing the generated Stan model code.
- bvl_modelFit: Returns an object of class bayesvl with the following slots:
 - model: The Stan model code.
 - stanfit: A stanfit object returned by rstan.
 - standata: The data list used in sampling.
 - pars: A list of parameter names being monitored.
 - formula: The formula representation of the model.
- bvl_stanPriors: Returns a character string of the prior distributions used in the model.
- bvl_stanParams: Returns a character string of parameter block content for Stan.
- bvl_formula: Returns the formula associated with the specified node.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies, worked examples, and other tutorial materials, see:

- User Guide and Examples on GitHub
- Published Case Study in Humanities and Social Sciences Communications

Examples

```
# Design the model using a directed acyclic graph
model <- bayesvl()
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "B", "binom")
model <- bvl_addNode(model, "C", "binom")
model <- bvl_addNode(model, "T", "binom")
model <- bvl_addArc(model, "B", "Lie", "slope")
model <- bvl_addArc(model, "C", "Lie", "slope")
model <- bvl_addArc(model, "T", "Lie", "slope")
model <- bvl_addArc(model, "T", "Lie", "slope")
# Generate Stan model code
model_string <- bvl_model2Stan(model)
cat(model_string)
# Display priors in generated Stan model
```

```
bvl_stanPriors(model)
```

data1042

Description

A dataset of 1,042 inpatients from hospitals in Northern Vietnam, collected over 20 months (August 2014 – March 2016). The dataset covers healthcare access, health insurance, treatment costs, financial burden, and socio-demographic variables. It has been used in multiple peer-reviewed publications.

Usage

data(data1042)

Format

A data frame with 1,042 observations and 45 variables. Selected variables:

Age Patient's age.

Burden Financial burden after treatment.

Days Length of hospital stay.

Dcost Daily hospital cost.

Edu Educational attainment.

End Treatment outcome.

If Higher Expected financial impact if treatment continued.

Illness Severity/type of illness.

Income Annual income.

Insured Whether the patient had insurance.

Pchar Portion covered by charity.

Pinc Portion covered by income.

Pins Portion covered by insurance reimbursement.

Ploan Portion covered by loans.

Res Region of residence.

SES Socioeconomic status.

SatIns Satisfaction with insurance.

Saving Percentage of savings used.

Sex Patient's gender (1 = female, 2 = male).

Spent Total amount spent on treatment.

AvgCost Not yet documented.

Dcost_USD Not yet documented.

EnvL Not yet documented. Hospital Not yet documented. ID Not yet documented. Ill2 Not yet documented. IncRank Not yet documented. Income_USD Not yet documented. InsGap Not yet documented.

InsL Not yet documented.

InsL2 Not yet documented.

Jcond Not yet documented.

LoanL Not yet documented.

MaxIns Not yet documented.

 ${\tt SatServ} \ \ Not \ yet \ documented.$

Senv Not yet documented.

 ${\tt Spent_USD} \ \ Not \ yet \ documented.$

Srel Not yet documented.

Stay Not yet documented.

Streat Not yet documented.

WkYrs Not yet documented.

References

Ho, M.T.; La, V.P.; Nguyen, M.H.; Vuong, Q.H. et al. (2019). "Health care, health insurance and economic destitution: A dataset of 1042 stories." *Data*, 4. https://www.mdpi.com/journal/data

Related studies:

- Vuong, Q.H. (2015). Be rich or don't be sick. SpringerPlus. doi:10.1186/s400640151279x
- Vuong, Q.H. (2016). Data on Vietnamese patients' financial burdens. *Data in Brief*. doi:10.1016/ j.dib.2016.09.040
- Vuong, Q.H. (2017). Health insurance thresholds in Vietnam. Biomedical Research.

Examples

data(data1042)

View structure
str(data1042)

Summarize financial burden table(data1042\$Burden)

Description

DKAP1061 is a dataset from a survey on students' digital competence, including demographic and educational background variables.

Usage

data(DKAP1061)

Format

A data frame with multiple columns. Selected variables:

ecostt Student's family economic status.

edufat Father's education level.

edumot Mother's education level.

ict Digital competence score.

mean_dr Mean digital resources.

mean_ict Mean ICT skills score.

mean_il Mean information literacy score.

mean_ppr Mean personal productivity rating.

mean_udcr Mean use of digital content/resources.

schoolid School ID.

schid School code (alternative to schoolid).

sex Student's gender (1 = female, 2 = male).

stuid Student ID.

a1 Not yet documented.

a10 Not yet documented.

a11 Not yet documented.

a12 Not yet documented.

a13 Not yet documented.

a14 Not yet documented.

a2 Not yet documented.

a3 Not yet documented.

a4 Not yet documented.

a5 Not yet documented.

a6 Not yet documented.

- a7 Not yet documented.
- a8 Not yet documented.
- a9 Not yet documented.
- b1 Not yet documented.
- b10 Not yet documented.
- b11 Not yet documented.
- b12 Not yet documented.
- b13 Not yet documented.
- b14 Not yet documented.
- b15_1 Not yet documented.
- b15_2 Not yet documented.
- b15_3 Not yet documented.
- b15_4 Not yet documented.
- b15_5 Not yet documented.
- b15_6 Not yet documented.
- b15_7 Not yet documented.
- b15_8 Not yet documented.
- b16_1 Not yet documented.
- b16_2 Not yet documented.
- b16_3 Not yet documented.
- b16_4 Not yet documented.
- b16_5 Not yet documented.
- b16_6 Not yet documented.
- b16_7 Not yet documented.
- b16_8 Not yet documented.
- b17_1 Not yet documented.
- b17_2 Not yet documented.
- b17_3 Not yet documented.
- b17_4 Not yet documented.
- b17_5 Not yet documented.
- b17_6 Not yet documented.
- b17_7 Not yet documented.
- b17_8 Not yet documented.
- b18_1 Not yet documented.
- b18_2 Not yet documented.
- b18_3 Not yet documented.
- b18_4 Not yet documented.

- b18_5 Not yet documented.
- b18_6 Not yet documented.
- b18_7 Not yet documented.
- b18_8 Not yet documented.
- b18_9 Not yet documented.
- b2 Not yet documented.
- b3 Not yet documented.
- b4 Not yet documented.
- b5 Not yet documented.
- b6 Not yet documented.
- b7 Not yet documented.
- b8 Not yet documented.
- b9 Not yet documented.
- c1 Not yet documented.
- c10 Not yet documented.
- c11 Not yet documented.
- c12 Not yet documented.
- c2 Not yet documented.
- c3 Not yet documented.
- c4 Not yet documented.
- c5 Not yet documented.
- c6 Not yet documented.
- c7 Not yet documented.
- c8 Not yet documented.
- c9 Not yet documented.
- d1 Not yet documented.
- d10 Not yet documented.
- d11 Not yet documented.
- d12 Not yet documented.
- d13 Not yet documented.
- d14 Not yet documented.
- d15 Not yet documented.
- d16 Not yet documented.
- d2 Not yet documented.
- d3 Not yet documented.
- d4 Not yet documented.
- d5 Not yet documented.

- d6 Not yet documented.
- d7 Not yet documented.
- d8 Not yet documented.
- d9 Not yet documented.
- e1 Not yet documented.
- e10 Not yet documented.
- e11 Not yet documented.
- e2 Not yet documented.
- e3 Not yet documented.
- e4 Not yet documented.
- e5 Not yet documented.
- e6 Not yet documented.
- e7 Not yet documented.
- e8 Not yet documented.
- e9 Not yet documented.
- f1 Not yet documented.
- f2 Not yet documented.
- f3 Not yet documented.
- f4 Not yet documented.
- f5 Not yet documented.
- f6 Not yet documented.
- f7 Not yet documented.
- f8_1 Not yet documented.
- f8_2 Not yet documented.
- f8_3 Not yet documented.
- f8_4 Not yet documented.
- f8_5 Not yet documented.
- g1 Not yet documented.
- g10_1 Not yet documented.
- g10_2 Not yet documented.
- g10_3 Not yet documented.
- g11 Not yet documented.
- g12 Not yet documented.
- g13 Not yet documented.
- g14 Not yet documented.
- g15 Not yet documented.
- g16 Not yet documented.

- g17 Not yet documented.
- g18 Not yet documented.
- g2 Not yet documented.
- g3_1 Not yet documented.
- g3_2 Not yet documented.
- g3_3 Not yet documented.
- g3_4 Not yet documented.
- g4_1 Not yet documented.
- g4_2 Not yet documented.
- g4_3 Not yet documented.
- g4_4 Not yet documented.
- g4_5 Not yet documented.
- g4_6 Not yet documented.
- g5_1 Not yet documented.
- g5_2 Not yet documented.
- g5_3 Not yet documented.
- g5_4 Not yet documented.
- g5_5 Not yet documented.
- g5_6 Not yet documented.
- g6_1 Not yet documented.
- g6_2 Not yet documented.
- g6_3 Not yet documented.
- g6_4 Not yet documented.
- g6_5 Not yet documented.
- g6_6 Not yet documented.
- g7_1 Not yet documented.
- g7_2 Not yet documented.
- g7_3 Not yet documented.
- g8_1 Not yet documented.
- g8_2 Not yet documented.
- g8_3 Not yet documented.
- g9 Not yet documented.
- h1_1 Not yet documented.
- h1_2 Not yet documented.
- h1_3 Not yet documented.
- h1_4 Not yet documented.
- h1_5 Not yet documented.

- h1_6 Not yet documented.
- h1_7 Not yet documented.
- h2 Not yet documented.
- h3 Not yet documented.
- h4_1 Not yet documented.
- h4_2 Not yet documented.
- h4_3 Not yet documented.
- h5 Not yet documented.
- h6_1 Not yet documented.
- h6_2 Not yet documented.
- h6_3 Not yet documented.
- h6_4 Not yet documented.
- h7_1 Not yet documented.
- h7_2 Not yet documented.
- h7_3 Not yet documented.
- h7_4 Not yet documented.

Note: Variables starting with a, b, c, d, f, g, h are omitted from this documentation.

References

For documentation, case studies, and examples, visit the GitHub repository:

- Documentation and User Guide
- Published Case Study (Vuong & La, 2020)

Examples

data(DKAP1061)

Preview the dataset
head(DKAP1061)

Legends345 Legends345 data

Description

Legends345.

Usage

data(Legends345)

Legends345

Format

- 1. O: Whether or not happy ending for main character
- 2. VB : Whether or not the main character behaves in accordance with the core values of Buddhism
- 3. VC : Whether or not the main character behaves in accordance with the core values of Confucianism
- 4. VT : Whether or not the main character behaves in accordance with the core values of Taoism
- 5. Lie : Whether or not the main character tells lie
- 6. Viol : Whether or not the main character commits acts of violence
- 7. Int1 : Whether there are interventions from the supernatural world
- 8. Int2 : Whether there are interventions from the human world

References

For documentation, case studies, worked examples, and other tutorial materials, visit the References section on our GitHub:

• https://github.com/sshpa/bayesvl/tree/master/References

For case studies using the package in research articles, see:

• https://www.nature.com/articles/s41599-020-0442-3

Examples

data(Legends345)

data1 <- Legends345 head(data1)

Index

* Bayesian bayesvl-package, 2 bayesvl-stan-utilities, 13 * bayesvl bnlearn bayesvl bnlearn utilities, 3 * bayesvl plots bayesvl plot utilities, 6 * bayesvl bayesvl bnlearn utilities, 3 bayesvl graph utilities, 5 bayesvl plot utilities, 6 * classes bayesvl-class, 9 * datasets data1042, 15 DKAP1061, 17 * directed acyclic graphs bayesvl bnlearn utilities, 3 bayesvl graph utilities, 5 bayesvl plot utilities, 6 * graph bayesvl-stan-utilities, 13 * legends Legends345, 22 * models bayesvl-stan-utilities, 13 * package bayesvl-package, 2 * rstan bayesvl-stan-utilities, 13 bayesvl, 9, 10 bayesvl (bayesvl-package), 2 bayesvl bnlearn(bayesvl bnlearn utilities), 3 bayesvl bnlearn utilities, 3 bayesvl graph utilities, 5 bayesvl graphs(bayesvl graph utilities), 5 bayesvl plot utilities, 6

bayesvl plots (bayesvl plot utilities), bayesvl-changelog (bayesvl-news), 11 bayesvl-class, 9 bayesvl-news, 11 bayesvl-package, 2 bayesvl-stan-utilities, 13 bvl_addArc(bayesvl graph utilities), 5 bvl_addArc,bayesvl-method (bayesvl-class), 9 bvl_addNode (bayesvl graph utilities), 5 bvl_addNode,bayesvl-method (bayesvl-class), 9 bvl_bnBarchart (bayesvl bnlearn utilities), 3 bvl_bnBarchart,bayesvl-method(bayesvl bnlearn utilities), 3 bvl_bnBayes(bayesvl bnlearn utilities), 3 bvl_bnBayes,bayesvl-method(bayesvl bnlearn utilities), 3 bvl_bnPlot (bayesvl plot utilities), 6 bvl_bnPlot,bayesvl-method(bayesvl bnlearn utilities), 3 bvl_bnScore(bayesvl bnlearn utilities), 3 bvl_bnScore,bayesvl-method(bayesvl bnlearn utilities), 3 bvl_bnStrength (bayesvl bnlearn utilities), 3 bvl_bnStrength,bayesvl-method(bayesvl bnlearn utilities), 3 bvl_compareLoo (bayesvl bnlearn utilities), 3 bvl_compareWAIC(bayesvl bnlearn utilities), 3 bvl_formula(bayesvl-stan-utilities), 13 bvl_model2Stan, 2, 3 bvl_model2Stan

INDEX

(bayesvl-stan-utilities), 13 bvl_modelData(bayesvl bnlearn utilities), 3 bvl_modelFit, 2, 3 bvl_modelFit(bayesvl-stan-utilities), 13 bvl_modelFit,bayesvl-method (bayesvl-class), 9 bvl_plotAc (bayesvl plot utilities), 6 bvl_plotAcf (bayesvl plot utilities), 6 bvl_plotAcf_Bar (bayesvl plot utilities), 6 bvl_plotAcfs(bayesvl plot utilities), 6 bvl_plotAreas (bayesvl plot utilities), 6 bvl_plotDensity(bayesvl plot utilities), 6 bvl_plotDensity2d(bayesvl plot utilities), 6 bvl_plotDensOverlay(bayesvl plot utilities), 6 bvl_plotDiag(bayesvl plot utilities), 6 bvl_plotGelman (bayesvl plot utilities), 6 bvl_plotGelmans (bayesvl plot utilities), 6 bvl_plotIntervals(bayesvl plot utilities), 6 bvl_plotMCMCDiag (bayesvl plot utilities), 6 bvl_plotPairs (bayesvl plot utilities), 6 bvl_plotParams(bayesvl plot utilities), 6 bvl_plotPPC (bayesvl plot utilities), 6 bvl_plotTest(bayesvl plot utilities), 6 bvl_plotTrace (bayesvl plot utilities), 6 bvl_stanLikelihood (bayesvl-stan-utilities), 13 bvl_stanLoo (bayesvl-stan-utilities), 13 bvl_stanParams (bayesvl-stan-utilities), 13 bvl_stanParams,bayesvl-method (bayesvl-class), 9 bvl_stanPriors (bayesvl-stan-utilities), 13 bvl_stanWAIC(bayesvl-stan-utilities),

13

data1042,15 DKAP1061,17

Legends345, 22

show, bayesvl-method (bayesvl-class), 9
summary, bayesvl-method (bayesvl-class),
9