Package ‘bayess’

March 6, 2024

Title Bayesian Essentials with R
Version 1.6

Date 2024-03-04

Depends stats, mnormt, gplots, combinat

Author Jean-Michel Marin [aut, cre],
Christian P. Robert [aut]

Maintainer Jean-Michel Marin <jean-michel.marin@umontpellier.fr>

Description Allows the reenactment of the R programs used in

the book Bayesian Essentials with R without further programming.

R code being available as well, they can be modified by the user

to conduct one's own simulations.

Marin J.-M. and Robert C. P. (2014) <doi:10.1007/978-1-4614-8687-9>.

URL https://www.r-project.org, https://github.com/jmm34/bayess
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2024-03-06 14:30:05 UTC

R topics documented:

bank e
BayesReg e
caterpillar
datha. e
Dnadataset.
UIOAID e e e
Eurostoxx50 oL e e
gibbs . . .
gibbscapl L

https://doi.org/10.1007/978-1-4614-8687-9
https://www.r-project.org
https://github.com/jmm34/bayess

Index

R topics documented:

gibbscap2o e e e 14
gibbsmean e e 15
gibbsnorm L. 15
hmflatlogit 17
hmflatloglin 18
hmflatprobit 19
hmhmm o 20
hmmeantemp e 20
hmnoinflogit L 21
hmnoinfloglin 22
hmnoinfprobit 23
isinghm e e 24
1singibbs . . . L 25
Laichedata e 26
logitll 26
logitnoinflpost L e 27
loghinll L 28
loglinnoinflpost 28
MAIlog e 29
MAmh e 30
Menteith L 31
ModChoBayesReg e 32
normaldata 33
PbINO . . L e e 34
PCAPLUIE ot o e e e e e e e e e 34
pdarroch 35
PIOtMIX . . . o o e e e e e e e e 36
pottsgibbs e 37
pottshm 38
PIObet e 38
probitllo e e 39
probitnoinflpost Lo 40
rdirichlet 41
TECONSIIUCT . . . v v v v e ittt e e et e e e e e e e 41
solbeta 43
SUMISING . .« o o o v v i i e e e e e e e e e e e 44
thresh L L 44
TIUNCNOTII .« . . v v v et e e e e e e e e e e e e e e e e e 45
XNCIZA . . . e 46

47

ardipper 3

ardipper Accept-reject algorithm for the open population capture-recapture
model

Description

This function is associated with Chapter 5 on capture-recapture model. It simulates samples from
the non-standard distribution on r1, the number of individuals vanishing between the first and sec-
ond experiments, as expressed in (5.4) in the book, conditional on 75, the number of individuals
vanishing between the second and third experiments.

Usage

ardipper(nsimu, n1, c2, c3, r2, ql)

Arguments
nsimu number of simulations
ni first capture sample size
c2 number of individuals recaptured during the second experiment
c3 number of individuals recaptured during the third experiment
r2 number of individuals vanishing between the second and third experiments
ql probability of disappearing from the population
Value

A sample of nsimu integers

Examples

ardipper(10,11,3,1,0,.1)

ARllog log-likelihood associated with an AR(p) model defined either through
its natural coefficients or through the roots of the associated lag-
polynomial

Description

ARllog

This function is related to Chapter 6 on dynamical models. It returns the numerical value of the
log-likelihood associated with a time series and an AR(p) model, along with the natural coefficients
psi of the AR(p) model if it is defined via the roots 1r and 1c of the associated lag-polynomial. The
function thus uses either the natural parameterisation of the AR(p) model

P
Ty _N+Z¢i(xtfi —p) =c

=1

or the parameterisation via the lag-polynomial roots

P

H(]. —)\ZB).’Et = &t

i=1

where Bix; = x4_j.

Usage

ARllog(p,dat,pr, pc, 1lr, 1lc, mu, sig2, compsi = TRUE, pepsi = c(1, rep(9, p)))

Arguments

p
dat
pr
pc
1r
lc

mu
sig2

compsi

pepsi

Value
11
ps

See Also
MAllog,ARmh

order of the AR(p) model

time series modelled by the AR (p) model

number of real roots

number of non-conjugate complex roots

real roots

complex roots, stored as real part for odd indices and imaginary part for even
indices

drift coefficient p such that (x; —)¢ is a standard AR(p) series

variance of the Gaussian white noise (&;)¢

boolean variable indicating whether the coefficients v; need to be retrievedfrom
the roots of the lag-polynomial, i.e. if the model is defined by pepsi (when
compsi is FALSE) or by 1r and 1c (when compsi is TRUE).

potential p+1 coefficients v; if compsi is FALSE, with 1 asthe compulsory first
value

value of the log-likelihood

vector of the v;’s

ARmh 5

Examples

ARllog(p=3,dat=faithfull,1],pr=3,pc=0,
lr=c(-.1,.5,.2),1c=0,mu=0,sig2=var(faithful[,1]), compsi=FALSE, pepsi=c(1,rep(.1,3)))

ARmh Metropolis—Hastings evaluation of the posterior associated with an
AR(p) model

Description

This function is associated with Chapter 6 on dynamic models. It implements a Metropolis—
Hastings algorithm on the coefficients of the AR(p) model resorting to a simulation of the real
and complex roots of the model. It includes jumps between adjacent numbers of real and complex
roots, as well as random modifications for a given number of real and complex roots.

Usage
ARmh(x, p =1, W =10"3)

Arguments
X time series to be modelled as an AR(p) model
p order of the AR(p) model
W number of iterations

Details

Even though Bayesian Essentials with R does not cover the reversible jump MCMC techniques due
to Green (1995), which allows to explore spaces of different dimensions at once, this function relies
on a simple form of reversible jump MCMC when moving from one number of complex roots to

the next.
Value
psis matrix of simulated v;’s
mus vector of simulated p’s
sigs vector of simulated o2’s
11ik vector of corresponding likelihood values (useful to check for convergence)
pcomp vector of simulated numbers of complex roots
References

Green, P.J. (1995) Reversible jump MCMC computaton and Bayesian model choice. Biometrika
82, 711-732.

6 bank

See Also

ARllog

Examples

data(Eurostoxx50)

x=Eurostoxx50[, 4]

resAR5=ARmh (x=x,p=5,W=50)

plot(resAR5$mus, type="1",col="steelblue4” 6 xlab="Iterations"”,ylab=expression(mu))

bank bank dataset (Chapter 4)

Description

The bank dataset we analyze in the first part of Chapter 3 comes from Flury and Riedwyl (1988)
and is made of four measurements on 100 genuine Swiss banknotes and 100 counterfeit ones. The
response variable y is thus the status of the banknote, where O stands for genuine and 1 stands for
counterfeit, while the explanatory factors are bill measurements.

Usage
data(bank)

Format

A data frame with 200 observations on the following 5 variables.

x1 length of the bill (in mm)

x2 width of the left edge (in mm)
x3 width of the right edge (in mm)
x4 bottom margin width (in mm)

y response variable

Source

Flury, B. and Riedwyl, H. (1988) Multivariate Statistics. A Practical Approach, Chapman and Hall,
London-New York.

Examples

data(bank)
summary (bank)

BayesReg 7

BayesReg Bayesian linear regression output

Description

This function contains the R code for the implementation of Zellner’s G-prior analysis of the re-
gression model as described in Chapter 3. The purpose of BayesRef is dual: first, this R function
shows how easily automated this approach can be. Second, it also illustrates how it is possible to
get exactly the same type of output as the standard R function summary (Im(y~X)). In particular, it
calculates the Bayes factors for variable selection, more precisely single variable exclusion.

Usage

BayesReg(y, X, g = length(y), betatilde = rep(@, dim(X)[2]), prt = TRUE)

Arguments

y response variable

X matrix of regressors

g constant g for the G-prior

betatilde prior mean on 3

prt boolean variable for printing out the standard output
Value

postmeancoeff posterior mean of the regression coefficients
postsqrtcoeff posterior standard deviation of the regression coefficients
log10bf log-Bayes factors against the full model
postmeansigma2 posterior mean of the variance of the model

postvarsigma2 posterior variance of the variance of the model

Examples

data(faithful)
BayesReg(faithfull[,1],faithfull,2])

8 caterpillar

caterpillar Pine processionary caterpillar dataset

Description

The caterpillar dataset is extracted from a 1973 study on pine processionary caterpillars. The
response variable is the log transform of the number of nests per unit. There are p = 8 potential
explanatory variables and n = 33 areas.

Usage

data(caterpillar)

Format
A data frame with 33 observations on the following 9 variables.

x1 altitude (in meters)

x2 slope (in degrees)

x3 number of pine trees in the area

x4 height (in meters) of the tree sampled at the center of the area
x5 orientation of the area (from 1 if southbound to 2 otherwise)
x6 height (in meters) of the dominant tree

x7 number of vegetation strata

x8 mix settlement index (from 1 if not mixed to 2 if mixed)

y logarithmic transform of the average number of nests of caterpillars per tree

Details

This dataset is used in Chapter 3 on linear regression. It assesses the influence of some forest
settlement characteristics on the development of caterpillar colonies. It was first published and
studied in Tomassone et al. (1993). The response variable is the logarithmic transform of the
average number of nests of caterpillars per tree in an area of 500 square meters (which corresponds
to the last column in caterpillar). There are p = 8 potential explanatory variables defined on
n = 33 areas.

Source
Tomassone, R., Dervin, C., and Masson, J.P. (1993) Biometrie: modelisation de phenomenes bi-

ologiques. Dunod, Paris.

Examples

data(caterpillar)
summary (caterpillar)

datha 9

datha Non-standardised Licence dataset

Description

The dataset used in Chapter 6 is derived from an image of a license plate, called 1icense and not
provided in the package. The actual histogram of the grey levels is concentrated on 256 values
because of the poor resolution of the image, but we transformed the original data as datha. txt.

Usage
data(datha)

Format

A data frame with 2625 observations on the following variable.

x Grey levels

Details

datha. txt was produced by the following R code:

> license=jitter(license,10)

> datha=log((license-min(license)+.01)/

+ (max(license)+.01-license))

> write.table(datha,"datha.txt"”, row.names=FALSE, col.names=FALSE)

where jitter is used to randomize the dataset and avoid repetitions

Examples

data(datha)
datha=as.matrix(datha)
range (datha)

Dnadataset DNA sequence of an HIV genome

Description

Dnadataset is a base sequence corresponding to a complete HIV (which stands for Human Im-
munodeficiency Virus) genome where A, C, G, and T have been recoded as 1,2,3,4. It is modelled
as a hidden Markov chain and is used in Chapter 7.

10

Usage

eurodip

data(Dnadataset)

Format

A data frame with 9718 rows and two columns, the first one corresponding to the row number and
the second one to the amino-acid value coded from 1 to 4.

Examples

data(Dnadataset)
summary (Dnadataset)

eurodip European Dipper dataset

Description

This capture-recapture dataset on the European dipper bird covers 7 years (1981-1987 inclusive) of
observations of captures within one of three zones. It is used in Chapter 5.

Usage

data(eurodip)

Format

A data frame with 294 observations on the following 7 variables.

t1
t2
t3
t4
t5
t6
t7

Details

non-capture/location on year 1981
non-capture/location on year 1982
non-capture/location on year 1983
non-capture/location on year 1984
non-capture/location on year 1985
non-capture/location on year 1986

non-capture/location on year 1987

The data consists of markings and recaptures of breeding adults each year during the breeding
period from early March to early June. Birds were at least one year old when initially banded. In
eurodip, each row gof seven digits corresponds to a capture-recapture story for a given dipper, 0
indicating an absence of capture that year and, in the case of a capture, 1, 2, or 3 representing the
zone where the dipper is captured. This dataset corresponds to three geographical zones covering
200 square kilometers in eastern France. It was kindly provided to us by J.D. Lebreton.

Eurostoxx50 11

References

Lebreton, J.-D., K. P. Burnham, J. Clobert, and D. R. Anderson. (1992) Modeling survival and test-
ing biological hypotheses using marked animals: case studies and recent advances. Ecol. Monogr.
62, 67-118.

Examples

data(eurodip)
summary (eurodip)

Eurostoxx50 Eurostoxx50 exerpt dataset

Description

This dataset is a collection of four time series connected with the stock market. Those are the stock
values of the four companies ABN Amro, Aegon, Ahold Kon., and Air Liquide, observed from
January 1, 1998, to November 9, 2003.

Usage

data(Eurostoxx50)

Format

A data frame with 1486 observations on the following 5 variables.

date six-digit date

Abn value of the ABN Amro stock
Aeg value of the Aegon stock

Aho value of the Ahold Kon. stock
AL value of the Air Liquide stock

Details

Those four companies are the first stocks (in alphabetical order) to appear in the financial index
Eurostoxx50.

Examples

data(Eurostoxx50)
summary (Eurostoxx50)

12 gibbs

gibbs Gibbs sampler and Chib’s evidence approximation for a generic uni-
variate mixture of normal distributions

Description

This function implements a regular Gibbs sampling algorithm on the posterior distribution associ-
ated with a mixture of normal distributions, taking advantage of the missing data structure. It then
runs an averaging of the simulations over all permutations of the component indices in order to
avoid incomplete label switching and to validate Chib’s representation of the evidence. This func-
tion reproduces gibbsnorm as its first stage, however it may be much slower because of its second
stage.

Usage

gibbs(niter, datha, mix)

Arguments
niter number of Gibbs iterations
datha sample vector
mix list made of k, number of components, p, mu, and sig, starting values of the
paramerers, all of size k (see example below)
Value
k number of components in the mixture (superfluous as it is invariant over the
execution of the R code)
mu matrix of the Gibbs samples on the p; parameters
sig matrix of the Gibbs samples on the ¢; parameters
prog matrix of the Gibbs samples on the mixture weights
lolik vector of the observed log-likelihoods along iterations
chibdeno denominator of Chib’s approximation to the evidence (see example below)
References

Chib, S. (1995) Marginal likelihood from the Gibbs output. J. American Statist. Associ. 90, 1313-
1321.

See Also

gibbsnorm

gibbscapl 13

Examples

faithdata=faithfull,1]

mu=rnorm(3,mean=mean(faithdata),sd=sd(faithdata)/10)

sig=1/rgamma(3, shape=10,scale=var(faithdata))
mix=1list(k=3,p=rdirichlet(par=rep(1,3)),mu=mu,sig=sig)
resim3=gibbs (100, faithdata,mix)

lulu=order(resim3$lolik)[100]

lnumi=resim3$lolik[lulu]

1num2=sum(dnorm(resim3$mu[lulu,],mean=mean(faithdata), sd=resim3$sig[lulu,], log=TRUE)+
dgamma(resim3$sig[lulu,],10,var(faithdata),log=TRUE)-2xlog(resim3$sig[lulu,]))+
sum((rep(@.5,mix$k)-1)*log(resim3$p[lulu, 1))+
lgamma(sum(rep(@.5,mix$k)))-sum(lgamma(rep(@.5,mix$k)))
lchibapprox3=1numl+1num2-log(resim3$deno)

gibbscap1 Gibbs sampler for the two-stage open population capture-recapture
model

Description

This function implements a regular Gibbs sampler associated with Chapter 5 for a two-stage capture
recapture model with open populations, accounting for the possibility that some individuals vanish
between two successive capture experiments.

Usage

gibbscap1(nsimu, n1, c2, c3, N0 = n1/runif (1), ri10, r20)

Arguments
nsimu number of simulated values in the sample
n1 first capture population size
c2 number of individuals recaptured during the second experiment
c3 number of individuals recaptured during the third experiment
NO starting value for the population size
rie starting value for the number of individuals who vanished between the first and
second experiments
r20 starting value for the number of individuals who vanished between the second
and third experiments
Value
N Gibbs sample of the simulated population size
p Gibbs sample of the probability of capture

q Gibbs sample of the probability of leaving the population

14 gibbscap?2

ri Gibbs sample of the number of individuals who vanished between the first and
second experiments

r2 Gibbs sample of the number of individuals who vanished between the second
and third experiments

Examples

res=gibbscap1(100,32,21,15,200,10,5)
plot(res$p,type="1",col="steelblue3”,xlab="iterations",ylab="p")

gibbscap?2 Gibbs sampling for the Arnason-Schwarz capture-recapture model

Description

In the Arnason-Schwarz capture-recapture model (see Chapter 5), individual histories are observed
and missing steps can be inferred upon. For the dataset eurodip, the moves between regions can
be reconstituted. This is the first instance of a hidden Markov model met in the book.

Usage

gibbscap2(nsimu, z)

Arguments
nsimu numbed of simulation steps in the Gibbs sampler
z data, capture history of each individual, with @ coding non-capture
Value
p Gibbs sample of capture probabilities across time
phi Gibbs sample of survival probabilities across time and locations
psi Gibbs sample of interstata movement probabilities across time and locations
late Gibbs averages of completed histories
Examples
data(eurodip)

res=gibbscap2(10,eurodip[1:100,1])
plot(res$p,type="1",col="steelblue3”,xlab="iterations",ylab="p")

gibbsmean 15

gibbsmean Gibbs sampler on a mixture posterior distribution with unknown
means

Description
This function implements a Gibbs sampler for a toy mixture problem (Chapter 6) with two Gaussian
components and only the means unknown, so that likelihood and posterior surfaces can be drawn.
Usage

gibbsmean(p, datha, niter = 10%4)

Arguments
p first component weight
datha dataset to be modelled as a mixture
niter number of Gibbs iterations

Value

Sample of y’s as a matrix of size niter x 2

See Also

plotmix

Examples

dat=plotmix(plottin=FALSE)$sample
simu=gibbsmean(@.7,dat,niter=100)
plot(simu,pch=19,cex=.5,col="sienna”,xlab=expression(mul1]),ylab=expression(mul2]))

gibbsnorm Gibbs sampler for a generic mixture posterior distribution

Description

This function implements the generic Gibbs sampler of Diebolt and Robert (1994) for producing a
sample from the posterior distribution associated with a univariate mixture of £ normal components
with all 3k — 1 parameters unknown.

Usage

gibbsnorm(niter, dat, mix)

16

Arguments

niter
dat

mix

Details

gibbsnorm

number of iterations in the Gibbs sampler
mixture sample

list defined as mix=1ist (k=k,p=p,mu=mu,sig=sig), where k is an integer and
the remaining entries are vectors of length k

Under conjugate priors on the means (normal distributions), variances (inverse gamma distribu-
tions), and weights (Dirichlet distribution), the full conditional distributions given the latent vari-
ables are directly available and can be used in a straightforward Gibbs sampler. This function is
only the first step of the function gibbs, but it may be much faster as it avoids the computation of
the evidence via Chib’s approach.

Value
k
mu
sig
p
lopost

References

number of components (superfluous)
Gibbs sample of all mean parameters
Gibbs sample of all variance parameters
Gibbs sample of all weight parameters

sequence of log-likelihood values along Gibbs iterations

Chib, S. (1995) Marginal likelihood from the Gibbs output. J. American Statist. Associ. 90, 1313-

1321.

Diebolt, J. and Robert, C.P. (1992) Estimation of finite mixture distributions by Bayesian sampling.
J. Royal Statist. Society 56, 363-375.

See Also

rdirichlet, gibbs

Examples

data(datha)

datha=as.matrix(datha)

mix=1ist(k=3,mu=mean(datha),sig=var(datha))
res=gibbsnorm(10,datha,mix)

plot(res$pl[,1], type="1",col="steelblue3”,xlab="iterations"”,ylab="p")

non

hmfiatlogit 17

hmflatlogit Metropolis-Hastings for the logit model under a flat prior

Description

Under the assumption that the posterior distribution is well-defined, this Metropolis-Hastings algo-
rithm produces a sample from the posterior distribution on the logit model coefficient S under a flat
prior.

Usage

hmflatlogit(niter, y, X, scale)

Arguments
niter number of iterations
y binary response variable
X matrix of covariates with the same number of rows as y
scale scale of the Metropolis-Hastings random walk
Value

The function produces a sample of 3’s as a matrix of size niter x p, where p is the number of
covariates.

See Also

hmflatprobit

Examples

data(bank)

bank=as.matrix(bank)

y=bank[, 5]

X=bank[,1:4]

flatlogit=hmflatlogit(1000,y,X,1)

par(mfrow=c(1,3),mar=1+c(1.5,1.5,1.5,1.5))
plot(flatlogit[,1],type="1",xlab="Iterations",ylab=expression(betal1]))
hist(flatlogit[101:1000,1],nclass=50,prob=TRUE,main="",6xlab=expression(betal1]))
acf(flatlogit[101:1000,1],1lag=10,main="",ylab="Autocorrelation”,ci=FALSE)

18 hmflatloglin

hmflatloglin Metropolis-Hastings for the log-linear model under a flat prior

Description

This version of hmflatlogit operates on the log-linear model, assuming that the posterior asso-
ciated with the flat prior and the data is well-defined. The proposal is based on a random walk
Metropolis-Hastings step.

Usage

hmflatloglin(niter, y, X, scale)

Arguments
niter number of iterations
y binary response variable
X matrix of covariates with the same number of rows as y
scale scale of the Metropolis-Hastings random walk
Value

The function produces a sample of 3’s as a matrix of size niter x p, where p is the number of
covariates.

See Also
hmflatlogit

Examples

airqual=na.omit(airquality)

ozone=cut (airqual$0zone,c(min(airqual$0zone),median(airqual$0zone),max(airqual$0zone)),
include. lowest=TRUE)

month=as.factor(airqual$Month)
tempe=cut(airqual$Temp,c(min(airqual$Temp),median(airqual$Temp),max(airqual$Temp)),
include. lowest=TRUE)

counts=table(ozone, tempe,month)

counts=as.vector(counts)

0zo=gl(2,1,20)

temp=gl(2,2,20)

mon=gl(5,4,20)

x1=rep(1,20)

lulu=rep(0,20)

x2=x3=x4=x5=x6=x7=x8=x9=1ulu
x2[0z0o==2]=x3[temp==2]=x4[mon==2]=x5[mon==3]=x6[mon==4]=1

x7[mon==5]=x8[0z0==2 & temp==2]=x9[0z0==2 & mon==2]=1
x10=x11=x12=x13=x14=x15=x16=1ulu

hmfiatprobit 19

x10[0z0==2 & mon==3]=x11[0z0==2 & mon==4]=x12[0z0==2 & mon==5]=1
x13[temp==2 & mon==2]=x14[temp==2 & mon==3]=x15[temp==2 & mon==4]=1
x16[temp==2 & mon==5]=1
X=cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16)
flatloglin=hmflatloglin(1000,counts,X,9.5)
par(mfrow=c(4,4),mar=1+c(1.5,1.5,1.5,1.5),cex=0.8)

for (i in 1:16) plot(flatloglin[,i],type="1",ylab="" xlab="Iterations")

hmflatprobit Metropolis-Hastings for the probit model under a flat prior

Description

This random walk Metropolis-Hastings algorithm takes advantage of the availability of the maxi-
mum likelihood estimator (available via the glm function) to center and scale the random walk in
an efficient manner.

Usage

hmflatprobit(niter, y, X, scale)

Arguments
niter number of iterations
y binary response variable
X covariates
scale scale of the random walk
Value

The function produces a sample of 3’s of size niter.

See Also

hmflatlogit

Examples

data(bank)

bank=as.matrix(bank)

y=bank[,5]

X=bank[,1:4]
flatprobit=hmflatprobit(1000,y,X,1)
mean(flatprobit[101:1000,1])

20 hmmeantemp

hmhmm Estimation of a hidden Markov model with 2 hidden and 4 observed
states

Description

This function implements a Metropolis within Gibbs algorithm that produces a sample on the pa-
rameters p;; and qJ‘ of the hidden Markov model (Chapter 7). It includes a function likej that
computes the likelihood of the times series using a forward-backward algorithm.

Usage
hmhmm(M = 100, y)

Arguments

M Number of Gibbs iterations

y times series to be modelled by a hidden Markov model
Details

The Metropolis-within-Gibbs step involves Dirichlet proposals with a random choice of the scale
between 1 and 1e5.

Value
BigR matrix of the iterated values returned by the MCMC algorithm containing p;;
and poo, transition probabilities, and g* and q2, vector of probabilities for both
latent states
olike sequence of the log-likelihoods produced by the MCMC sequence
Examples

res=hmhmm(M=500, y=sample(1:4,10,rep=TRUE))
plot(res$olike, type="1",main="log-likelihood",xlab="iterations"”,ylab="")

hmmeantemp Metropolis-Hastings with tempering steps for the mean mixture poste-
rior model

Description

This function provides another toy illustration of the capabilities of a tempered random walk Metropolis-
Hastings algorithm applied to the posterior distribution associated with a two-component normal
mixture with only its means unknown (Chapter 7). It shows how a decrease in the temperature leads

to a proper exploration of the target density surface, despite the existence of two well-separated
modes.

hmnoinflogit 21

Usage

hmmeantemp(dat, niter, var = 1, alpha = 1)

Arguments

dat set to be modelled as a mixture

niter number of iterations

var variance of the random walk

alpha temperature, expressed as power of the likelihood
Details

When o = 1 the function operates (and can be used) as a regular Metropolis-Hastings algorithm.

Value

sample of x;’s as a matrix of size niter x 2

Examples

dat=plotmix(plot=FALSE)$sample
simu=hmmeantemp(dat, 1000)
plot(simu,pch=19,cex=.5,col="sienna"”,xlab=expression(mul[1]),ylab=expression(mul[2]))

hmnoinflogit Metropolis-Hastings for the logit model under a noninformative prior

Description

This function runs a Metropolis-Hastings algorithm that produces a sample from the posterior dis-
tribution for the logit model (Chapter 4) coefficient 3 associated with a noninformative prior defined
in the book.

Usage

hmnoinflogit(niter, y, X, scale)

Arguments
niter number of iterations
y binary response variable
X matrix of covariates with the same number of rows as y
scale scale of the random walk
Value

sample of §’s as a matrix of size niter x p, where p is the number of covariates

22 hmnoinfloglin

See Also

hmnoinfprobit

Examples

data(bank)

bank=as.matrix(bank)

y=bank[, 5]

X=bank[,1:4]

noinflogit=hmnoinflogit(1000,y,X,1)

par(mfrow=c(1,3),mar=1+c(1.5,1.5,1.5,1.5))

plot(noinflogitl[,1], type="1",xlab="Iterations”,ylab=expression(betal1]))
hist(noinflogit[101:1000,1],nclass=50,prob=TRUE,main="",xlab=expression(betal1]))
acf(noinflogit[101:1000,1],1lag=10,main="",ylab="Autocorrelation”,ci=FALSE)

hmnoinfloglin Metropolis-Hastings for the log-linear model under a noninformative
prior

Description
This function is a version of hmnoinflogit for the log-linear model, using a non-informative prior
defined in Chapter 4 and a proposal based on a random walk Metropolis-Hastings step.

Usage

hmnoinfloglin(niter, y, X, scale)

Arguments
niter number of iterations
y binary response variable
X matrix of covariates with the same number of rows as y
scale scale of the random walk
Value

The function produces a sample of 5’s as a matrix of size niter x p, where p is the number of
covariates.

See Also

hmflatloglin

hmnoinfprobit 23

Examples

airqual=na.omit(airquality)
ozone=cut(airqual$0zone,c(min(airqual$0zone),median(airqual$0zone),max(airqual$0zone)),
include. lowest=TRUE)

month=as. factor(airqual$Month)

tempe=cut (airqual$Temp,c(min(airqual$Temp),median(airqual$Temp),max(airqual$Temp)),
include. lowest=TRUE)

counts=table(ozone, tempe,month)

counts=as.vector(counts)

0zo=gl(2,1,20)

temp=gl(2,2,20)

mon=gl(5, 4, 20)

x1=rep(1,20)

lulu=rep(0,20)

x2=x3=x4=x5=x6=x7=x8=x9=1ulu

x2[0zo==2]=x3[temp==2]=x4[mon==2]=x5[mon==3]=1

x6[mon==4]=x7[mon==5]=x8[0z0==2 & temp==2]=x9[0z0==2 & mon==2]=1
x10=x11=x12=x13=x14=x15=x16=1ulu

x10[0z0==2 & mon==3]1=x11[0z0==2 & mon==4]1=x12[0z0==2 & mon==5]=x13[temp==2 & mon==2]=1
x14[temp==2 & mon==3]=x15[temp==2 & mon==4]=x16[temp==2 & mon==5]=1
X=cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16)
noinloglin=hmnoinfloglin(1000,counts,X,0.5)
par(mfrow=c(4,4),mar=1+c(1.5,1.5,1.5,1.5),cex=0.8)
for (i in 1:16) plot(noinloglin[,i],type="1",ylab=

nn

,xlab="Iterations")

hmnoinfprobit Metropolis-Hastings for the probit model under a noninformative
prior

Description

This function runs a Metropolis-Hastings algorithm that produces a sample from the posterior distri-
bution for the probit model coefficient 3 associated with a noninformative prior defined in Chapter
4.

Usage

hmnoinfprobit(niter, y, X, scale)

Arguments
niter number of iterations
y binary response variable
X matrix of covariates with the same number of rows as y

scale scale of the random walk

24 isinghm

Value

The function produces a sample of 3’s as a matrix of size niter x p, where p is the number of
covariates.

See Also

hmnoinflogit, hmflatprobit

Examples

data(bank)

bank=as.matrix(bank)

y=bank[,5]

X=bank[,1:4]

noinfprobit=hmflatprobit(1000,y,X,1)

par(mfrow=c(1,3),mar=1+c(1.5,1.5,1.5,1.5))
plot(noinfprobit[,1],type="1",xlab="Iterations"”,ylab=expression(betal1]))
hist(noinfprobit[101:1000,1],nclass=50,prob=TRUE,main="",xlab=expression(betal1]))
acf(noinfprobit[101:1000,1],1lag=10,main="",ylab="Autocorrelation”,ci=FALSE)

isinghm Metropolis-Hastings for the Ising model

Description

This is the Metropolis-Hastings version of the original Gibbs algorithm on the Ising model (Chapter
8). Its basic step only proposes changes of values at selected pixels, avoiding the inefficient updates
that do not modify the current value of x.

Usage

isinghm(niter, n, m=n,beta)

Arguments
niter number of iterations of the algorithm
n number of rows in the grid
m number of columns in the grid
beta Ising parameter
Value

X, a realisation from the Ising distribution as a n x m matrix of 0’s and 1’s

See Also

isingibbs

isingibbs 25

Examples

prepa=runif(1,0,2)
prop=isinghm(10, 24,24, prepa)
image(1:24,1:24,prop)

isingibbs Gibbs sampler for the Ising model

Description

This is the original Geman and Geman (1984) Gibbs sampler on the Ising model that gave its name
to the method. It simulates an n x m grid from the Ising distribution.

Usage

isingibbs(niter, n, m=n, beta)

Arguments
niter number of iterations of the algorithm
n number of rows in the grid
m number of columns in the grid
beta Ising parameter
Value

X, a realisation from the Ising distribution as a matrix of size n x m

References
Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6, 721-741.

See Also

isinghm

Examples

image(1:20,1:20,isingibbs(10,20,20,beta=0.3))

26 logitll

Laichedata Laiche dataset

Description
This dataset depicts the presence of plants (tufted sedges) in a part of a wetland. It is 25x25 matrix
of zeroes and ones, used in Chapter 8.

Usage

data(Laichedata)

Format

A data frame corresponding to a 25x25 matrix of zeroes and ones.

Examples

data(Laichedata)
image(as.matrix(Laichedata))

logitll Log-likelihood of the logit model

Description

Direct computation of the logarithm of the likelihood of a standard logit model (Chapter 4)

Py =1]X,8) = {1 +exp(—=p7X)} .

Usage
logitll(beta, y, X)

Arguments
beta coefficient of the logit model
y vector of binary response variables
X covariate matrix

Value

returns the logarithm of the logit likelihood for the data y, covariate matrix X and parameter vector
beta

logitnoinflpost 27

See Also

probitll

Examples

data(bank)

y=bank[,5]
X=as.matrix(bank[,-5])
logitll(runif(4),y,X)

logitnoinflpost Log of the posterior distribution for the probit model under a nonin-
formative prior

Description
This function computes the logarithm of the posterior density associated with a logit model and the
noninformative prior used in Chapter 4.

Usage

logitnoinflpost(beta, y, X)

Arguments
beta parameter of the logit model
y binary response variable
X covariate matrix

Value

returns the logarithm of the logit likelihood for the data y, covariate matrix X and parameter beta

See Also

probitnoinflpost

Examples

data(bank)

y=bank[, 5]
X=as.matrix(bank[,-5])
logitnoinflpost(runif(4),y,X)

28 loglinnoinflpost

loglinll Log of the likelihood of the log-linear model

Description
This function provides a direct computation of the logarithm of the likelihood of a standard log-
linear model, as defined in Chapter 4.

Usage

loglinll(beta, y, X)

Arguments
beta coefficient of the logit model
y vector of binary response variables
X covariate matrix

Value

returns the logarithmic value of the logit likelihood for the data y, covariate matrix X and parameter
vector beta

Examples

X=matrix(rnorm(20*3),ncol=3)
beta=c(3,-2,1)
y=rpois(20,exp(X%*%beta))
loglinll(beta, y, X)

loglinnoinflpost Log of the posterior density for the log-linear model under a noninfor-
mative prior

Description
This function computes the logarithm of the posterior density associated with a log-linear model
and the noninformative prior used in Chapter 4.

Usage

loglinnoinflpost(beta, y, X)

MAllog 29

Arguments
beta parameter of the log-linear model
y binary response variable
X covariate matrix

Details

This function does not test for coherence between the lengths of y, X and beta, hence may return
an error message in case of incoherence.

Value

returns the logarithm of the logit posterior density for the data y, covariate matrix X and parameter
vector beta

Examples

X=matrix(rnorm(20*3),ncol=3)
beta=c(3,-2,1)
y=rpois(20,exp(X%*%beta))
loglinnoinflpost(beta, y, X)

MAllog log-likelihood associated with an MA(p) model

Description

This function returns the numerical value of the log-likelihood associated with a time series and an
MA(p) model in Chapter 7. It either uses the natural parameterisation of the MA(p) model

P
Ty — U =€ — ij&fj
j=1
or the parameterisation via the lag-polynomial roots

p
ze—p=[]1 - AB)=

i=1

where Bie; = &;_;.

Usage

MAllog(p,dat,pr,pc,1lr,lc,mu,sig2,compsi=T,pepsi=rep(@,p),eps=rnorm(p))

30 MAmh

Arguments
p order of the MA model
dat time series modelled by the MA(p) model
pr number of real roots in the lag polynomial
pc number of complex roots in the lag polynomial, necessarily even
1r real roots
lc complex roots, stored as real part for odd indices and imaginary part for even
indices. (1c is either O when pc=0 or a vector of even length when pc>0.)
mu drift parameter p such that (X; — p); is a standard MA(p) series
sig2 variance of the Gaussian white noise (&;);
compsi boolean variable indicating whether the coefficients); need to be retrieved from
the roots of the lag-polynomial (if TRUE) or not (if FALSE)
pepsi potential coefficients i;, computed by the function if compsi is TRUE
eps white noise terms (e;);<o with negative indices
Value
11 value of the log-likelihood
ps vector of the v;’s, similar to the entry if compsi is FALSE
See Also

AR11og, MAmh

Examples

MAllog(p=3,dat=faithfull,1],pr=3,pc=0,1lr=rep(.1,3),1c=0,
mu=0,sig2=var(faithfull[,1]),compsi=FALSE,pepsi=rep(.1,3),eps=rnorm(3))

MAmh Metropolis—Hastings evaluation of the posterior associated with an
MA(p) model

Description

This function implements a Metropolis—Hastings algorithm on the coefficients of the MA(p) model,
involving the simulation of the real and complex roots of the model. The algorithm includes jumps
between adjacent numbers of real and complex roots, as well as random modifications for a given
number of real and complex roots. It is thus a special case of a reversible jump MCMC algorithm
(Green, 1995).

Usage
MAmh(x, p = 1, W = 10*3)

Menteith 31

Arguments
X time series to be modelled as an MA(p) model
p order of the MA(p) model
W number of iterations
Value
psis matrix of simulated v;’s
mus vector of simulated p’s
sigs vector of simulated o2’s
11ik vector of corresponding log-likelihood values (useful to check for convergence)
pcomp vector of simulated numbers of complex roots
References

Green, P.J. (1995) Reversible jump MCMC computaton and Bayesian model choice. Biometrika
82, 711-732.

See Also
MAllog

Examples

data(Eurostoxx50)

x=Eurostoxx50[1:350, 5]

resMA5=MAmh (x=x, p=5,W=50)

plot(resMA5$mus, type="1",col="steelblue4”,xlab="Iterations",ylab=expression(mu))

Menteith Grey-level image of the Lake of Menteith

Description

This dataset is a 100x100 pixel satellite image of the lake of Menteith, near Stirling, Scotland. The
purpose of analyzing this satellite dataset is to classify all pixels into one of six states in order to
detect some homogeneous regions.

Usage

data(Menteith)

Format

data frame of a 100 x 100 image with 106 grey levels

32 ModChoBayesReg

See Also

reconstruct

Examples

data(Menteith)
image(1:100,1:100,as.matrix(Menteith),col=gray(256:1/256),xlab="",ylab="")

ModChoBayesReg Bayesian model choice procedure for the linear model

Description
This function computes the posterior probabilities of all (for less than 15 covariates) or the most
probable (for more than 15 covariates) submodels obtained by eliminating some covariates.

Usage

ModChoBayesReg(y, X, g = length(y), betatilde = rep(@, dim(X)[21),
niter = 1e+05, prt = TRUE)

Arguments
y response variable
X covariate matrix
g constant in the g prior
betatilde prior expectation of the regression coefficient 3
niter number of Gibbs iterations in the case there are more than 15 covariates
prt boolean variable for printing the standard output
Details

When using a conjugate prior for the linear model such as the G prior, the marginal likelihood and
hence the evidence are available in closed form. If the number of explanatory variables is less than
15, the exact derivation of the posterior probabilities for all submodels can be undertaken. Indeed,
215 = 32768 means that the problem remains tractable. When the number of explanatory variables
gets larger, a random exploration of the collection of submodels becomes necessary, as explained
in the book (Chapter 3). The proposal to change one variable indicator is made at random and
accepting this move follows from a Metropolis—Hastings step.

Value

top10models models with the ten largest posterior probabilities

postprobtop1@ posterior probabilities of those ten most likely models

normaldata 33

Examples

data(caterpillar)
y=log(caterpillars$y)
X=as.matrix(caterpillar[,1:8])
res2=ModChoBayesReg(y, X)

normaldata Normal dataset

Description

This dataset is used as "the" normal dataset in Chapter 2. It is linked with the famous Michelson-
Morley experiment that opened the way to Einstein’s relativity theory in 1887. It corresponds to the
more precise experiment of Illingworth in 1927. The datapoints are measurment of differences in
the speeds of two light beams travelling the same distance in two orthogonal directions.

Usage

data(normaldata)

Format
A data frame with 64 observations on the following 2 variables.

x1 index of the experiment

x2 averaged fringe displacement in the experiment

Details

The 64 data points in this dataset are associated with session numbers, corresponding to two differ-
ent times of the day, and they represent the averaged fringe displacement due to orientation taken
over ten measurements made by Illingworth, who assumed a normal error model.

See Also

morley

Examples

data(normaldata)
shift=matrix(normaldata,ncol=2,byrow=TRUE)[,2]
hist(shift[[1]],nclass=10,col="steelblue”,prob=TRUE,main="")

34 pcapture

pbino Posterior expectation for the binomial capture-recapture model

Description

This function provides an estimation of the number of dippers by a posterior expectation, based on
a uniform prior and the eurodip dataset, as described in Chapter 5.

Usage

pbino(nplus)

Arguments

nplus number of different dippers captured

Value

returns a numerical value that estimates the number of dippers in the population

See Also

eurodip

Examples

data(eurodip)
year81=eurodip[,1]
nplus=sum(year81>0)
sum((1:400)*pbino(nplus))

pcapture Posterior probabilities for the multiple stage capture-recapture model

Description

This function computes the posterior expectation of the population size for a multiple stage capture-
recapture experiment (Chapter 5) under a uniform prior on the range (0,400).

Usage

pcapture(T, nplus, nc)

pdarroch 35

Arguments
T number of experiments
nplus total number of captured animals
nc total number of captures

Details

This analysis is based on the restrictive assumption that all dippers captured in the second year were
already present in the population during the first year.

Value

numerical value of the posterior expectation

See Also

pdarroch

Examples

sum((1:400)*pcapture(2,70,81))

pdarroch Posterior probabilities for the Darroch model

Description
This function computes the posterior expectation of the population size for a two-stage Darroch
capture-recapture experiment (Chapter 5) under a uniform prior on the range (0,400).

Usage

pdarroch(nl, n2, m2)

Arguments
ni size of the first capture experiment
n2 size of the second capture experiment
m2 number of recaptured individuals
Details

This model can be seen as a conditional version of the two-stage model when conditioning on both
sample sizes n; and n,.

36 plotmix

Value

numerical value of the posterior expectation

See Also

pcapture

Examples

for (i in 6:16) print(round(sum(pdarroch(22,43,i)*1:400)))

plotmix Graphical representation of a normal mixture log-likelihood

Description

This function gives an image representation of the log-likelihood surface of a mixture (Chapter
6) of two normal densities with means p; and po unknown. It first generates the random sample
associated with the distribution.

Usage

plotmix(mul = 2.5, mu2 = @, p = 0.7, n = 500, plottin = TRUE, nl = 50)

Arguments
mul first mean
mu2 second mean
p weight of the first component
n number of observations
plottin boolean variable to plot the surface (or not)
nl number of contours
Details

In this case, the parameters are identifiable: w7 and po cannot be confused when p is not 0.5.
Nonetheless, the log-likelihood surface in this figure often exhibits two modes, one being close to
the true value of the parameters used to simulate the dataset and one corresponding to a reflected
separation of the dataset into two homogeneous groups.

Value

sample the simulated sample

like the discretised representation of the log-likelihood surface

pottsgibbs 37

See Also

gibbsmean, hmmeantemp

Examples

resumix=plotmix()

pottsgibbs Gibbs sampler for the Potts model

Description

This function produces one simulation of a square numb by numb grid from a Potts distribution with
four colours and a four neighbour structure, relying on niter iterations of a standard Gibbs sampler.

Usage

pottsgibbs(niter, numb, beta)

Arguments
niter number of Gibbs iterations
numb size of the square grid
beta parameter of the Potts model
Value

returns a random realisation from the Potts model

References
Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6, 721-741.

See Also

pottshm

Examples

ex=pottsgibbs(100,15,.4)
image (ex)

38 probet

pottshm Metropolis-Hastings sampler for a Potts model with ncol classes

Description

This function returns a simulation of a n by m grid from a Potts distribution with ncol colours and
a four neighbour structure, using a Metropolis-Hastings step that avoids proposing a value identical
to the current state of the Markov chain.

Usage

pottshm(ncol=2,niter=10"4,n,m=n,beta=0)

Arguments
ncol number of colors
niter number of Metropolis-Hastings iterations
n number of rows in the image
m number of columns in the image
beta parameter of the Potts model
Value

returns a random realisation from the Potts model

See Also

pottsgibbs

Examples

ex=pottshm(niter=50,n=15,beta=.4)
hist(ex,prob=TRUE,col="steelblue”,main="pottshm()")

probet Coverage of the interval (a,b) by the Beta cdf

Description

This function computes the coverage of the interval (a, b) by the Beta B(«, (1 —¢)/c) distribution.

Usage

probet(a, b, c, alpha)

probitll 39

Arguments
a lower bound of the prior 95%~confidence interval
b upper bound of the prior 95%~confidence interval
c mean parameter of the prior distribution
alpha scale parameter of the prior distribution

Value

numerical value between 0 and 1 corresponding to the coverage

See Also

solbeta

Examples

probet(.1,.5,.3,2)

probitll Log-likelihood of the probit model

Description

This function implements a direct computation of the logarithm of the likelihood of a standard
probit model

P(y =1]X,5) = ®(87X).

Usage
probitll(beta, y, X)

Arguments
beta coefficient of the probit model
y vector of binary response variables
X covariate matrix

Value

returns the logarithm of the probit likelihood for the data y, covariate matrix X and parameter vector
beta

See Also
logitll

40 probitnoinflpost

Examples

data(bank)
y=bank[, 5]
X=as.matrix(bank[,-51)
probitll(runif(4),y,X)

probitnoinflpost Log of the posterior density for the probit model under a non-
informative model

Description

This function computes the logarithm of the posterior density associated with a probit model and
the non-informative prior used in Chapter 4.

Usage

probitnoinflpost(beta, y, X)

Arguments
beta parameter of the probit model
y binary response variable
X covariate matrix

Value

returns the logarithm of the posterior density associated with a logit model for the data y, covariate
matrix X and parameter beta

See Also

logitnoinflpost

Examples

data(bank)

y=bank[,5]
X=as.matrix(bank[,-51)
probitnoinflpost(runif(4),y,X)

rdirichlet 41

rdirichlet Random generator for the Dirichlet distribution

Description

This function simulates a sample from a Dirichlet distribution on the k£ dimensional simplex with
arbitrary parameters. The simulation is based on a renormalised vector of gamma variates.

Usage

rdirichlet(n = 1, par = rep(1, 2))

Arguments

n number of simulations

par parameters of the Dirichlet distribution, whose length determines the value of k
Details

Surprisingly, there is no default Dirichlet distribution generator in the R base packages like MASS or
stats. This function can be used in full generality, apart from the book (Chapter 6).

Value

returns a (n, k) matrix of Dirichlet simulations

Examples

apply(rdirichlet(10,rep(3,5)),2,mean)

reconstruct Image reconstruction for the Potts model with six classes

Description

This function adresses the reconstruction of an image distributed from a Potts model based on a
noisy version of this image. The purpose of image segmentation (Chapter 8) is to cluster pixels into
homogeneous classes without supervision or preliminary definition of those classes, based only on
the spatial coherence of the structure. The underlying algorithm is an hybrid Gibbs sampler.

Usage

reconstruct(niter, y)

42 reconstruct

Arguments

niter number of Gibbs iterations

y blurred image defined as a matrix
Details

Using a Potts model on the true image, and uniform priors on the genuine parameters of the model,
the hybrid Gibbs sampler generates the image pixels and the other parameters one at a time, the Ay-
brid stage being due to the Potts model parameter, since it implies using a numerical integration via
integrate. The code includes (or rather excludes!) the numerical integration via the vector dali,
which contains the values of the integration over a 21 point grid, since this numerical integration is
extremely time-consuming.

Value
beta MCMC chain for the parameter 3 of the Potts model
mu MCMC chain for the mean parameter of the blurring model
sigma MCMC chain for the variance parameter of the blurring model
xcum frequencies of simulated colours at every pixel of the image
See Also
Menteith
Examples

Not run: data(Menteith)

Im3=as.matrix(Menteith)

#warning, this step is a bit lengthy
titus=reconstruct(20,1m3)

#allocation function

affect=function(u) order(u)[6]

#

aff=apply(titus$xcum,1,affect)
aff=t(matrix(aff,100,100))

par(mfrow=c(2,1))
image(1:100,1:100,1m3,col=gray(256:1/256),xlab="" ylab="")
image(1:100,1:100,aff,col=gray(6:1/6),xlab="",ylab="")

End(Not run)

solbeta 43

solbeta Recursive resolution of beta prior calibration

Description

In the capture-recapture experiment of Chapter 5, the prior information is represented by a prior
expectation and prior confidence intervals. This function derives the corresponding beta B(a, 3)
prior distribution by a divide-and-conquer scheme.

Usage

solbeta(a, b, c, prec = 10*(-3))

Arguments
a lower bound of the prior 95%~confidence interval
b upper bound of the prior 95%~confidence interval
c mean of the prior distribution
prec maximal precision on the beta coefficient «
Details

Since the mean of the beta distribution is known, there is a single free parameter « to determine,
since § = a(1 — u)/u. The function solbeta searches for the corresponding value of «, starting
with a precision of 1 and stopping at the requested precision prec.

Value

alpha first coefficient of the beta distribution

beta second coefficient of the beta distribution

See Also

probet

Examples

solbeta(.1,.5,.3,10%(-4))

44 thresh

sumising Approximation by path sampling of the normalising constant for the
Ising model

Description

This function implements a path sampling approximation of the normalising constant of an Ising
model with a four neighbour relation.

Usage

sumising(niter = 10”3, numb, beta)

Arguments
niter number of iterations
numb size of the square grid for the Ising model
beta Ising model parameter

Value

returns a vector of 21 values for Z () corresponding to a regular sequence of 3’s between 0 and 2

See Also

isingibbs,isinghm

Examples

Z=seq(90,2,length=21)

for (i in 1:21)
Z[i]=sumising(5,numb=24,beta=Z[i])

lrcst=approxfun(seq(@,2,length=21),7)

plot(seq(®,2,length=21),Z,xlab="",ylab="")

curve(lrcst,@,2,add=TRUE)

thresh Bound for the accept-reject algorithm in Chapter 5

Description

This function is used in ardipper to determine the bound for the accept-reject algorithm simulating
the non-standard conditional distribution of 7.

Usage

thresh(k, n1, c2, c3, r2, ql)

truncnorm 45

Arguments
k current proposal for the number of individuals vanishing between the first and
second experiments
ni first capture population size
c2 number of individuals recaptured during the second experiment
c3 number of individuals recaptured during the third experiment
r2 number of individuals vanishing between the second and third experiments
ql probability of disappearing from the population
Details

This upper bound is equal to

(") ()

Value

numerical value of the upper bound, to be compared with the uniform random draw

See Also

ardipper

Examples

Not run: if (runif(1) < thresh(y,nl,c2,c3,r2,q1))

truncnorm Random simulator for the truncated normal distribution

Description
This is a plain random generator for a normal variate A (x, 72) truncated to (a, b), using the inverse
cdf gnorm. It may thus be imprecise for extreme values of the bounds.

Usage

truncnorm(n, mu, tau2, a, b)

Arguments
n number of simulated variates
mu mean of the original normal
tau2 variance of the original normal
a lower bound

b upper bound

46 xneig4

Value

a sample of real numbers over (a, b) with size n

See Also

reconstruct

Examples

x=truncnorm(103,1,2,3,4)
hist(x,nclass=123,col="wheat"”,prob=TRUE)

xneig4 Number of neighbours with the same colour

Description
This is a basis function used in simulation algorithms on the Ising and Potts models. It counts how
many of the four neighbours of z, ; are of the same colour as this pixel.

Usage

xneig4(x, a, b, col)

Arguments

X grid of coloured pixels

a row index

b column index

col current or proposed colour
Value

integer between 0 and 4 giving the number of neighbours with the same colour

See Also

pottsgibbs, sumising

Examples

data(Laichedata)
xneig4(Laichedata,?2,3,1)
xneig4(Laichedata,2,3,0)

Index

x* ABN Amro
Eurostoxx50, 11

* Aegon
Eurostoxx50, 11

+x Ahold Kon
Eurostoxx50, 11

* Air Liquide
Eurostoxx50, 11

* Arnason-Schwarz
gibbscap2, 14

x Bayes factor
gibbs, 12

* DNA
Dnadataset, 9

+ Darroch model
pdarroch, 35

* Dipper
thresh, 44

* Dirichlet distribution
rdirichlet, 41

* European dipper
eurodip, 10

x Eurostoxx50
Eurostoxx50, 11

x* GLM
hmmeantemp, 20

* Gibbs sampling
gibbscap2, 14
isingibbs, 25
pottsgibbs, 37
pottshm, 38

x Gibbs
gibbs, 12
gibbscap1, 13
gibbsmean, 15
gibbsnorm, 15

* Ising model
isinghm, 24
isingibbs, 25

47

sumising, 44
xneig4, 46

+ Menteith
Menteith, 31
reconstruct, 41

+* Metropolis-Hastings algorithm
hmflatlogit, 17
hmflatloglin, 18
hmflatprobit, 19
hmnoinflogit, 21
hmnoinfloglin, 22
hmnoinfprobit, 23
pottshm, 38

* Metropolis-Hastings
hmmeantemp, 20
isinghm, 24

+ Michelson-Morley experiment
normaldata, 33

+ Potts model
pottsgibbs, 37
pottshm, 38
reconstruct, 41
xneig4, 46

* accept-reject algorithm
thresh, 44

* auto-regressive model
ARllog, 3
ARmh, 5
MAllog, 29
MAmh, 30

* beta distribution
probet, 38
solbeta, 43

+ binomial probability
pbino, 34

* capture-recapture models
pbino, 34

* capture-recapture model
pcapture, 34

48

* capture-recapture
eurodip, 10
gibbscap1, 13
gibbscap2, 14
probet, 38
solbeta, 43

x caterpillars
caterpillar, 8

* complex roots
ARmh, 5
MAmh, 30

* conjugate priors
gibbsnorm, 15

+ datasets
bank, 6
caterpillar, 8
datha, 9
Dnadataset, 9
eurodip, 10
Eurostoxx50, 11
Laichedata, 26
Menteith, 31
normaldata, 33

* divide-and-conquer
solbeta, 43

x evidence
gibbs, 12

x flat prior
hmflatlogit, 17
hmflatloglin, 18
hmflatprobit, 19

* forward-backward algorithm

hmhmm, 20

x generalised linear model
logitll, 26
logitnoinflpost, 27
loglinll, 28
loglinnoinflpost, 28
probitll, 39
probitnoinflpost, 40

x grey levels
datha, 9

* hidden Markov model
gibbscap2, 14
hmhmm, 20

* identifiability
plotmix, 36

* image reconstruction

reconstruct, 41

* inverse cdf simulation
truncnorm, 45

+ label-switching
plotmix, 36

* lag-polynomial
ARmh, 5
MAmh, 30

x license plate
datha, 9

x linear regression
ModChoBayesReg, 32

* log-likelihood
plotmix, 36

* log-linear model
hmflatloglin, 18
hmnoinfloglin, 22
loglinll, 28
loglinnoinflpost, 28

* logit model
hmflatlogit, 17
hmnoinflogit, 21
logitll, 26
logitnoinflpost, 27

+ mixture of distributions
gibbsmean, 15
hmmeantemp, 20
plotmix, 36

* mixtures
gibbsnorm, 15

* mixture
gibbs, 12

+ model choice
ModChoBayesReg, 32

+ multimodality
plotmix, 36

* neighbourhood
xneig4, 46

* non-informative prior
probitnoinflpost, 40

* noninformative prior
hmnoinflogit, 21
hmnoinfloglin, 22
hmnoinfprobit, 23
logitnoinflpost, 27
loglinnoinflpost, 28

* numerical integration
reconstruct, 41

INDEX

INDEX

* open population
gibbscap1, 13

* path sampling
sumising, 44

* posterior expectation
pbino, 34
pcapture, 34
pdarroch, 35

* prior elicitation
probet, 38
solbeta, 43

* probit model
hmflatprobit, 19
hmnoinfprobit, 23
probitll, 39
probitnoinflpost, 40

* qnorm
truncnorm, 45

* random generation
rdirichlet, 41

+* random walk proposal
hmflatlogit, 17
hmflatloglin, 18
hmflatprobit, 19
hmnoinflogit, 21
hmnoinfloglin, 22
hmnoinfprobit, 23

+* random walk
isinghm, 24
ModChoBayesReg, 32

* sedge
Laichedata, 26

* time series
ARllog, 3
MAllog, 29

* truncated normal distribution
truncnorm, 45

* uniform prior
pcapture, 34
pdarroch, 35

ardipper, 3, 45
AR1llog, 3, 6, 30
ARmh, 4, 5

bank, 6
BayesReg, 7

caterpillar, 8

datha, 9
Dnadataset, 9

eurodip, 10, 34
Eurostoxx50, 11

gibbs, 12, 16
gibbscap1, 13
gibbscap2, 14
gibbsmean, 15, 37
gibbsnorm, 12, 15

hmflatlogit, 17, 18, 19
hmflatloglin, 18, 22
hmflatprobit, /7, 19, 24
hmhmm, 20
hmmeantemp, 20, 37
hmnoinflogit, 21, 24
hmnoinfloglin, 22
hmnoinfprobit, 22, 23

isinghm, 24, 25, 44
isingibbs, 24, 25, 44

Laichedata, 26

likej (hmhmm), 20
logitll, 26, 39
logitnoinflpost, 27, 40
loglinll, 28
loglinnoinflpost, 28

MAllog, 4, 29, 31
MAmh, 30, 30
Menteith, 31, 42
ModChoBayesReg, 32
morley, 33

normaldata, 33

pbino, 34
pcapture, 34, 36
pdarroch, 35, 35
plotmix, /5, 36
pottsgibbs, 37, 38, 46
pottshm, 37, 38
probet, 38, 43
probitll, 27, 39
probitnoinflpost, 27, 40

rdirichlet, 16, 41

49

50 INDEX

reconstruct, 32, 41, 46

solbeta, 39, 43
sumising, 44, 46

thresh, 44
truncnorm, 45

xneig4, 46

	ardipper
	ARllog
	ARmh
	bank
	BayesReg
	caterpillar
	datha
	Dnadataset
	eurodip
	Eurostoxx50
	gibbs
	gibbscap1
	gibbscap2
	gibbsmean
	gibbsnorm
	hmflatlogit
	hmflatloglin
	hmflatprobit
	hmhmm
	hmmeantemp
	hmnoinflogit
	hmnoinfloglin
	hmnoinfprobit
	isinghm
	isingibbs
	Laichedata
	logitll
	logitnoinflpost
	loglinll
	loglinnoinflpost
	MAllog
	MAmh
	Menteith
	ModChoBayesReg
	normaldata
	pbino
	pcapture
	pdarroch
	plotmix
	pottsgibbs
	pottshm
	probet
	probitll
	probitnoinflpost
	rdirichlet
	reconstruct
	solbeta
	sumising
	thresh
	truncnorm
	xneig4
	Index

