Extending atable

Alan Haynes, Armin Strobel

August 29, 2024

Contents

1 Methods for other classes 2
1.1 Example methods for ‘Date's 2
1.2 Example methods for ‘surv‘ objects L. 3

2 Different statistics for variables of a single class 5

‘atable* has been designed for flexibility in mind. If you don’t like the defaults, you
can define your own summary statistics, tests and effect measures. You can even define
your own methods for classes not supported natively. This vignette gives some details
and examples on how to go about these tasks.

In this vignette we will use the ‘mtcars‘ dataset as an example. Load it and prepare
factors and other variables. We also set the format_to option to ‘Latex* for nicer printing
in the vignette.

data(mtcars)

mtcars$am <- factor(mtcars$am, c(0, 1), c("Automatic", "Manual"))
mtcars$vs <- factor(mtcars$vs, c(0, 1), c("V-shaped", "straight"))

mtcars$cyl <- ordered(mtcars$cyl)

atable_options(format_to = "Latex")

Hmisc::latex(atable(vs + cyl + hp + disp ~ am, mtcars),
file = ",
title = "",
rowname = NULL,
table.env = FALSE)

Group Automatic Manual p stat Effect Size (CI)

Observations
19 13
Vs
V-shaped 63% (12) 46% (6) 056 035 2 (0.38; 11)
straight 37% (7) 54% (7)
missing 0% (0) 0% (0)
cyl
4 16% (3) 62% (8) NaN NaN 0.57 (0.18; 0.81)
6 21% (4) 23% (3)
8 63% (12) 15% (2)
missing 0% (0) 0% (0)
hp
Mean (SD) 160 (54) 127(84) 0.023 051 0.49 (-0.25; 1.2)
valid (missing) 19 (0) 13 (0)
disp
Mean (SD) 200 (110) 144 (87) <0.001 0.69 1.4 (0.62; 2.3)
valid (missing) 19 (0) 13 (0)

1 Methods for other classes

‘atable’ only support numeric, factor and ordered classes by default. If you want to use
unsupported classes, e.g. ‘Date’ or ‘surv‘, you can define methods for them reasonably
easily.

1.1 Example methods for ‘Date‘s

There are no methods for ‘Date‘s in ‘atable’. We can define them easily though. If we
want the minimum, median and maximum dates, we could define the statistics function
as follows. The class of the output here is important - it is used to choose the appropriate
formatting function.

statistics.Date <- function(x, ...){
out <- list(min = min(x, na.rm = TRUE),

med = median(x, na.rm = TRUE),
max = max(x, na.rm = TRUE))
class(out) <- c("statistics_date", class(out))

out

}

The suitable formatting function for that might be the following to put minimum
and maximum on one line followed by the median on the next. The factor is required to
avoid reordering the rows.

format_statistics.statistics_date <- function(x, ...){
z <- c¢("Min ; Max", "Median")
out <- data.frame(tag = factor(z, z),
value = c(paste(xmin, xmax, sep =" ; "),
as.character (x$med)),
stringsAsFactors = FALSE)
return (out)

}

add a date wvariable to mtcars
mtcars$date <- as.Date(runif (nrow(mtcars), 0, 365%10), "1990-01-01")

Hmisc::latex(atable(mtcars, "date"),
file = "n,
title = "",
rowname = NULL,
table.env = FALSE)

Group value
Observations

32
date
Min ; Max 1991-03-01 ; 1999-03-05
Median 1994-05-24

If comparing two or more groups, then suitable ‘two_sample_htest‘ and ‘multi_sample_htest
functions should also be defined.

1.2 Example methods for ‘surv‘ objects

Probably more useful than the ‘Date’ methods would be ‘surv‘ objects, as defined by
the ‘survival‘ package.

First we add a ‘surv‘ object to ‘mtcars‘ by creating an observation time point ap-
proximately 10 years after the date we defined previously. We then calculate the time
between these two time points and define an indicator whether an event occured, in this
case the car no longer being road-worthy.

add some survival data (use 'date' as the timepoint)

if (requireNamespace("survival", quietly = TRUE)) {
mtcars$date2 <- mtcars$date + round(rnorm(nrow(mtcars), 10, 4)) # end date
mtcars$time <- as.numeric(mtcars$date2 - mtcars$date) # time
mtcars$not_road_worthy <- rbinom(nrow(mtcars), 1, .2) # 'survived'?

mtcars$surv <- with(mtcars, survival::Surv(time, not_road_worthy))
} else {

do nothing
}

Now we need the appropriate methods for ‘atable’. Mean survival time is a com-
mon choice for time-to-event analyses. Similarly, the Mantel-Haenszel test is a used to
compare two curves.

if (requireNamespace("survival", quietly = TRUE)) {

statistics function

statistics.Surv <- function(x, ...){
survfit_object <- survival::survfit(x ~ 1)
copied from survival::print.survfit
out <- survival:::survmean(survfit_object, rmean = "common")
return(list (mean_survival_time = out$matrix["*rmean"],

SE = out$matrix["*se(rmean)"]))

¥

testing function

two_sample_htest.Surv <- function(value, group, ...){
survdiff_result <- survival::survdiff(value~group, rho=0)
copy from survival::print.survdiff
etmp <- survdiff_result$exp
df <- (sum(l * (etmp > 0))) - 1
p <- 1 - stats::pchisq(survdiff_result$chisq, df)
return(list(p = p,stat = survdiff_result$chisq))

¥

} else {
do mothing

}

We can then use them with the variables we defined in mtcars...

if (requireNamespace("survival", quietly = TRUE)) {
Hmisc::latex(atable(surv ~ am, mtcars),
file = "",
title = "",
rowname = NULL,
table.env = FALSE)
} else {
do nothing

}

Group Automatic Manual p stat

Observations
19 13
surv
mean_survival_time NA NA 0.52 0.41
SE NA NA

An appropriate formatting function could be defined as above for ‘Date‘s.

2 Different statistics for variables of a single class

In the ‘mtcars’ example, suppose we want to summarize ‘hp‘ by mean and SD and ‘disp*
by median and quartiles. Mean and SD are the default statistics for numeric variables
in ‘atable’ so we only have to worry about ‘disp‘. To accomplish this, we can use the
same method as we used above for ‘Date’ variables - we will define new functions for
a new class. We will assign the new class, which we will call ‘numeric2‘, to ‘disp‘ and
define new functions to handle it.

class(mtcars$disp) <- c("numeric2", class(mtcars$disp))

'[.numeric2' <- function(x, i, j, ...){
y <- unclass(x)[i, ...]
class(y) <- c("numeric2", class(y))
y

}

The subsetting function is used to retain the class of the variable (otherwise it reverts
to a numeric in this case). We didn’t need to do this above as the relevant function for
the ‘Date’ and ‘surv‘ classes already exist.

Next we define functions to calculate the statistics that we want to use. These both
have to return named lists.

statistics.numeric2 <- function(x, ...){
statistics_out <- list(Median = median(x, na.rm = TRUE),
p25 quantile(x, 0.25, na.rm = TRUE),
p75 = quantile(x, 0.75, na.rm = TRUE))
class(statistics_out) <- c("statistics_numeric2", class(statistics_out))

return(statistics_out)

}

two_sample_htest.numeric2 <- function(value, group, ...){
d <- data.frame(value = value, group = group)

test_out <- stats::wilcox.test(value group, d)

return(test_out)

}

Now we can test to see if our new class has been identified and used correctly.

Hmisc::latex(atable(vs + cyl + hp + disp ~ am, mtcars),

file = ",
title = "",
rowname = NULL,
table.env = FALSE)
Group Automatic Manual p stat Effect Size (CI)
Observations
19 13
Vs
V-shaped 63% (12) 46% (6) 0.56 0.35 2 (0.38; 11)
straight 37% (7) 54% (7)
missing 0% (0) 0% (0)
cyl
4 16% (3) 62% (8) NaN NaN 0.57 (0.18; 0.81)
6 21% (4) 23% (3)
8 63% (12) 15% (2)
missing 0% (0) 0% (0)
hp
Mean (SD) 160 (54) 127 (84) 0.023 0.51 0.49 (-0.25; 1.2)
valid (missing) 19 (0) 13 (0)
disp
Median 276 120 <0.001
p25 196 79
p75 360 160

We probably don’t want to have the quartiles beneath the median so we can also
define a formatting function. The ‘format_statistics® function should return a dataframe
with variable tag (as a factor to retain ordering) and value (most likely a string).
The class is no longer ‘numeric2‘ but ‘statistics_numeric2‘ as defined in the ‘statis-
tics.numeric2‘ function.

format_statistics.statistics_numeric2 <- function(x, ...){
out <- data.frame(

tag = factor(c("Median [Quartiles]")),
value = sprintf("%2.1f [}2.1f ; %2.1f]", x$Median, x$p25, x$p75),
stringsAsFactors = FALSE)

return (out)

}

Hmisc::latex(atable(vs + cyl + hp + disp ~ am, mtcars),

ERIC O
title = "",
rowname = NULL,
table.env = FALSE)
Group Automatic Manual) stat Effect Size (CI)
Observations
19 13
Vs
V-shaped 63% (12) 46% (6) 0.56 035 2 (0.38; 11)
straight 37% (7) 54% (7)
missing 0% (0) 0% (0)
cyl
4 16% (3) 62% (8) NaN NaN 0.57 (0.18; 0.81)
6 21% (4) 23% (3)
8 63% (12) 15% (2)
missing 0% (0) 0% (0)
hp
Mean (SD) 160 (54) 127 (84) 0.023 051 0.49 (-0.25; 1.2)
valid (missing) 19 (0) 13 (0)
disp

Median [Quartiles] 275.8 [196.3 ; 360.0] 120.3 [79.0 ; 160.0] <0.001

	Methods for other classes
	Example methods for `Date`s
	Example methods for `surv` objects

	Different statistics for variables of a single class

