
Package ‘ast2ast’
December 9, 2023

Type Package

Title Translates an R Function to a C++ Function

Version 0.3.2

Date 2023-12-09

Author Krämer Konrad [aut, cre]

Maintainer Krämer Konrad <konrad_kraemer@yahoo.de>

BugReports https://github.com/Konrad1991/ast2ast

URL https://github.com/Konrad1991/ast2ast

Description Enable translation of a tiny subset of R to C++. The user has to define a R func-
tion which gets translated. For a full list of possible functions check the documentation. Af-
ter translation an R function is returned which is a shallow wrapper around the C++ code. Alter-
natively an external pointer to the C++ function is returned to the user. The intention of the pack-
age is to generate fast functions which can be used as ode-system or during optimization.

License GPL-2

Imports Rcpp (>= 1.0.4), purrr, R6, RcppArmadillo, methods, dfdr,
rlang

VignetteBuilder knitr

Suggests knitr, kableExtra, rmarkdown, tinytest, microbenchmark,
ggplot2, RcppXPtrUtils

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

Repository CRAN

Date/Publication 2023-12-09 16:20:02 UTC

R topics documented:
J . 2
translate . 5

Index 11

1

https://github.com/Konrad1991/ast2ast
https://github.com/Konrad1991/ast2ast

2 J

J Calculates the jacobian function and translatesthe resulting function
into a C++ function.

Description

An R function is translated to C++ source code and afterwards the code is compiled.
The result can be an external pointer (XPtr) or an R function.
The default value is an R function.
Further information can be found in the vignette: Detailed Documentation.

Usage

J(
f,
y,
x,
output = "R",
types_of_args = "SEXP",
return_type = "SEXP",
reference = FALSE,
verbose = FALSE,
getsource = FALSE

)

Arguments

f The function which should be translated from R to C++.

y The variables to compute the derivatives of (the dependent variable). For exam-
ple: df/dx

x The variables to which respect the variables are calcualted (the independent vari-
able). For example: df/dx

output If set to "R"" an R function wrapping the C++ code is returned.
If output is set to "XPtr"" an external pointer object pointing to the C++ code is
returned.
The default value is "R".

types_of_args define the types of the arguments passed to the function as an character vector.
This is an optional input if using "XPtr" as output.
The default value is "SEXP" as this is the only possibility for output "R".
In case one want to use an external pointer the easiest way is to pass "sexp" for
types_of_args.
Beyond that it is possible to pass "double", "ptr_vec" and "ptr_mat". For more
information see below for details and check the vignette InformationForPack-
ageAuthors. Beyond that, be aware that the passed SEXP objects are only
copied if the object size increases. Thus, R objects can be modified within

J 3

the function! See in section details for an example

return_type is a character defining the type which the function returns. The default value is
"SEXP"" as this is the only possibility for output "R".
Additionally, the possibilities "sexp" and "void" exist for the external pointer
interface.

reference If set to TRUE the arguments are passed by reference (not possible if output is
"R").

verbose If set to TRUE the output of the compilation process is printed.

getsource If set to TRUE the function is not compiled and instead the C++ source code
itself is returned.

Details

The types numeric vector and numeric matrix are supported. Notably, it is possible that the
variables change the type within the function.
Beyond that, be aware that the passed SEXP objects are only copied if the size increases. Thus,
R objects can be modified within the function!
For example in the following code the variable a contains 1, 2, and 3 before the function call
and afterwards 1, 1 and 1. In contrast for variable b the size changes and thus the object
within R is not modified. Furthermore, the variable c is not increased and only the first ele-
ment is changed.

f <- function(a, b, c) {
a[c(1, 2, 3)] <- 1
b <- vector(10)
c <- vector(1)

}
fcpp <- ast2ast::translate(f)
a <- c(1, 2, 3)
b <- c(1, 2, 3)
c <- c(1, 2, 3)
fcpp(a, b,c)
print(a)
print(b)
print(c)

It is possible to declare a variable of a scalar numeric data type. This is done by adding _db
to the end of the variable. Each time _db is found the variable is declared as a scalar numeric
data type. In this case the object cannot change its type! In the example below the variable
a_db is of type double whereas b is of type "sexp".

f <- function() {
a_db = 3.14
b = 3.14

}
fcpp <- ast2ast::translate(f, verbose = TRUE)
fcpp()

4 J

In R every object is under the hood a SEXP object. In case an R function is created as output only
SEXP elements can be passed to the function. Furthermore, these functions always return a SEXP
element. Even if nothing is returned; in this case NULL is returned!. Notably, is that only numeric
vectors (in R also scalar values are vectors) or numeric matrices can be passed to the function.
In contrast if an external pointer is created other types can be specified which are passed to the
function or returned from it. The default value is a variable of type sexp. This is the data type which
is used in the C++ code. The ptr_vec and ptr_mat interface work in a different way. If using ptr_vec
a double* pointer is expected as first element. Additionally a second argument is needed which is
of type int and which defines the size of the array. This works in the same way for ptr_mat. But
instead of the size argument two integers are needed which define the number of rows and columns.
Both arguments have to be of type int. Notably, the memory is only borrowed. Thus, the memory
is not automatically deleted! See vignette InformationForPackageAuthors for more information.
The following functions are supported:

1. assignment: = and <-

2. allocation: vector and matrix

3. information about objects: length and dim

4. Basic operations: +, -, *, /

5. Indices: ’[]’. The function ’at’ cannot be used! Beyond that only integer values are
allowed within the brackets.

6. mathematical functions: sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, sqrt, log, ^ and exp

7. concatenate objects: c

8. control flow: for, if, else if, else

9. comparison: ==, !=, >, <, >= and <=

10. printing: print

11. returning objects: return

12. catmull-rome spline: cmr

13. to get a range of numbers the ’:’ function can be used

14. is.na and is.infinite can be used to test for NA and Inf.

For more details see: dfdr::jacobian()

Value

If output is set to R an R function is returned. Thus, the C++ code can directly be called within R.
In contrast a function which returns an external pointer is generated if the output is set to XPtr.

Examples

Further examples can be found in the vignettes.
Not run:

simple example
f <- function(y) {

ydot <- vector(length = 2)

translate 5

a <- 1.1
b <- 0.4
c <- 0.1
d <- 0.4
ydot[1] <- y[1]*a - y[1]*y[2]*b
ydot[2] <- y[2]*y[1]*c - y[2]*d
return(ydot)

}
jac <- ast2ast::J(f, ydot, y, verbose = TRUE)
jac(c(10, 11))

End(Not run)

translate Translates an R function into a C++ function.

Description

An R function is translated to C++ source code and afterwards the code is compiled.
The result can be an external pointer (XPtr) or an R function.
The default value is an R function.
Further information can be found in the vignette: Detailed Documentation.

Usage

translate(
f,
output = "R",
types_of_args = "SEXP",
return_type = "SEXP",
reference = FALSE,
verbose = FALSE,
getsource = FALSE

)

Arguments

f The function which should be translated from R to C++.

output If set to "R"" an R function wrapping the C++ code is returned.
If output is set to "XPtr"" an external pointer object pointing to the C++ code is
returned.
The default value is "R".

types_of_args define the types of the arguments passed to the function as an character vector.
This is an optional input if using "XPtr" as output.
The default value is "SEXP" as this is the only possibility for output "R".
In case one want to use an external pointer the easiest way is to pass "sexp" for

6 translate

types_of_args.
Beyond that it is possible to pass "double", "ptr_vec" and "ptr_mat". For more
information see below for details and check the vignette InformationForPack-
ageAuthors. Beyond that, be aware that the passed SEXP objects are only
copied if the object size increases. Thus, R objects can be modified within
the function! See in section details for an example

return_type is a character defining the type which the function returns. The default value is
"SEXP"" as this is the only possibility for output "R".
Additionally, the possibilities "sexp" and "void" exist for the external pointer
interface.

reference If set to TRUE the arguments are passed by reference (not possible if output is
"R").

verbose If set to TRUE the output of the compilation process is printed.

getsource If set to TRUE the function is not compiled and instead the C++ source code
itself is returned.

Details

The types numeric vector and numeric matrix are supported. Notably, it is possible that the
variables change the type within the function.
Beyond that, be aware that the passed SEXP objects are only copied if the size increases. Thus,
R objects can be modified within the function!
For example in the following code the variable a contains 1, 2, and 3 before the function call
and afterwards 1, 1 and 1. In contrast for variable b the size changes and thus the object
within R is not modified. Furthermore, the variable c is not increased and only the first ele-
ment is changed.

f <- function(a, b, c) {
a[c(1, 2, 3)] <- 1
b <- vector(10)
c <- vector(1)

}
fcpp <- ast2ast::translate(f)
a <- c(1, 2, 3)
b <- c(1, 2, 3)
c <- c(1, 2, 3)
fcpp(a, b,c)
print(a)
print(b)
print(c)

It is possible to declare a variable of a scalar numeric data type. This is done by adding _db
to the end of the variable. Each time _db is found the variable is declared as a scalar numeric
data type. In this case the object cannot change its type! In the example below the variable
a_db is of type double whereas b is of type "sexp".

f <- function() {
a_db = 3.14

translate 7

b = 3.14
}
fcpp <- ast2ast::translate(f, verbose = TRUE)
fcpp()

In R every object is under the hood a SEXP object. In case an R function is created as output only
SEXP elements can be passed to the function. Furthermore, these functions always return a SEXP
element. Even if nothing is returned; in this case NULL is returned!. Notably, is that only numeric
vectors (in R also scalar values are vectors) or numeric matrices can be passed to the function.
In contrast if an external pointer is created other types can be specified which are passed to the
function or returned from it. The default value is a variable of type sexp. This is the data type which
is used in the C++ code. The ptr_vec and ptr_mat interface work in a different way. If using ptr_vec
a double* pointer is expected as first element. Additionally a second argument is needed which is
of type int and which defines the size of the array. This works in the same way for ptr_mat. But
instead of the size argument two integers are needed which define the number of rows and columns.
Both arguments have to be of type int. Notably, the memory is only borrowed. Thus, the memory
is not automatically deleted! See vignette InformationForPackageAuthors for more information.
The following functions are supported:

1. assignment: = and <-

2. allocation: vector and matrix

3. information about objects: length and dim

4. Basic operations: +, -, *, /

5. Indices: ’[]’ and at

6. mathematical functions: sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, sqrt, log, ^ and exp

7. concatenate objects: c

8. control flow: for, if, else if, else

9. comparison: ==, !=, >, <, >= and <=

10. printing: print

11. returning objects: return

12. catmull-rome spline: cmr

13. to get a range of numbers the ’:’ function can be used

14. is.na and is.infinite can be used to test for NA and Inf.

15. d-, p-, q- and r-unif, -norm, -lnorm and -gamma (for gamma argument Scale cannot be defined
and is calculated using 1/rate)

Some details about the implemented functions

• allocation of memory works: Following forms are possible:

– vector(size_of_elements)
– vector(value, size_of_elements)
– matrix(nrows, ncols)
– matrix(value, nrows, ncols)
– matrix(vector, nrows, ncols)

8 translate

• For indices squared brackets ’[]’ can be used as common in R. Beyond that the function ’at’
exists which accepts as first argument a variable and as the second argument you pass the
desired index. The caveat of using ’at’ is that only one entry can be accessed. The function
’[]’ can return more then one element.
The at-function returns a reference to the vector entry. Therefore variable[index] can
behave differently then at(variable, index). If only integers are found within ’[]’ the func-
tion at is used at the right side of an assignment operator (=). The at-function can also
be used on the left side of an assignment operator. However, in this case only at should
be used at the right side. Otherwise the results are wrong.
Here is a small example presented how to use the subset functions:

f <- function() {
a <- c(1, 2, 3)
print(at(a, 1))
print(a[1:2])

}
fcpp <- ast2ast::translate(f)
fcpp()

• For-loops can be written as common in R
– Nr.1

for(index in variable){
do whatever
}

– Nr.2
for(index in 1:length(variable){
do whatever
}

• Be aware that it is possible to assign the result of a comparison to a variable. Example see
below:
However, the vector will contain only 0 or 1 instead of FALSE or TRUE.

a = c(1, 2, 3)
b = c(1, 2, 1)
c = a != b

• The print function accepts either a scalar, vector, matrix, string, bool or nothing (empty line).
• In order to return an object use the return function (The last object is not returned automat-

ically as in R).
• In order to interpolate values the cmr function can be used. The function needs three argu-

ments.
1. the first argument is the point of the independent variable (x) for which the dependent

variable should be calculated (y). This has to be a vector of length one.
2. the second argument is a vector defining the points of the independent variable (x). This

has to be a vector of at least length four.
3. the third argument is a vector defining the points of the dependent variable (y). This has

to be a vector of at least length four.

translate 9

Be aware that the R code is translated to ETR an expression template library which tries
to mimic R.
However, it does not behave exactly like R! Please check your compiled function before
using it in a serious project. If you want to see how ast2ast differs from R in detail check
the vignette: Detailed Documentation.

Value

If output is set to R an R function is returned. Thus, the C++ code can directly be called within R.
In contrast a function which returns an external pointer is generated if the output is set to XPtr.

Examples

Further examples can be found in the vignettes.
Not run:

Hello World
==

Translating to R_fct
--
f <- function() { print("Hello World!")}
ast2ast::translate(f)
f()

Translating to external pointer
--
f <- function() { print("Hello World!")}
pointer_to_f_cpp <- ast2ast::translate(f,

output = "XPtr", return_type = "void")
Rcpp::sourceCpp(code = '
#include <Rcpp.h>
typedef void (*fp)();

// [[Rcpp::export]]
void call_fct(Rcpp::XPtr<fp> inp) {

fp f = *inp;
f(); } ')

call_fct(pointer_to_f_cpp)

Run sum example:
==

R version of run sum
--
run_sum <- function(x, n) {

sz <- length(x)

ov <- vector(mode = "numeric", length = sz)

ov[n] <- sum(x[1:n])

10 translate

for(i in (n+1):sz) {

ov[i] <- ov[i-1] + x[i] - x[i-n]
}

ov[1:(n-1)] <- NA

return(ov)
}

translated Version of R function
--
run_sum_fast <- function(x, n) {

sz <- length(x)
ov <- vector(sz)

sum_db = 0
for(i in 1:n) {

sum_db <- sum_db + at(x, i)
}
ov[n] <- sum_db

for(i in (n + 1):sz) {
ov[i] <- at(ov, i - 1) + at(x, i) - at(x, i - at(n, 1))

}

ov[1:(n - 1)] <- NA

return(ov)
}
run_sum_cpp <- ast2ast::translate(run_sum_fast, verbose = FALSE)
set.seed(42)
x <- rnorm(10000)
n <- 500
one <- run_sum(x, n)
two <- run_sum_cpp(x, n)

End(Not run)

Index

dfdr::jacobian(), 4

J, 2

translate, 5

11

	J
	translate
	Index

