Package ‘aslib’

October 12, 2022

Title Interface to the Algorithm Selection Benchmark Library

Description Provides an interface to the algorithm selection benchmark library
at <http://www.aslib.net> and the LLAMA' package
(<https://cran.r-project.org/package=11ama>) for building
algorithm selection models; see Bischl et al. (2016)
<doi:10.1016/j.artint.2016.04.003>.

Author Bernd Bischl <bernd_bischl@gmx.net>, Lars Kotthoff <larsko@uwyo.edu>,
Pascal Kerschke <kerschke@uni-muenster.de> [ctb],
Damir Pulatov <damirpolat@protonmail.com> [ctb]

Maintainer Lars Kotthoff <larsko@uwyo.edu>
URL https://github.com/coseal/aslib-r/

BugReports https://github.com/coseal/aslib-r/issues
License GPL-3

Imports batchtools, data.table, BBmisc, checkmate, corrplot, ggplot2,
llama, mlr, parallelMap, ParamHelpers, plyr, reshape2, RWeka,
stringr, yaml

Suggests testthat, rpart

ByteCompile yes

Encoding UTF-8

Version 0.1.2

RoxygenNote 7.2.1

NeedsCompilation no

Repository CRAN

Date/Publication 2022-08-25 08:22:50 UTC

R topics documented:

ASScenarioDesc
checkDuplicatedInstances
convertAlgoPerfToWideFormat

http://www.aslib.net
https://cran.r-project.org/package=llama
https://doi.org/10.1016/j.artint.2016.04.003
https://github.com/coseal/aslib-r/
https://github.com/coseal/aslib-r/issues

ASScenarioDesc

convertToLlama 4
convertToLlamaCVFolds 5
createCVSPplits L e 6
findDominatedAlgos L 6
fixFeckingPresolve 7
getAlgorithmNames L 8
getCosealASScenario 8
getCostsAndPresolvedStatus oL 9
getDefaultFeatureStepNames 10
getFeatureNames e e e e e 10
getFeatureStepNames L e 11
getlnstanceNames L. e 11
getNumberOfCVFolds 12
getNumberOfCVReps o e 12
getProvidedFeatureso 13
getSummedFeatureCosts e 13
imputeAlgoPerf L 14
parseASScenario e e e e 15
plotAlgoCorMatrix L 16
plotAlgoPerf 17
runLlamaModels 19
summarizeAlgoPerf L 20
summarizeAlgoRunstatus L. oL 21
summarizeFeatureSteps L 21
summarizeFeatureValues L 22
summarizeLlamaExps L 22
writeASScenario e 23
Index 24
ASScenarioDesc S3 class for ASScenarioDesc.
Description

Object members

Details

scenario_id [character (1)] Name of scenario.
performance_measures [character] Names of measures.

maximize [named character] Maximize measure?

s

performance_type [named character] Either “runtime” or “solution_quality”.

algorithm_cutoff_time [numeric(1)] Cutoff time for an algorithm run.

algorithm_cutoff_memory [numeric(1)] Cutoff memory for an algorithm run.

features_cutoff_time [numeric(1)] Cutoff time for an instance feature run.

checkDuplicatedInstances 3

features_cutoff_memory [numeric(1)] Cutoff memory for an instance feature run.
algorithm_features_cutoff_time [numeric(1)] Cutoff time for an algorithm feature run.
algorithm_features_cutoff_memory [numeric(1)] Cutoff memory for an algorithm feature run.

feature_steps [named list of character] Names of feature processing steps, the other feature
steps they require, and the features they provide.

metainfo_algorithms [named list of lists of character]Names of algorithms and meta-information
about them.

checkDuplicatedInstances
Checks the feature data set for duplicated instances.

Description

Potentially duplicated instances are detected by grouping all instances with equal feature vectors.

Usage

checkDuplicatedInstances(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value

list of character . List of instance id vectors where corresponding feature vectors are the same. Only
groups of at least 2 elements are returned.

convertAlgoPerfToWideFormat
Converts algo.runs object of a scenario to wide format.

Description

The first 2 columns are “instance_id” and “repetition”. The remaining ones are the measured per-
formance values. The feature columns are in the same order as “features_deterministic”’, “fea-
tures_stochastic” in the description object. codeNA means the performance value is not available,
possibly because the algorithm run was aborted. The data.frame is sorted by “instance_id”, then
“repetition”.

Usage

convertAlgoPerfToWideFormat(desc, algo.runs, measure)

4 convertTol.lama

Arguments
desc [ASScenarioDesc]
Description object of scenario.
algo.runs [data. frame]
Algo runs data.frame from scenario.
measure [character(1)]
Selected performance measure. Default is first measure in scenario.
Value
data.frame .
convertTolLlama Convert an ASScenario scenario object to a llama data object.
Description

For features, mean values are computed across repetitions. For algorithms, repetitions are not sup-
ported at the moment and will result in an error.

Usage

convertTolLlama(asscenario, measure, feature.steps)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
measure [character(1)]

Measure to use for modeling. Default is first measure in scenario.

feature.steps [character]
Which feature steps are allowed? Default are the default feature steps or all steps

in case no defaults were defined.

Details

Note that feature step dependencies are currently not supported explicitly by LLAMA. The con-
version checks that all dependencies are satisfied, but subsequent feature selection on the LLAMA
data frame may not work as expected.

Value

Result of calling input.

convertTolLLlamaCVFolds 5

convertToLlamaCVFolds Convert an ASScenario scenario object to a llama data object with
cross-validation folds.

Description

For features, mean values are computed across repetitions. For algorithms, repetitions are not sup-
ported at the moment and will result in an error.

Usage

convertToLlamaCVFolds(
asscenario,
measure,
feature.steps,
algorithm.feature.steps,

cv.splits
)
Arguments
asscenario [ASScenario]
Algorithm selection scenario.
measure [character(1)]

Measure to use for modelling. Default is first measure in scenario.

feature.steps [character]
Which instance feature steps are allowed? Default are the default instance fea-
ture steps or all steps in case no defaults were defined.

algorithm.feature.steps
[character]
Which algorithm feature steps are allowed? Default are the default algorithm
feature steps or all steps in case no defaults were defined.

cv.splits [data. frame]
Data frame defining the split of the data into cross-validation folds, as returned
by createCVSplits. Default are the splits asscenario$cv.splits

Value

Result of calling input with data partitioned into folds.

6 findDominatedAlgos

createCVSplits Create cross-validation splits for a scenario.

Description

Create a data.frame that defines cross-validation splits for a scenario,
and potentially store it in an ARFF file.

The mlr package is used to generate the splits, see makeResampleDesc and makeResampleInstance.

Usage
createCVSplits(asscenario, reps = 1L, folds = 10L, file = NULL)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
reps [integer]
CV repetitions. Default is 1.
folds [integer]
CV folds. Default is 10.
file [character]
If not missing, where to save the returned splits as an ARFF file viawrite.arff.
Default is no saving.
Value

data.frame . Splits as defined in the algorithm benchmark repository specification text. Has columns:
“instance_id”, “fold”, “rep”. Defines which instances go into the test set for each replication /
fold during CV. The training set are the remaining instances, in exactly the order as given by the

data.frame for the current repetition.

findDominatedAlgos Creates a table that shows the dominance of one algorithm over an-
other one.

Description

If NAs occur, they are imputed (before aggregation) by base + 0.3 * range. base is the cutoff
value for runtimes scenarios with cutoff or the worst performance for all others.

Stochastic replications are aggregated by the mean value.

Usage

findDominatedAlgos(asscenario, measure, reduce = FALSE, type = "logical”)

fixFeckingPresolve

Arguments

asscenario

measure

reduce

type

Value

matrix . See above.

[ASScenario]
Algorithm selection scenario.

[character(1)]

Measure for algorithm performance. Default is first measure in scenario.
[logical(1)]

Should the resulting matrix be reduced to algorithms that a are either dominated
by or dominate another algorithm? Default is FALSE.

[character(1)]

Data type of the result object.

“logical”: Logical matrix, TRUE means row algorithm dominates column algo-
rithm.

“character”: Same information but more human-readable. States how the row
relates to the column.

fixFeckingPresolve Bakes presolving stuff into a LLAMA data frame.

Description

Determines whether any of the feature groups in the LLAMA data frame presolve any of the in-
stances. If so, the performances of all algorithms in the portfolio are set to the runtime of the first
used feature group that presolves the respective instance. Furthermore, the success of all algorithms
on those instances is set to true.

Usage

fixFeckingPresolve(asscenario, 1df)

Arguments

asscenario

1df

Details

[ASScenario]
Algorithm selection scenario.

[LLAMA data frame]
LLAMA data frame to modify.

These modifications are done on the main LLAMA data and on any test splits. They are *not* done
on the training data. This function should only ever be used to evaluate the performance of an actual
selector that uses features (i.e. not VBS or single best). Using it in polite company is to be avoided.

8 getCosealASScenario

Value

The LLAMA data frame with presolving baked into the algorithm performances.

getAlgorithmNames Returns algorithm names of scenario.

Description

Returns algorithm names of scenario.

Usage

getAlgorithmNames(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value
character .

getCosealASScenario Retrieves a scenario from the Coseal Github repository and parses
into an S3 object.

Description
Uses subversion export to retrieve a specific scenario from the official Coseal Github repository.
The scenario is checked out into a temporary directory and parsed with parseASScenario.

Usage

getCosealASScenario(name)

Arguments
name [character(1)]
Name of benchmark data set.
Value

ASScenario . Description object.

getCostsAndPresolvedStatus 9

Examples

Not run:
sc = getCosealASScenario("”CSP-2010")

End(Not run)

getCostsAndPresolvedStatus
Return whether an instance was presolved and which step did it.

Description

Return whether an instance was presolved and which step did it.

Usage

getCostsAndPresolvedStatus(asscenario, feature.steps, type)

Arguments

asscenario [ASScenario]
Algorithm selection scenario.

feature.steps [character]
Which feature steps are allowed? Default is all steps.

type [character(1)]
Feature type (instance or algorithmic).

Value

list . Below, n is the number of instances. All following object are ordered by “instance_id”.

is.presolved [logical(n)]
Was instance presolved? Named by instance ids.

solve.steps [character(n)]
Which step solved it? NA if no step did it. Named by instance ids.

costs [numeric(n)]
Feature costs for using the steps. Named by instance ids. NULL if no costs are

present.

10 getFeatureNames

getDefaultFeatureStepNames
Returns the default feature step names of scenario.

Description

Returns the default feature step names of scenario.

Usage

getDefaultFeatureStepNames(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value
character .
getFeatureNames Returns feature names of scenario.
Description

Returns feature names of scenario.

Usage

getFeatureNames(asscenario, type)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
type [character(1)] Feature type (instance or algorithmic).
Value

character .

getFeatureStepNames

11

getFeatureStepNames Returns feature step names of scenario.

Description

Returns feature step names of scenario.

Usage

getFeatureStepNames(asscenario, type)

Arguments

asscenario [ASScenario]

Algorithm selection scenario.

type [character(1)] Feature type (instance or algorithmic).

Value
character .
getInstanceNames Returns instance names of scenario.

Description

Returns instance names of scenario.

Usage

getInstanceNames(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value

character .

12

getNumberOfCVReps

getNumberOfCVFolds Returns number of CV folds.

Description

Returns number of CV folds.

Usage

getNumberOfCVFolds(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value
integer(1) .
getNumberOfCVReps Returns number of CV repetitions.
Description

Returns number of CV repetitions.

Usage

getNumberOfCVReps(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value

integer(1) .

getProvidedFeatures

13

getProvidedFeatures Return features that are useable for a given set of feature steps.

Description

Return features that are useable for a given set of feature steps.

Usage

getProvidedFeatures(asscenario, steps, type)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
steps [character]
Feature steps. Default are all feature steps.
type [character(1)] Feature type (instance or algorithmic).
Value
character .

getSummedFeatureCosts Returns feature costs of scenario, summed over all instances.

Description

Returns feature costs of scenario, summed over all instances.

Usage

getSummedFeatureCosts(asscenario, feature.steps)

Arguments

asscenario [ASScenario]
Algorithm selection scenario.

feature.steps [character]
Sum costs only for these selected steps. Default are all feature steps.

Value

character .

14

imputeAlgoPerf

imputeAlgoPerf

Imputes algorithm performance for runs which have NA performance
values.

Description

The following formula is used for imputation: base +- range.scalar * range.span + N(9, sd =

jitter x range.s
With range. span

pan)
=max - min.

Returns an object like algo. runs of asscenario, but drops the runstatus and all other measures.

Usage

imputeAlgoPerf (
asscenario,
measure,
base = NULL,
range.scalar
jitter = 0,
impute.zero.v

Arguments

asscenario

measure

base

range.scalar

jitter

impute.zero.val

Value

data.frame .

= 0.3,

als = FALSE

[ASScenario]
Algorithm selection scenario.

[character(1)]
Measure to impute. Default is first measure in scenario.

[numeric(1)]
See formula. Default is NULL, which means maximum of performance values if
measure should be minimized, or minimum for maximization case.

[numeric(1)]
See formula. Default is 0.3.

[numeric(1)]

See formula. Default is 0.

s

[logical(1)]

Should values which are exactly 0 be imputed to 1e-6? This allows to take the
logarithm later on, handy for subsequent visualizations. Note that this really
only makes sense for non-negative measures! Default is FALSE.

parseASScenario 15

parseASScenario Farses the data files of an algorithm selection scenario into an S3
object.

Description

Object members

Let n be the number of (replicated) instances, m the number of unique instances, p the number of
features, s the number of feature steps and k the number of algorithms.

desc [ASScenarioDesc] Description object, containing further info.

feature.runstatus [data.frame(n, s + 2)] Runstatus of instance feature computation steps. The
first 2 columns are “instance_id” and “repetition”, the remaining are the status factors. The
step columns are in the same order as the feature steps in the description object. The factor
levels are always: ok, presolved, crash, timeout, memout, other. No entry can be NA. The
data.frame is sorted by “instance_id”, then “repetition”.

algorithm.feature.runstatus [data.frame(k, s+ 1)] Runstatus of algorithm feature computa-
tion steps. The first column is “algorithm”, the remaining are the status factors. The step
columns are in the same order as the feature steps in the description object. The factor levels
are always: ok, crash, timeout, memout, other. No entry can be NA. The data.frame is sorted
by “algorithm”.

feature.costs [data.frame(n, s +2)] Costs of instance feature computation steps. The first 2
columns are “instance_id” and “repetition”, the remaining are numeric costs of the instance
feature steps. The step columns are in the same order as the feature steps in the description
object. codeNA means the cost is not available, possibly because the feature computation
was aborted. The data.frame is sorted by “instance_id”, then “repetition”. If no cost file is
available at all, NULL is stored.

algorithm.feature.costs [data.frame(n, s + 1)] Costs of algorithm feature computation steps.
The first column is “algorithm”, the remaining are numeric costs of the algorithmic feature
steps. The step columns are in the same order as the feature steps in the description object.
codeNA means the cost is not available, possibly because the feature computation was aborted.
The data.frame is sorted by “algorithm”. If no cost file is available at all, NULL is stored.

feature.values [data.frame(n, p + 2)] Measured feature values of instances. The first 2 columns
are “instance_id” and “repetition”. The remaining ones are the measured instance features.
The feature columns are in the same order as “instance_features_deterministic”, “features_stochastic”
in the description object. codeNA means the feature is not available, possibly because the fea-
ture computation was aborted. The data.frame is sorted by “instance_id”, then “repetition”.

algorithm.feature.values [data.frame(k, p+1)] Measured feature values of algorithms The
first column is “algorithm”. The remaining ones are the measured algorithmic features. The
feature columns are in the same order as “algorithm_features_deterministic”, “algorithm_features_stochastic’
in the description object. codeNA means the feature is not available, possibly because the fea-

ture computation was aborted. The data.frame is sorted by “algorithm”.

s

algo.runs [data.frame] Runstatus and performance information of the algorithms. Simply the
parsed ARFF file. See convertAlgoPerfToWideFormat for a more convenient format.

16 plotAlgoCorMatrix

algo.runstatus [data.frame(n, k + 2)] Runstatus of algorithm runs. The first 2 columns are
“instance_id” and “repetition”, the remaining are the status factors. The step columns are in
the same order as the feature steps in the description object. The factor levels are always: ok,
presolved, crash, timeout, memout, other. No entry can be NA. The data.frame is sorted by
“instance_id”, then “repetition”.

cv.splits[data. frame(m, 3)] Definition of cross-validation splits for each replication of a repeated
CV with folds. Has columns “instance_id”, “repetition” and “fold”. The instances with fold =1
for a replication r constitute the i-th test set for the r-th CV. The training set is the “instance_id”
column with repetition = r, in the same order, when the test set is removed. The data.frame is
sorted by “repetition”, then “fold”, then “instance_id”. If no CV file is available at all, NULL is
stored, and a warning is issued, although this should not happen.

Usage

parseASScenario(path)

Arguments
path [character(1)]
Path to directory of benchmark data set.
Value

ASScenario . Description object.

See Also

writeASScenario

Examples

Not run:
sc = parseASScenario("/path/to/scenario”)

End(Not run)

plotAlgoCorMatrix Plots the correlation matrix of the algorithms.

Description

If NAs occur, they are imputed (before aggregation) by base + 0.3 x range. base is the cutoff
value for runtimes scenarios with cutoff or the worst performance for all others.

Stochastic replications are aggregated by the mean value.

plotAlgoPerf 17
Usage
plotAlgoCorMatrix(
asscenario,
measure,
order.method = "hclust”,
hclust.method = "ward.D2",
cor.method = "spearman”
)
Arguments
asscenario [ASScenario]
Algorithm selection scenario.
measure [character(1)]

order.method

hclust.method

cor.method

Value

See corrplot.

Measure to plot. Default is first measure in scenario.

[character(1)]

Method for ordering the algorithms within the plot. Possible values are “hclust”
(for hierarchical clustering order), “FPC” (first principal component order), “AOE”
(angular order of eigenvectors), “original” (original order) and “alphabet” (al-
phabetical order). See corrMatOrder. Default is “hclust”.

[character(1)]
Method for hierarchical clustering. Only useful, when order.method is set to

“hclust”, otherwise ignored. Possible values are: “ward.D2”, “single”, “com-
2 13 t2) 13 b2 13

plete”, “average”, “mcquitty”, “median” and “centroid”. See corrMatOrder.
Default is “ward.D2”.

[character(1)]
Method to be used for calculating the correlation between the algorithms. Possi-
ble values are “pearson”, “kendall” and “spearman”. See cor. Default is “spear-

Lt}

man .

plotAlgoPerf

EDA plots for performance values of algorithms across all instances.

Description

If NAs occur, they are imputed (before aggregation) by base + 0.3 range + jitter . base is is the
cutoff value for runtimes scenarios with cutoff or the worst performance for all others.

For the CDFs we only show the visible area where successful runs occurred.

Stochastic replications are aggregated by the mean value.

18

Usage

plotAlgoPerfBoxplots(

asscenario,
measure,

impute.zero.vals = FALSE,

log = FALSE,

impute.failed.runs = TRUE,
rm.censored.runs = TRUE

)

plotAlgoPerfCDFs(

asscenario,
measure,

impute.zero.vals = FALSE,

log = FALSE,

rm.censored.runs = TRUE

)

plotAlgoPerfDensities(

asscenario,
measure,

impute.failed.runs = TRUE,
impute.zero.vals = FALSE,

log = FALSE,

rm.censored.runs = TRUE

)

plotAlgoPerfScatterMatrix(

asscenario,
measure,

impute.zero.vals = FALSE,

log = FALSE,

rm.censored.runs = TRUE

Arguments

asscenario

measure

[ASScenario]
Algorithm selection scenario.

[character(1)]

Measure to plot. Default is first measure in scenario.

impute.zero.vals

log

[logical(1)]

plotAlgoPert

Should values which are exactly 0 be imputed to 1e-6? This allows to take the
logarithm later on, handy for subsequent visualizations. Note that this really

only makes sense for non-negative measures! Default is FALSE.

[logical(1)]

runLlamaModels 19

Should the performance values be logl0-transformed in the plot? Default is
FALSE.
impute.failed.runs
[logical(1)]
Should runtimes for failed runs be imputed? Default is TRUE.
rm.censored.runs
[logical(1)]
Should runtimes for censored runs (i.e. runs that have hitted the walltime) be
removed (and eventually be imputed along with the remaining NAs)? Default is

TRUE.
Value
ggplot2 plot object.
runLlamaModels Creates a registry which can be used for running several Llama models
on a cluster.
Description

It is likely that you need to install some additional R packages for this from CRAN or extra Weka
learner. The latter can be done via e.g. WPM("install-package”, "XMeans").

Feature costs are added for real prognostic models but not for baseline models.

Usage

runLlamaModels(
asscenarios,
feature.steps.list = NULL,
baselines = NULL,
learners = 1list(),
par.sets = list(),
rs.iters 100L,
n.inner.folds = 2L

Arguments

asscenarios [(list of) ASScenario]
Algorithm selection scenarios.

feature.steps.list
[list of character]
Named list of feature steps we want to use. Must be named with scenario ids.
Default is to take the default feature steps from the scenario.

20 summarizeAlgoPerf
baselines [character]
Vector of characters, defining the baseline models. Default is c("vbs", "sin-
gleBest", "singleBestByPar", "singleBestBySuccesses").
learners [list of Learner]
mlr learners to use for modeling. Default is none.
par.sets [list of ParamSet]
Param sets for learners to tune via random search. Pass an empty param set, if
you want no tuning. Must be in of same length as learners and in the same
order. Default is none.
rs.iters [integer(1)]
Number of iterations for random search hyperparameter tuning. Default is 100.
n.inner.folds [integer(1)]
Number of cross-validation folds for inner CV in hyperparameter tuning. De-
fault is 2L.
Value
batchtools registry.
summarizeAlgoPerf Creates summary data.frame for algorithm performance values across
all instances.
Description
Creates summary data.frame for algorithm performance values across all instances.
Usage
summarizeAlgoPerf (asscenario, measure)
Arguments
asscenario [ASScenario]
Algorithm selection scenario.
measure [character(1)]
Selected measure. Default is first measure in scenario.
Value

data.frame .

summarizeAlgoRunstatus

21

summarizeAlgoRunstatus

Creates summary data.frame for algorithm runstatus across all in-

stances.

Description

Creates summary data.frame for algorithm runstatus across all instances.

Usage

summarizeAlgoRunstatus(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value
data.frame .

summarizeFeatureSteps Creates a data.frame that summarizes the feature steps.

Description

Creates a data.frame that summarizes the feature steps.

Usage

summarizeFeatureSteps(asscenario)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
Value

data.frame .

22 summarizeLlamaEXxps

summarizeFeatureValues
Creates summary data.frame for feature values across all instances.

Description

Creates summary data.frame for feature values across all instances.

Usage

summarizeFeatureValues(asscenario, type)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
type [character(1)]
Feature type (instance or algorithmic).
Value
data.frame .
summarizellamaExps Creates summary data.table for runLlamaModel experiments.
Description

Creates summary data.table for runLlamaModel experiments.

Usage

summarizel lamaExps(
reg,
ids = findSubmitted(),
fun = function(job, res) {
return(list(succ = res$succ, par1@ = res$parl@, mcp =
res$mcp))
1

missing.val = list(succ = @, par1@ = Inf, mcp = Inf)

)

writeASScenario 23

Arguments
reg [Registry]
batchtools registry.
ids [data.table]
Selected job ids. Default is all submitted jobs.
fun [function()]

Function to aggregate results with. Default is a function that returns succ, par10
and mcp values. For a detailed description, see [reduceResultsList].

missing.val [list(1)]
List with defaults for missing values that are needed for aggregation. For a
detailed description, see [reduceResultsList].

Value

data.table .

writeASScenario Writes an algorithm selection scenario to a directory.

Description

Splits an algorithm selection scenario into description, feature values / runstatus / costs, algorithm
performance and cv splits and saves those data sets as single ARFF files in the given directory.

Usage

writeASScenario(asscenario, path = asscenario$desc$scenario_id)

Arguments
asscenario [ASScenario]
Algorithm selection scenario.
path [character(1)]
Path to write scenario to. Default is the name of the scenario.
See Also

parseASScenario

Index

ASScenario, 3-14, 16-23 plotAlgoPerfCDFs (plotAlgoPerf), 17
ASScenario (parseASScenario), 15 plotAlgoPerfDensities (plotAlgoPerf), 17
ASScenarioDesc, 2,4, 15 plotAlgoPerfScatterMatrix

(plotAlgoPerf), 17
checkDuplicatedInstances, 3

convertAlgoPerfToWideFormat, 3, 15 reduceResultslList, 23

convertTolLlama, 4 Registry, 23

convertToLlamaCVFolds, 5 runLlamaModels, 19

cor, 17

corrMatOrder, 17 summarizeAlgoPerf, 20

corrplot, 17 summarizeAlgoRunstatus, 21

createCVsplits, 5, 6 summarizeFeatureSteps, 21
summarizeFeatureValues, 22

findDominatedAlgos, 6 summarizel lamaExps, 22

fixFeckingPresolve, 7
write.arff, 6

getAlgorithmNames, 8 writeASScenario, 16,23
getCosealASScenario, 8
getCostsAndPresolvedStatus, 9
getDefaultFeatureStepNames, 10
getFeatureNames, 10
getFeatureStepNames, 11
getInstanceNames, 11
getNumberOfCVFolds, 12
getNumberOfCVReps, 12
getProvidedFeatures, 13
getSummedFeatureCosts, 13

imputeAlgoPerf, 14
input, 4, 5

Learner, 20

makeResampleDesc, 6
makeResampleInstance, 6

ParamSet, 20

parseASScenario, 15, 23
plotAlgoCorMatrix, 16

plotAlgoPerf, 17

plotAlgoPerfBoxplots (plotAlgoPerf), 17

24

	ASScenarioDesc
	checkDuplicatedInstances
	convertAlgoPerfToWideFormat
	convertToLlama
	convertToLlamaCVFolds
	createCVSplits
	findDominatedAlgos
	fixFeckingPresolve
	getAlgorithmNames
	getCosealASScenario
	getCostsAndPresolvedStatus
	getDefaultFeatureStepNames
	getFeatureNames
	getFeatureStepNames
	getInstanceNames
	getNumberOfCVFolds
	getNumberOfCVReps
	getProvidedFeatures
	getSummedFeatureCosts
	imputeAlgoPerf
	parseASScenario
	plotAlgoCorMatrix
	plotAlgoPerf
	runLlamaModels
	summarizeAlgoPerf
	summarizeAlgoRunstatus
	summarizeFeatureSteps
	summarizeFeatureValues
	summarizeLlamaExps
	writeASScenario
	Index

