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asht-package Applied Statistical Hypothesis Tests

Description

Test and confidence intervals for some applied statistical hypothesis tests.

Details

A collection of statistical hypothesis tests, with a focus on non-asymptotic tests. Some tests are
medianTest for exact tests and confidence intervals about a median, quantileTest which gen-
eralizes medianTest for other quantiles besides the median, signTest to run the exact sign test,
bfTest to run the Behrens-Fisher test, abcnonHtest to calculate ABC intervals and tests, wmwTest
to run the Wilcoxon-Mann-Whitney test (i.e., Wilcoxon rank sum test, or Mann-Whitney U test)
and calculate confidence intervals on the Mann-Whitney parameter. In rare cases, the function only
gives a confidence interval and and estimate and does not test a specific hypothesis (see prevSeSp
which estimates prevalence accounting for sensitivity and specificity).

Author(s)

Michael P. Fay

Maintainer: Michael P. Fay <mfay@niaid.nih.gov>
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abcnonHtest Nonparametric ABC (Approximate Bootstrap Confidence) intervals.

Description

A hypothesis testing function using the nonparametric ABC intervals.

Usage

abcnonHtest(x, tt, nullValue = NULL, conf.level = 0.95,
alternative = c("two.sided", "less", "greater"), epsilon = 0.001, minp = 0.001)

Arguments

x the data. Must be either a vector, or a matrix whose rows are the observations

tt function defining the parameter in the resampling form tt(p,x), where p is the
vector of proportions and x is the data

nullValue null value of the parameter for the two-sided hypothesis test, or boundary of null
parameter space for one-sided ones

conf.level confidence level for interval

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

epsilon optional argument specifying step size for finite difference calculations

minp minimum p-value (used in uniroot search to give a bound, toe two.sided alterna-
tives actual minimum is 2*minp)

Details

Calculates the nonparametric ABC confidence interval of DiCiccio and Efron (1992). See also
Efron and Tibshirani (1993).

The p-values are calculated by solving for confidence limit that just touches the nullValue. If it is
outside of the range (minp, 1-minp) for one-sided p-values, then it is set to minp. If it is outside the
range (2*minp, 1- 2*minp) for two-sided p-values, then it is set to 2*minp.

Value

A value of class "htest" containing the following components:

p.value p-value for test defined by alternative and nullValue

estimate estimate of the parameter, calculated using x and the tt function

conf.int confidence interval for the parameter associated with tt

null.value the nullValue (or null boundary) for the hypothesis test

alternative a character string describing the alternative hypothesis

method a character string describing the kind of test

data.name a character string giving the name of the data and the function
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Author(s)

the function is modification of abcnon in the bootstrap R package, originally written by Rob
Tibshirani, modifications by M.P. Fay

References

DiCiccio, T and Efron, B (1992). More accurate confidence intervals in exponential families.
Biometrika 79: 231-245.

Efron, B and Tibshirani, RJ (1993). An introduction to the bootstrap. Chapman and Hall: New
York.

See Also

See also abcnon.

Examples

# compute abc intervals for the mean
x <- c(2,4,12,4,6,3,5,7,6)
theta <- function(p,x) {sum(p*x)/sum(p)}
## smallest p-value is 2*minp for two-sided alternatives
abcnonHtest(x, theta, nullValue=0)
## test null at 95% confidence limit is like just barely
## rejecting at the two-sided 5% level, so p-value is 0.05
abcnonHtest(x, theta, nullValue=4.072772)
# compute abc intervals for the correlation
set.seed(1)
x <- matrix(rnorm(20),ncol=2)
theta <- function(p, x)
{

x1m <- sum(p * x[, 1])/sum(p)
x2m <- sum(p * x[, 2])/sum(p)
num <- sum(p * (x[, 1] - x1m) * (x[, 2] - x2m))
den <- sqrt(sum(p * (x[, 1] - x1m)^2) *

sum(p * (x[, 2] - x2m)^2))
return(num/den)

}
abcnonHtest(x, theta)
## compare with
## Not run:
library(bootstrap)
abcnon(x, theta, alpha=c(.025,.975))$limits[,"abc"]
## End(Not run)

ama1c1cpg Three arm phase 1 malaria vaccine trial
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Description

Growth inhibition responses from a three arm vaccine trial (Mullen, et al, 2008).

Usage

data("ama1c1cpg")

Format

A data frame with 58 observations on the following 2 variables.

vacc a factor representing the three arms of the trial. The levels are: 20ug+CPG 80ug 80ug+CPG

resp a numeric vector giving the response: day 70 sera percent in vitro growth inhibition of the
3D7 malaria parasite.

References

Mullen, GE, Ellis, RD, Miura, K, Malkin, E, Nolan, C, Han, M, Fay, MP, Saul, A, Zhu, D, Rausch,
K, Moretz, S, Shou, H, Long, CA, Miller, LH, Treanor, J. 2008. Phase 1 trail of ama1-c1/alhydrogel
plus cpg 7909: an asexual blood-stage vaccine for plasmodium falciparum malaria. PLoS ONE.
3(8):32940.

Examples

data(ama1c1cpg)
## maybe str(ama1c1cpg) ; plot(ama1c1cpg) ...

anovaOneWay One-Way ANOVA

Description

Do one-way ANOVA with estimates and confidence intervals on parameters. The parameter is
called tau.sq and is the weighted sum of the square of the difference between the true means and the
weighted average of the true means. Allows var.equal=FALSE using the Brown-Forsythe method
that generalizes Welch’s t-test to the k-sample problem.

Usage

anovaOneWay(y, g, var.equal = TRUE, nullValue = 0,
parm =c("ICC","varb"), conf.level = 0.9)
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Arguments

y numeric vector of responses

g group membership vector (may be numeric, character, or factor)

var.equal logical, are the variances for all groups be equal? TRUE gives usual anova,
FALSE gives Brown-Forsythe method.

nullValue null value of tau.square (between group variance) or tau.sq/sigma.sq (must be 0
now)

parm type of parameter, either ’ICC’ (the parameter that R square estimates for this
problem) or ’varb’ (the between group variance).

conf.level confidence level for the confidence interval. Default is 0.90 so that when the
p-value<0.05, the two-sided confidence interval will exclude 0.

Details

The typical way to get the p-value for a one-way anova is anova(lm(y~g)). This function was
written to add two new features.

First, using the method of Brown and Forsythe (1974a), the function allows for non-equal variances
between the groups. This is one generalization of Welch’s t-test to the one-way ANOVA case.
Brown and Forsythe (1974b) give simulations showing that the type I error rate is close to the
nominal (under the nomrality assumption with different variances).

Second, the function gives confidence intervals on either ’ICC’ or ’varb’. The ’varb’ (the between-
group variance) is sum((na/n)*(ua-u)^2) where na is a vector of length k giving the sample size
in each group, n is the total sample size, and ua is a vector of the k means in the groups, and u
is the overall mean. Let varw be the within-group variance, then ICC=varb/(varb+varw). ICC is
the intraclass correlation coefficient, and in this situation it is the parameter that the R square is
estimating.

Value

A object of class ’htest’.

Note

Note also that it is possible to get a 90 pct confidence interval for varb that is (0,0). This occurs
when the group means are much closer to each other than they would be expected to be by chance,
given the observed variability between observations within the groups.

Author(s)

Michael P. Fay

References

Brown and Forsythe (1974a). Biometrics 30:719-724.

Brown and Forsythe (1974b). Technometrics 16: 129-132.



bfTest 7

Examples

require(datasets)
library(asht)
ChickWeightTime20<-ChickWeight[ChickWeight$Time==20,]

anovaOneWay(1:10,c(rep(1,4),rep(2,6)))
anova(lm(weight~Diet,data=ChickWeightTime20))
t.test(ChickWeightTime20$weight[ChickWeightTime20$Diet==1],

ChickWeightTime20$weight[ChickWeightTime20$Diet==2],
var.equal=FALSE)

anovaOneWay(ChickWeightTime20$weight, ChickWeightTime20$Diet,
var.equal=FALSE)

bfTest Behrens-Fisher Test

Description

Tests for a difference in means from two normally distributed variates with possibly different vari-
ances.

Usage

bfTest(x, ...)

## Default S3 method:
bfTest(x, y,

alternative = c("two.sided", "less", "greater"),
mu = 0, conf.level = 0.95, control=bfControl(), ...)

## S3 method for class 'formula'
bfTest(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.

y an optional (non-empty) numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

mu a number indicating the true value of the difference in means

conf.level confidence level of the interval.

control a list of arguments used for determining the calculation algorithm, see bfControl

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs a factor with two levels giving the corresponding groups.
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data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

Fisher (1935) developed a fiducial solution to the two-sample difference in means problem with
normally distributed data with different variances. That has become known as the Behrens-Fisher
solution. Robinson (1976) showed through extensive simulations, that the Behrens-Fisher solution
is valid (i.e., the test gives type I error rate less than the significance level, and its confidence
intervals on the difference in means have coverage at least as large as the nominal confidence level).

The following are the same as with the usual t-test in t.test. alternative = "greater" is the
alternative that x has a larger mean than y. Missing values are silently removed. If the input data
are effectively constant an error is generated.

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter R = atan(SEMx/SEMy) used in Behrens-Fisher distribution, where SEMx=std
error of the mean of x, see pbf, but not used in calculation for this function

p.value the p-value for the test.

conf.int a confidence interval for the difference in means (mean.x-mean.y) appropriate
to the specified alternative hypothesis.

estimate the estimated means

null.value the specified hypothesized value of the mean difference

alternative a character string describing the alternative hypothesis.

method a character string describing the test.

data.name a character string giving the name(s) of the data.

References

Fisher, RA (1935). The fiducial argument in statistical inference. Annals of Eugenics. 6, 391-398.

Robinson, G (1976). Properties of Students t and of the Behrens-Fisher solution to the two means
problem. The Annals of Statistics 4, 963-971 (Corr: 1982, p. 321).

See Also

The more common solution for this problem is Welch’s t-test (the default in t.test). Welch’s t-test
does not guarantee that the type I error rate is less than the significance level, but it appears to work
well in most cases.
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Examples

## Classical example: Student's sleep data
## Traditional interface
with(sleep, bfTest(extra[group == 1], extra[group == 2]))
## Formula interface
bfTest(extra ~ group, data = sleep)
## Results are simular to Welch's t-test,
## but a little more conservative
t.test(extra~group,data=sleep)

cvTest Coefficient of Variation Test

Description

One-sample coefficient of variation tests and confidence intervals based on either normal or lognor-
mal assumptions.

Usage

cvTest(x, nullCV = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, distn = c("normal", "lognormal"),
CVmax = 10^6)

Arguments

x numeric vector

nullCV null coefficient of variation, or CV on boundary between null and alternative
hypotheses

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

conf.level confidence level of the interval

distn assumed distribution

CVmax maximum coefficient of variation used in uniroot CI searches when distn=’normal’

Value

A list of class ’htest’

statistic mean

parameter stadard deviation

estimate estimate of coefficient of variation: sd(x)/mean(x) for distn=’normal’, and sqrt(exp(var(log(x)))-
1) for distn=’lognormal’

p.value p.value associated with alternative
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conf.int confidence interval

null.value null CV

alternative alternative

method description of method

Author(s)

Michael P. Fay

References

Koopmans, Owen, Rosenblatt (1964) "Confidence intervals for the coefficient of variation for the
normal and log normal distributions" Biometrika 25-32.

Examples

cvTest(rnorm(25,mean=3,sd=.2),distn="normal")

meldCD Meld Two Confidence Distributions

Description

Melding is a very general way of combining two independent confidence interval proceedures to
create a confidence interval on a function of the two associated parameters (e.g., difference or ratio).

Usage

meldCD(H1, H2, nullparm = NULL, parmtype = c("difference", "ratio", "oddsratio"),
conf.level = 0.95, alternative = c("two.sided", "less", "greater"),
estimate = c("median", "mean"), lim = c(-Inf, Inf), parmGrid = NULL,
nmc = 1e5, ngrid = 1e4, calcmethod = "int", epsilon=1e-8, utol=1e-8)

Arguments

H1 a function representing the confidence distribution for parameter 1 (see details)

H2 a function representing the confidence distribution for parameter 2

nullparm null parameter value for the parameter defined by parmtype

parmtype parameter type, ’difference’ gives parm2-parm1, ’ratio’ gives parm2/parm1 (for
’oddsratio’ see details).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

conf.level confidence level of the interval.

estimate type of estimate derived from each confidence distribution, either ’median’ or
’mean’
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lim a vector with limits on the parameters (both parameters should have the same
limits)

parmGrid a vector of a grid of possible values of the parameter, if NULL one is produced
based on the lim argument

nmc number of Monte Carlo replications, used if calcmethod=’mc’

ngrid minimum number of elements in the parameter grid, used if parmGrid=NULL

calcmethod calculation method, either ’int’ (numeric integration) or ’mc’ (Monte Carlo)

epsilon small value for warning check, we want the minimum of the CD over the param-
eter grid to be greater than epsilon, and the maximum to be less than 1-epsilon

utol small value for passing to tol option in uniroot for confidence interval calcula-
tions

Details

For continuous responses, a confidence distribution (CD) is like a frequentist posterior distribution.
We represent the CDs as cumulative distribution functions in the parameter space. The CD gets
its name because it is created from the confidence interval process. If (L,U) is the 1-alpha confi-
dence interval for group 1, then H1(L) = alpha/2 and H1(U)=1-alpha/2. Typically, the the CDs can
be formulated as one-sided (alternative=’greater’) p-value functions, or 1-p for alternative=’less’,
where the main function argument is the boundary value on the parameter space between the null
and alternative. See binomial example below.

The median of the CD can be used as an estimate of the parameter.

We want inferences on a function of the parameters, say g(parm1, parm2), where when

• parmtype="difference" then g(parm1,parm2)=parm2-parm1

• parmtype="ratio" then g(parm1,parm2)=parm2/parm1

• parmtype="oddsratio" then g(parm1,parm2)=(parm2*(1-parm1))/(parm1*(1-parm2)).

The function g(parm1, parm2) must be increasing in parm2 and decreasing in parm1, so for example
normal CDs (or any with a range -Inf to Inf) are not allowed for parmtype=’ratio’. The lim argument
checks to see if the parmtype is allowed.

Let T1 and T2 be simulated independent random variables associated with the CDs H1 and H2.
Then to get a two-sided 1-alpha confidence interval on g(parm1,parm2) we can use quantile(g(T1,T2),probs=c(alpha/2,1-alpha/2)).
This is basically how it works when calcmethod='mc'. When calcmethod='int' then numeric
integration is used.

For discrete responses, to ensure validity of the resulting confidence intervals, each group uses
either a lower or upper CD, depending on the one-sided alternative. Thus, confidence intervals for
two-sided alternatives cannot be calculated in one call to the meldCD for discrete data. See Fay,
Proschan, and Brittain (2015) and the example.

Value

A list with class "htest" containing the following components:

p.value the p-value for the test.
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conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate vector of parameter estimates for each group and using the parmtype, uses the
median of the CDs for estimates

null.value the specified hypothesized value of the difference in parameters

alternative a character string describing the alternative hypothesis.

method a character string describing the test.

data.name a character string giving the name(s) of the data.

Warning

The function has not been tested for discrete confidence distributions. Note most confidence distri-
butions for discrete data are not discrete CDs because the parameters are continuous.

Author(s)

Michael P. Fay

References

Fay, MP, Proschan, MA, Brittain, E (2015). Combining One-sample confidence procedures for
inference in the two-sample case. Biometrics. 71: 146-156.

See Also

meldtTest and binomMeld.test for special cases.

Examples

x1<-4
n1<-11
x2<- 13
n2<-24

# we use the upper and lower CDs
# this is needed for discrete data to ensure valid intervals
H1L<-function(theta){ pbeta(theta,x1,n1-x1+1)}
# Note, this is just a p-value function that inputs the null boundary value:
binom.test(x1,n1,p=.4,alternative="greater")$p.value
H1L(.4)
H1U<-function(theta){ pbeta(theta,x1+1,n1-x1)}
# Note, but this is just a function for 1-p that inputs the null boundary value:
1-binom.test(x1,n1,p=.4,alternative="less")$p.value
H1U(.4)
H2L<-function(theta){ pbeta(theta,x2,n2-x2+1)}
H2U<-function(theta){ pbeta(theta,x2+1,n2-x2)}

meldCD(H1U,H2L, lim=c(0,1),conf.level=0.975,alternative="greater")
meldCD(H1L,H2U, lim=c(0,1),conf.level=0.975,alternative="less")
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# notice that the estimates are different than the usual
# difference in sample proportions
require(exact2x2)
binomMeld.test(x1,n1,x2,n2, conf.level=0.975, alternative="greater")
# compare to two-.sided from
binomMeld.test(x1,n1,x2,n2, conf.level=0.95, alternative="two.sided")

meldtTest Meld t Test

Description

Tests for a difference in parameters, when the parameter estimates are independent and both have t
distributions.

Usage

meldtTest(x, y, alternative = c("two.sided", "less", "greater"), delta = 0,
conf.level = 0.95, control = bfControl(), ...)

Arguments

x a list from the first group with objects: estimate (estimate of parameter), stderr
(standard error of the estimate), and df (degrees of freedom associated with t
distribution)

y a list from the second group with objects: estimate, stderr, and df

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

delta a number indicating the null hypothesis value of the difference in parameters
when alternative="two.sided". See details for one-sided hypotheses

conf.level confidence level of the interval.

control a list of arguments used for determining the calculation algorithm, see bfControl

... further arguments to be passed to or from methods (currently not used)

Details

Suppose x$estimate and y$estimate estimate the parameters xParm and yParm. Let Delta=yParm-
xParm. This function tests hypotheses of the form,

• alternative="two.sided" tests H0: Delta=delta versus H1: Delta != delta

• alternative="less" tests H0: Delta >= delta versus H1: Delta< delta

• alternative="greater" tests H0: Delta <= delta versus H1: Delta> delta



14 meldtTest

The test uses the theory of melding (Fay, Proschan and Brittain, 2015). The idea is to use confidence
distribution random variables (CD-RVs). It is easiest to understand the melding confidence intervals
by looking at the Monte Carlo implementation. Let nmc be the number of Monte Carlo replicates,
then the simulated CD-RV associated with x are Bx = x$estimate + x$stderr * rt(nmc,df=x$df).
Similarly define By. Then the 95 percent melded confidence interval for Delta=yParm-xParm is
estimated by quantile(By-Bx, probs=c(0.025,0.975)).

When the estimates are means from normal distributions, then the meldtTest reduces to the Behrens-
Fisher solution (see bfTest).

Only one of x$stderr or y$stderr may be zero.

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter R = atan(x$stderr/y$stderr) used in Behrens-Fisher distribution, see pbf

p.value the p-value for the test.

conf.int a confidence interval for the difference in means appropriate to the specified
alternative hypothesis.

estimate means and difference in means estimates

null.value the specified hypothesized value of the difference in parameters

alternative a character string describing the alternative hypothesis.

method a character string describing the test.

data.name a character string giving the name(s) of the data.

Warning

If the two estimates are not independent, this function may give invalid p-values and confidence
intervals!

Author(s)

Michael P. Fay

References

Fay, MP, Proschan, MA, Brittain, E (2015). Combining One-sample confidence procedures for
inference in the two-sample case. Biometrics. 71: 146-156.

See Also

bfTest and pbf
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Examples

## Classical example: Student's sleep data
## Compare to bfTest
xValues<- sleep$extra[sleep$group==1]
yValues<- sleep$extra[sleep$group==2]

x<-list(estimate=mean(xValues),
stderr=sd(xValues)/sqrt(length(xValues)),
df=length(xValues)-1)

y<-list(estimate=mean(yValues),
stderr=sd(yValues)/sqrt(length(yValues)),
df=length(yValues)-1)

bfTest(xValues,yValues)
# by convention the meldtTest does mean(y)-mean(x)
meldtTest(x,y)
meldtTest(y,x)

metaNorm Meta analysis of normally distributed parameters with assumed known
variance

Description

Performs either a random effects meta analysis (Paule-Mandel method or Dersimonian-Laird method)
or a fixed effects meta analysis.

Usage

metaNorm(y, s2, method = c("PM", "DL", "fixed"), df = NULL, nullparm = 0,
conf.level = 0.95, alternative = c("two.sided", "less", "greater"),
niter = 100, epsilon = 1e-10)

Arguments

y vector of parameter estimates

s2 vector of variances of parameter estimates

method either "PM" (Paule-Mandel random effects method), "DL" (Dersimonian-Laird
random effects method) or "fixed" (fixed effects method)

df degrees of freedom, NULL gives either df=k-1 (method="PM"), df=Inf (method="DL"
or "fixed")

conf.level confidence level

alternative type of alternative hypothesis

nullparm null value of the parameter for calculating the p-value

niter maximum number of iterations for method="PM"

epsilon small number for determining convergence of Paule-Mandel method.



16 metaNorm

Details

Assume you have a vector of treatment effect estimates from K studies (y), together with variance
estimates (s2). Assume that y[i] is distributed normal with mean theta[i] and variance s2[i], and
assume the theta[i] (the latent treatment effect for the ith study) is normally distributed with mean
theta and variance tau2 (tau^2). Assume independence between studies.

We are interested in estimating the weighted average of the theta[i]. If tau2 is known, then an
efficient estimator weighs each study proportional to the inverse of its variance, w[i] = 1/(tau2
+ s2[i]). We can either assume tau2=0, and we have a fixed effects model (in other words, the
treatment effect is constant across all the studies), or estimate tau2. The method for estimating tau2
either uses a simple method of moments estimator of Dersimonian and Laird (1986), or an iterative
method of moments estimator of Paule and Mandel (1982). Dersimonian and Kacker (2007) give
the details.

For the Paule-Mandel estimator, to account for the fact that we are estimating tau2, we default to
using a t-distribution with K-1 degrees of freedom (for motivation see Brittain, Fay and Follmann,
2012, Supplement, Section 3).

Value

A list with class "htest" containing the following components:

statistic a vector of [1] the estimator of tau2 and [2] the t-statistic (or Z-statistic)

parameter degrees of freedom of the t-distribution (df=Inf gives a normal distribution)

p.value the p-value for the test.

conf.int a confidence interval

estimate a vector of [1] the estimated weighted means and [2] the estimated standard error
of the weighted means

null.value the specified hypothesized value of the weighted means

alternative a character string describing the alternative hypothesis.

method a character string describing the test.

data.name a character string giving the name(s) of the data.

Author(s)

Michael P. Fay

References

Brittain, Fay, and Follmann (2012) A valid formulation of the analysis of noninferiority trials under
random effects meta-analysis. Biostatistics 13(4): 637-649.

Dersimonian, R and Kacker, R (2007) Random-effects model for meta-analysis of clinical trials: an
update. Contemporary Clinical Trials 28:105-144.

Dersimonian, R and Laird, N. (1986). Meta-analysis in clinical trials. Controled Clinical Trials.
7:177-187.

Paule, RC and Mandel, J (1982). Consensus values and weighting factors. J Res Natl Bur Stand 87:
377-385.
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See Also

meta package on CRAN

Examples

# Data from Table III of Teo et al, BMJ 303:1499-1503
# Effects of intravenous magnesium in suspected acute myocardial
# infarction: overview of randomised trials
# xt/nt = deaths/total in treatment group (magnesium)
# xc/nc = deaths/total in control group
xt<-c(1,9,2,1,10,1,1)
nt<-c(40,135,200,48,150,59,25)
xc<-c(2,23,7,1,8,9,3)
nc<-c(36,135,200,46,148,56,23)

rt<- xt/nt
rc<- xc/nc
logOR<- log(rt*(1-rc)/(rc*(1-rt)))
varLogOR<- 1/(nt*rt*(1-rt)) + 1/(nc*rc*(1-rc))

# Compare weighted mean and std err to Table 4 of Dersimonian and Kacker, 2007
metaNorm(logOR,varLogOR,method="PM")
metaNorm(logOR,varLogOR,method="DL")
metaNorm(logOR,varLogOR,method="fixed")
# Compare tau values to Table 3 of Dersimonian and Kacker, 2007
sqrt( metaNorm(logOR,varLogOR,method="PM")$statistic["tau squared"] )
sqrt( metaNorm(logOR,varLogOR,method="DL")$statistic["tau squared"] )

prevSeSp Estimate prevalence with confidence interval accounting for sensitivity
and specificity

Description

Using the method of Lang and Reiczigel (2014), estimate prevalence and get a confidence interval
adjusting for the sensitivity and specificity (including accounting for the variability of the sensitivity
and specificity estimates).

Usage

prevSeSp(AP, nP, Se, nSe, Sp, nSp, conf.level = 0.95, neg.to.zero=TRUE)

Arguments

AP apparent prevalence (proportion positive by test)

nP number tested for AP

Se estimated sensitivity (true positive rate)

https://CRAN.R-project.org/package=meta
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nSe number of positive controls used to estimate sensitivity

Sp estimated specificity (1- false positive rate)

nSp number of negative controls used to estimate specificity

conf.level confidence level

neg.to.zero logical, should negative prevalence estimates and lower confidence limits be set
to zero?

Details

When measuring the prevalence of some disease in a population, it is useful to adjust for the fact
that the test for the disease may not be perfect. We adjust the apparent prevalence (the proportion
of people tested positive) for the sensitivity (true positive rate: proportion of the population that has
the disease that tests positive) and the specificity (1-false positive rate: proportion of the population
that do not have the disease that tests negative). So if the true prevalence is θ and the true sensitivity
and specificity are Se and Sp, then the expected value of the apparent prevalence is the sum of the
expected proportion of true positive results and the expected proportion of false positive results:

AP = θSe+ (1− Sp)(1− θ).

Plugging in the estimates (and using the same notation for the estimates as the true values) and
solving for θ we get the estimate of prevalence of

θ =
AP − (1− Sp)

Se− (1− Sp)
.

Lang and Reiczigel (2014) developed an approximate confidence interval for the prevalence that
not only adjusts for the sensitivity and specificity, but also adjusts for the fact that the sensitivity
is estimated from a sample of true positive individuals (nSe) and the specificity is estimate from a
sample of true negative individuals (nSp).

If the estimated false positive rate (1-specificity) is larger than the apparent prevalence, the preva-
lence estimate will be negative. This occurs because we observe a smaller proportion of positive
results than we would expect from a population known not to have the disease. The lower confi-
dence limit can also be negative because of the variability in the specificity estimate. The default
with neg.to.zero=TRUE sets those negative estimates and lower confidence limits to zero.

The Lang-Reiczigel method uses an idea discussed in Agresti and Coull (1998) to get approximate
confidence intervals. For 95% confidence intervals, the idea is similar to adding 2 positive and
2 negative individuals to the apparent prevalence results, and adding 1 positive and 1 negative
individual to the sensitivity and specificity test results, then using asymptotic normality. Simulations
in Lang and Reiczigel (2014) show the method works well for true sensitivity and specificity each
in ranges from 70% to over 90%.

Value

A list with class "htest" containing the following components:

estimate the adjusted prevalence estimate, adjusted for sensitivity and specificity

statistic the estimated sensitivity given by Se
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parameter the estimated specificity given by Sp

conf.int a confidence interval for the prevalence.

method the character string describing the output.

data.name a character string giving the unadjusted prevalence value and the sample size
used to estimate it (nP).

Note

There is a typo in equation 4 of Lang and Reiczigel (2014), the (1 + P̂ )2 should be (1− P̂ )2.

Author(s)

Michael P. Fay

References

Agresti, A., Coull, B.A., 1998. Approximate is better than ’exact’for interval estimation of binomial
proportions. Am. Stat. 52,119-126.

Lang, Z. and Reiczigel, J., 2014. Confidence limits for prevalence of disease adjusted for estimated
sensitivity and specificity. Preventive veterinary medicine, 113(1), pp.13-22.

See Also

truePrev in package prevalence for Bayesian methods for this problem (but this requires JAGS
(Just Another Gibbs Sampler), a separate software that can be called from R if it is installed on the
user’s system.)

Examples

# Example 1 of Lang and Reiczigel, 2014
# 95% CI should be 0.349, 0.372
prevSeSp(AP=4060/11284,nP=11284,Se=178/179,nSe=179,Sp=358/359, nSp=359)

# Example 2 of Lang and Reiczigel, 2014
# 95% CI should be 0, 0.053
prevSeSp(AP=51/2971,nP=2971,Se=32/33,nSe=33,Sp=20/20, nSp=20)

# Example 3 of Lang and Reiczigel, 2014
# 95% CI should be 0 and 0.147
prevSeSp(AP=0.06,nP=11862,Se=0.80,nSe=10,Sp=1, nSp=12)

# Example 4 of Lang and Reiczigel, 2014
# 95% CI should be 0.58 to 0.87
prevSeSp(AP=259/509,nP=509,Se=84/127,nSe=127,Sp=96/109, nSp=109)
# 95% CI should be 0.037 to 0.195
prevSeSp(AP=51/509,nP=509,Se=23/41,nSe=41,Sp=187/195, nSp=195)

https://CRAN.R-project.org/package=prevalence
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quantileTest Tests and Confidence Intervals about a Quantile.

Description

The ath quantile of a distribution is the value, q, such that F(q-) <= a <= F(q), where F(x)=Pr[X
<= x]. These are exact tests and confidence intervals on independent observations that do not
any assumptions on the distribution, F. For example, the tests are exact when data are discrete or
continuous, and when the distribution is non-symmetric.

Usage

## S3 method for class 'ordered'
quantileTest(x,...)

## Default S3 method:
quantileTest(x, q = 0, prob = 0.5,

alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)

medianTest(x, m=0, ...)

Arguments

x a vector of numeric, integer or ordered factor values

q null quantile for test

m null median for test

prob quantile

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

conf.level confidence level of the interval

... further arguments to be passed to or from methods.

Details

A test on the quantile. The medianTest is just a wrapper function to call quantileTest with
prob=0.5.

Ordinal factors may be used. The calculations just use as.numeric(x) for the factors, then return the
character associated with that value. Estimates that are between two ordered factors, say "C" and
"D", return the character "C/D".

Value

A list of class ’htest’.
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Author(s)

Michael P. Fay

See Also

signTest

Examples

## For Poisson(mean=2.5) the median is 2
x<-rpois(20,2.5)
medianTest(x)
x<-ordered(c(rep("A",10),rep("B",60),rep("C",30)),levels=c("A","B","C"))
xnum<-as.numeric(x)
quantileTest(xnum,q=2,prob=0.705)
quantileTest(x,q=2,prob=0.705)

signTest Exact Sign Test with Confidence Intervals

Description

Uses link{binom.exact} or mcnemarExactDP to create sign test with confidence intervals on dif-
ferent parameters. Mid-p versions are available for some parameterizations (see details).

Usage

signTest(x, stat=c("cd","cpp","ud"), nullparm=NULL,
alternative=c("two.sided","less","greater"), conf.level=0.95,...)

Arguments

x numeric vector

stat statistic for estimates and confidence intervals, "cd"= conditional difference:
proportion positive - proportion negative, "cpp"= conditional proportion posi-
tive, and "ud"= unconditional difference: proportion positive-proportion nega-
tive (conditional proportions are out of non-zero values, unconditional are out
of all values)

nullparm null parameter value associated with stat, NULL value defaults to the exact
sign test (i.e., stat="cd" and codestat="ud" gives 0, and stat="cpp" gives
0.5).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

conf.level confidence level of the interval

... arguments passed to binom.exact or mcnemarExactDP
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Details

The sign test is a conditional test, conditioning on the total number of non-zero observations testing
that the proportion positive is different (or less, or greater) than the proportion negative. When the
responses are differences in paired binary observations this is the same as a McNemar test.

This function gives estimates and confidence intervals compatible with the exact sign test for three
different parameterizations. Let n.pos, n.neg,

and n.nonzero

be the number of positive, negative, and non-zero observations respectively out of n=length(x).
The conditional proportion positive are n.pos/n.nonzero, and the unconditional proportion posi-
tive are n.pos/n. Similarly, the conditional proportion negative are n.neg/n.nonzero and the un-
conditional proportion negative are n.neg/n. When stat='cd' the parameterization is the condi-
tional difference in proportions (pos-neg), and when stat='ud' the parameterization is the un-
condtional difference in proportions (pos-neg). The third parameterization is stat='cpp' the
conditional proportion positive. The argument nullparm gives the null value of the test when
alternative='two.sided'. When nullparm=NULL, this gives the traditional sign test, where
nullparm=0 for stat='cd' and stat='ud' and nullparm=0.5 for stat='cpp'.

Conditioning on m=n.nonzero, Y is binomial with parameters m and beta. So when stat='cpp' the
parameter we are estimating is beta, and when stat='cd' the parameter we are estimating is beta
- (1-beta) = 2*beta-1. We use binom.exact to do the p-value and confidence interval calculations.
Thus, midp versions and different two-sided methods (given by tsmethod) can be calculated.

Unconditionally, we treat M (the number non-zero) as a random variable, and assume M is bino-
mial with parameters n and theta. When stat='ud' the parameter we are estimating is delta =
theta*(2*beta-1), which is the unconditional difference: (proportion positive out of the total) - (pro-
prtion negative out of the total). We use mcnemarExactDP to do the the p-value and confidence
interval calculations. The methods associated with that function are described in Fay and Lumbard
(2020). As of now, when stat='ud' a midp version is not available, and the only two-sided method
available is a ’central’ one, meaning the error for the 95% confidence interval is bounded by 2.5%
on each side.

Value

A list of class ’htest’ (use str to see elements)

statistic vector of number of positive, negative, zero, and non-zero

estimate vector of estimates related to stat argument

p.value p.value associated with alternative

conf.int confidence interval

null.value null parameter value

alternative alternative

method description of method

data.name name of x argument
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Note

The sign test can be interpreted as a test that the median is zero assuming continuous data. If you
want to test on the median without making continuity assumptions use medianTest.

Previous versions of signTest had stat='pos-neg' and stat='prop pos', which are now re-
ferred to as stat='cd' and stat='cpp', respectively. The old names give a warning, but may be
removed in future versions.

Author(s)

Michael P. Fay

References

Fay MP, and Lumbard, K (2020). Confidence Intervals for Difference in Proportions for Matched
Pairs Compatible with Exact McNemar’s or Sign Tests. (unpublished manuscript).

Examples

x<-c(rep(-1,10),rep(0,60),rep(1,30))
signTest(x, stat='cd')
signTest(x, stat='cpp')
signTest(x, stat='ud')
# sample median is zero,
# and not surprisingly the median test
# properly gives a large p-value
medianTest(x)

simulateSS Simulate sample sizes

Description

A function that simulates sample sizes in an efficient manner. Inputs two functions: (1) a decision
function that returns 1=reject, or 0=fail to reject, and (2) a data generating function.

Usage

simulateSS(decFunc, dataGenFunc, nstart = 100, numBatches = 100, repsPerBatch = 100,
power = 0.3, alpha = 0.025, nrepeatSwitch = 3, printSteps = TRUE)

Arguments

decFunc decision function, inputs data from dataGenFunc and outputs 1 (reject) or 0 (fail
to reject).

dataGenFunc data generating function, inputs a sample size and outputs simulated data object.
Class of the data must match input for decFunc.

nstart starting sample size value



24 simulateSS

numBatches number of batches (must be at least 5), default=100

repsPerBatch number of replications per batch (must be at least 10), default=100

power power desired

alpha one-sided alpha level, used for estimating power from batches by normal ap-
proximation

nrepeatSwitch one of 2,3,4 or 5. default=3. If nrepeatSwitch batch estimates of sample size are
the same in a row, then switch to an up-and-down method (adding or subtracting
1 to sample size).

printSteps logical, print intermediate steps of algorithm?

Details

This is an algorithm proposed in Fay and Brittain (2022, Chapter 20). Here are the details of the
algorithm. For step 1, we pick a starting sample size, say $N_1$, and the number of replications
within a batch, $m$, and the total number of batches, $b_tot$. We simulate $m$ data sets with
sample size $N_1$, and get the proportion of rejections, say $P_1$. Then we use a normal approx-
imation to estimate the target sample size, say $N_norm$. In step 2, we replicate $m$ data sets
with sample size $N_2 = N_norm$ to get the associated proportion of rejections, say $P_2$. We
repeat 2 more batches with $N_3=N_norm/2$ and $N_4=2 N_norm$, to get proportions $P_3$,
and $P_4$. Then in step 3, we use isotonic regression (which forces monotonicity, power to be
non-decreasing with sample size) on the 4 observed pairs ($(N_1,P_1),. . . ,(N_4,P_4)$), and linear
interpolation to get our best estimate of the sample size at the target power, $N_target$. We use
that estimate of $N_target$ for our sample size for the next batch of simulations. This idea is of
using the best estimate of the target for the next iteration is studied in Wu (1985, see Section 3).
Step 4 is iterative, for the $i$th batch we repeat the isotonic regression, except now with $N_i$ es-
timated from the first $(i-1)$ observation pairs. We repeat step 4 until either the number of batches
is $b_tot$, or the current sample size estimate is the same as the last nrepeatSwitch-1 estimates, in
which case we switch to an up-and-down-like method. For each iteration of the up-and-down-like
method, if the current proportion of rejections from the last batch of $m$ replicates is greater than
the target power, then subtract 1 from the current sample size estimate, otherwise add 1. Continue
with that up-and-down-like method until we reach the number of batches equal to $b_tot$. The
up-and-down-like method was added because sometimes the algorithm would get stuck in too large
of a sample size estimate.

Value

A list with elements:

N vector of estimated sample sizes at the end of each batch

P vector of power estimates at the end of each batch

Nstar estimate of sample size, not necessarily an integer

Nestimate integer estimate of sample size equal to ceiling(Nstar)

Author(s)

Michael P. Fay
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References

Fay, M.P. and Brittain, E.H. (2022). Statistical Hypothesis Testing in Context. Cambridge Univer-
sity Press. New York.

Wu, CJ (1985). Efficient sequential designs with binary data. Journal of the American Statistical
Association. 19: 1085-1098.

Examples

# simple example to show method
# simulate 2-sample t-test power
# for this simple case, better to just use power.t.test
power.t.test(delta=.5,sig.level=0.025,power=.8,

type="two.sample",alternative="one.sided")
decFunc<-function(d){

ifelse(t.test(d$y1,d$y2,alternative="less")$p.value<=0.025,1,0)
}
dataGenFunc<-function(n){

list(y1=rnorm(n,0),y2=rnorm(n,.5))
}
# for example use on 20 batches with 20 per batch
set.seed(1)
simulateSS(decFunc,dataGenFunc,nstart=100,numBatches=100,repsPerBatch=100,

power=0.80, alpha=0.025,printSteps=FALSE)

tukeyWelsch Tukey-Welsch Pairwise Tests

Description

Calculate pairwise comparisons between groups levels using step down correction for multiple test-
ing.

Usage

tukeyWelsch(y, g, method = c("aov", "kw", "sr", "user"),
pvalfunc = NULL, padjfunc = padjTW, maxnTest=10^4,nTestMessage=FALSE, ...)

Arguments

y response vector

g grouping vector or factor

method type of method for tests, one of ’aov’ (ANOVA which is a t-test for the pairwise
comparisons) ’kw’ (Kruskal-Wallis test, which is a Wilcoxon-Mann-Whitney
test for the pairwise comparisons), ’sr’ (studentized range test), or ’user’ (user
supplied function, see details).

pvalfunc function to test for effects and return a p-value. Used if method=’user’. See
details.
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padjfunc function that takes the unadjusted p-value vector from a stage, and returns the
adjusted p-value vector for that stage (see details)

maxnTest maximum number of tests, if the number of tests is larger than maxnTest then
gives an error

nTestMessage logical, print a message at the start of calculations telling how many tests will
be calculated

... additional arguments to pass to XXX (if method=’aov’), YYY (if method=’kw’)
or pvalfunc (if method=’user’)

Details

This function does a k-sample test (either one-way ANOVA [method=’aov’] or Kruskal-Wallis test
[method=’kw’]) on the responses when the g vector has k levels. Then it does all the pairwise com-
parisons (either t.tests [method=’aov’] or Wilcoxon-Mann-Whitney tests [method=’kw’]) giving
multiple comparison adjusted p-values. The adjustment uses a step-down method, that is differ-
ent from (and potentially more powerful than) the single step procedures in pairwise.t.test and
pairwise.wilcox.test. The method is described in Einot and Gabriel (1975) [for the anova case]
and Campbell and Skillings (1985) for the Kruskal-Wallis case. See also Hochberg and Tamhane
(1987, p. 111 for ’aov’ case, and p. 247-248 for the ’kw’ case).

Here are the details. First, the k-sample test is done, where the type of test is determined by
the method. The function repeats that type of test k-1 times, leaving out a different level of the
group each time. These are k-1 tests, each having k-1 levels. This process repeats itself (i.e., do
choose(k,k-2) tests each having k-2 levels, then do choose(k,k-3) tests each having k-3 levels, etc)
until we get to the choose(k,2) pairwise tests. Reject at level aj = 1- (1-alpha)^(j/k), for all tests
where there are j groups, for j=2,..,k-2 and at level aj=alpha for j=k-1 and k. These adjusted sig-
nificance levels are known as the Tukey-Welch (see Hochberg and Tamhane, p. 111) or Ryan (see
Einot and Gabriel, 1975) levels. Then we only reject each pairwise comparison, if we reject at all
null hypotheses that contain that pair.

We convert this procedure into adjusted p-values, by finding the lowest alpha level such that each
pairwise comparison would be rejected, that is its adjusted p-value. The padjfunc is a function
that takes the unadjusted p-values and gives the adjustment for each level by itself. For example,
the default uses the Tukey-Welch adjusted significance levels, and the function solves for alpha as a
function of aj (i.e., inputs unadjP and returns either 1-(1-unadjP^(k/j) for j=2,3,...k-2 or unadjP for
j=k-1 or k)). Then taking the individual level adjusted p-values, we define the step-down adjusted
p-value for each pairwise comparison as the maximum of all the individual level adjusted p-values
for each hypothesis that contains the pair as part of its groups tested.

When k=3, this method gives an adjusted p-value for each pairwise comparison that is the maximum
of the k-sample test p-value and the unadjusted p-value for the two-sample test using that pair of
levels.

When method=’user’ the function uses the pvalfunc function to test for p-values. The function
must input y and g and output the p-value for the j-sample test, where j is the number of levels
present in g. So the function must be defined when j=2,3,...,k.

Value

An object of class ’tukeyWelsch’, a list with elements:
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fullResults a list of all the intermediate p-values (unadjusted and adjusted). Not printed by
default

method description of method

data.name description of input data

ksample.pvalue p-value for k-sample test

pairwise.pvalues

vector of adjusted p-values for pairwise comparisons

Author(s)

Michael P. Fay

References

Campbell and Skillings (1985) JASA 998-1003.

Einot and Gabriel (1975) JASA 574-583.

Hochberg, Y and Tamhane, AC (1987) Multiple Comparison Procedures. Wiley: New York.

See Also

pairwise.wilcox.test and pairwise.t.test

Examples

##
createData<-function(n,props,shifts,ry=rnorm){

k<-length(props)
if (round(sum(props),8)!=1) stop("sum of props must be 1")
props<- props/sum(props)
if (length(shifts)!=k) stop("length of shifts must equal length of props")
g<-rep(1:k,as.vector(rmultinom(1,n,props)))
y<-ry(n)
for (i in 1:k){
y[g==i]<-y[g==i]+shifts[i]
}

list(y=y,g=g)
}
set.seed(1)
d<-createData(100,c(.2,.3,.2,.3),c(0,0,0,1))
tukeyWelsch(d$y,factor(d$g),method="kw")
tukeyWelsch(d$y,factor(d$g),method="aov")
tukeyWelsch(d$y,factor(d$g),method="sr")
TukeyHSD(aov(d$y~factor(d$g)))[[1]][,"p adj"]
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var1Test One Sample Test of Normal Variance

Description

Give tests and confidence intervals on the variance of a sample from a normal distribution.

Usage

var1Test(x, nullVar = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

Arguments

x numeric vector

nullVar null variance, or variance on the boundary between the null and alternative hy-
potheses

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

conf.level confidence level of the interval

Details

Tests derived from normality assumption.

Value

A list of class ’htest’ (use str to see elements)

Author(s)

Michael P. Fay

References

Dudewicz, EJ and Mishra, SN (1988) Modern Mathematical Statistics. Wiley. (Section 9.6).

Examples

var1Test(rnorm(25))
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wmwTest Wilcoxon-Mann-Whitney test with Confidence Interval on Mann-
Whitney Parameter

Description

The wmwTest function calculates the Wilcoxon-Mann-Whitney test (normal approximation, exact
complete enumeration, and exact Mante Carlo implementation) together with confidence intervals
on the Mann-Whitney parameter, Pr[ X<Y] + 0.5 Pr[X=Y].

Usage

wmwTest(x, ...)

## Default S3 method:
wmwTest(x, y, alternative = c("two.sided", "less", "greater"),

phiNull = 0.5, exact = NULL, correct = TRUE, conf.int = TRUE, conf.level = 0.95,
latentContinuous = FALSE, method = NULL, methodRule = methodRuleWMW,
tsmethod = c("central", "abs"), control = wmwControl(),...)

## S3 method for class 'formula'
wmwTest(formula, data, subset, na.action, ...)

## S3 method for class 'matrix'
wmwTest(x,...)

Arguments

x a (non-empty) numeric vector of data values from group 1, or a contingency
table matrix with 2 rows with the top row representing group 1 and the bottom
row group 2

y an optional (non-empty) numeric vector of data values from group 2

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

phiNull null hypothesis value for the Mann-Whitney parameter, Pr[X<Y]+0.5*Pr[X=Y].
Defaults to 0.5.

exact logical, should exact test be calculated? (see method)

correct a logical indicating whether to apply continuity correction in the normal approx-
imation for the p-value and confidence interval (when method=’asymptotic’)

conf.int logical, should confidence intervals be calculated?

conf.level confidence level of the interval.
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latentContinuous

logical, should estimates and confidence intervals be presented as latent contin-
uous parameters? (see details)

method character defining method, one of ’asymptotic’, ’exact.ce’ (exact by complete
enumeration), ’exact.mc’ (exact by Monte Carlo approximation). NULL value
defaults to result of methodRule

methodRule function that inputs x,y, and exact and outputs a method, see methodRuleWMW

tsmethod two-sided method, either ’central’ (double the one-sided p-values) or ’abs’ (test
statistic uses absolute value of difference in phi estimate and phiNull)

control a list of arguments for control of algorithms and output, see wmwControl

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The function wmwTest evaluates the Wilcoxon-Mann-Whitney test (also called the Mann-Whitney
U test or the Wilcoxon rank sum test). The WMW test is a permutation two-sample rank test,
and the test may be evaluated under many different sets of assumptions (Fay and Proschan, 2010).
The least restrictive set of assumptions tests the null hypothesis that the two distributions of the
two samples are equal versus the alternative that they are different. Unfortunately, with only those
assumptions, we cannot get confidence intervals on the Mann-Whitney parameter, phi= Pr[ X<Y]
+ 0.5 Pr[X=Y]. In order to get confidence intervals on phi, we need additional assumptions, and
for this function we use the proportional odds assumption. This assumption can be interpreted as
saying that there exists some unknown monotonic transformation of the responses that leads to a
location shift in a logistic distribution. This can work for discrete data (i.e., with ties allowed) if
we interpret discrete responses as a grouping of some underlying latent continuous response. The
proportional odds assumption is less restrictive that the assumption used in wilcox.test, which
assumes a location shift on the unknown continuous distribution of the untransformed data.

In summary, the two-sided p-value can be interpreted as testing the null that the two distributions are
equal, and the confidence intervals on the Mann-Whitney parameter are intrepreted under the pro-
portional odds assumption. In general the confidence intervals are compatible with the associated
p-values, for details see Fay and Malinovsky (2018).

There is a choice of three methods. When method='asymptotic', the test is implemented using
a normal approximation, with (correct=TRUE) or without (correct=FALSE) a continuity correc-
tion. The resulting p-values should match wilcox.test (when paired=FALSE and exact=FALSE).
When method='exact.ce', the test is implemented using complete enumeration of all permuta-
tions, and hence is only tractible for very small sample sizes (less than 10 in each group). When
method='exact.mc', the test is implemented using Monte Carlo with B=10^4 replications (change
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B with control=controlWMW(nMC=B)). As B gets larger the p-value approaches the exact one. (See
’note’ section, sometimes the method='exact.mc' will not work.)

The tsmethod='central' gives two-sided p-value that is equal to min(1,min(2*pless,2*pgreater)).
Alternatively, tsmethod='abs' gives the two-sided method, which is based on the test statistic |phi
- phiNull|. Under the proportional odds assumption, tsmethod='central' allows us to interpret
p.value/2 as one-sided p-values (this is not allowed using tsmethod='abs'). With continuous data,
the p-values will be the same, but with ties they can be different.

From the two groups x (or top row of contringency table, or first factor in rhs of formula) and y (or
bottom row of contingency table, or second factor in rhs of formula) the Mann-Whitney parameter
represents Pr[X<Y]+0.5Pr[X=Y]. It is also the area under the curve of an ROC curve (see Hanley
and McNeil, 1982). The confidence interval when method='asymptotic' generalizes the Method
5 of Newcombe (2006), which was a score-type modification of the interval of Hanley and McNeil
(1982). The generalization is that the confidence interval adjusts for ties and allows a continuity
correction (see examples below).

The methodRule function allows automatic choice of the method of calculation based on the data
and the exact argument.

When the data are discrete, we can treat the data as if they are a grouping of some underlying contin-
uous responses. Using the proportional odds assumption, we can then translate the Mann-Whitney
parameter on the observed discrete data into the Mann-Whitney parameter on the latent continuous
data (when latentContinuous=TRUE and using the default control=controlWMW(latentOutput='mw')).
You can also translate the results into the proportional odds parameter on the latent continuous re-
sponses (when latentContinuous=TRUE and using control=controlWMW(latentOutput='po')).
Translation is done with latentTransform.

Value

A list with class "htest" containing the following components:

statistic U statistic estimate of the Mann-Whitney parameter.

parameter tie factor

p.value the p-value for the test.

conf.int a confidence interval for the Mann-Whitney parameter appropriate to the speci-
fied alternative hypothesis.

estimate the estimated difference in means

null.value the specified hypothesized value of the mean difference

alternative a character string describing the alternative hypothesis.

method a character string describing the test.

data.name a character string giving the name(s) of the data.

Warning

The algorithm for calculating the confidence interval when tsmethod='abs' is not guaranteed
to give the correct value. It is possible to skip over a value. For more accurate results increase
control=wmwControl(rcheckgrid) and control=wmwControl(ncheckgrid)
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Note

The method='exact.mc' can sometimes fail. The issue is that for some Monte Carlo simulations
the one-sided p-value function is not monotonic, even in for data sets where the one-sided p-value
would be monotonic if we could do complete enumeration. In this case, the confidence limit will be
set to NA and a warning will suggest trying method='asymptotic' or method='exact.ce' if feasi-
ble. Here is an example where that occurs: set.seed(1); g<- c(rep(0,6),1,rep(0,4),1,rep(0,3),1,1,0,1,1,0,rep(1,5));
y<-1:26; wmwTest(y~g,exact=TRUE).

References

Fay, MP and Malinovsky, Y (2018). Confidence Intervals of the Mann-Whitney Parameter that are
Compatible with the Wilcoxon-Mann-Whitney Test. Statistics in Medicine: DOI: 10.1002/sim.7890.

Fay, MP and Proschan MA (2010). Wilcoxon-Mann-Whitney of t-test? On assumptions for hy-
pothesis tests and multiple interpretations of decision rules. Statistics Surveys 4:1-39.

Hanley, JA, and McNeil, BJ (1982). The Meaning and Use of the Area under a Receiver Operating
Characteristic (ROC) Curve. Radiology 143: 29-36.

Newcombe, Robert G. (2006). Confidence intervals for an effect size measure based on the Mann-
Whitney statistic. Part 2: asymptotic methods and evaluation. Statistics in medicine 25(4): 559-573.

See Also

See wilcox.test for either exact p-value or the same asymptotic p-value and confidence interval
on location shift under the shift assumption.

See wilcox_test for exact p-value and exact confidence interval on location shift.

Examples

# data from Table 1 of Hanley and McNeil (also given in Table 1 of Newcombe, 2006)
HMdata<-matrix(c(33,3,6,2,6,2,11,11,2,33),nrow=2,dimnames=

list(c("Normal","Abnormal"),
c("Definitely Normal",
"Probably Normal",
"Questionable",
"Probably Abnormal",
"Definitely Abnormal")))

HMdata
# to match Newcombe (2006, Table 1, Method 5) exactly
# use correct=FALSE and RemoveTeAdjustment=TRUE
wmwTest(HMdata, correct=FALSE, RemoveTieAdjustment=TRUE)
# generally smaller intervals with closer to nominal coverage with
# tie adjustment and continuity correction
wmwTest(HMdata)
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WprevSeSp Weighted prevalence inferences adjusted for sensitivity and specificity

Description

Prevalence inferences from weighted survey data adjusted for sensitivity and specificity estimates
as well as their variability.

Usage

WprevSeSp(
x,
n,
w,
cn,
mn,
cp,
mp,
method = c("binomial", "poisson"),
conf.level = 0.95,
nmc = 1e+05,
seed = 49201

)

Arguments

x integer vector of apparent positive tests for each group

n integer vector of number of tests for each group

w numeric vector of weights for each group (must sum to 1)

cn number of positive tests for negative controls

mn number of negative controls tested

cp number of positive tests for positive controls

mp number of positive controls tested

method either "binomial" or "poisson"

conf.level confidence level of the interval

nmc number of Monte Carlo replications

seed seed for random number generation

Details

This function is for estimating prevalence from a population using a complex survey with an imper-
fect assay. The survey data are partitioned into K strata (or groups), and the ith stratum is weighted
by w[i] and we observe a proportion x[i]/n[i] that test positive on the assay. The weights are required
to sum to 1, so that the apparent prevalence (i.e., the prevalence assuming the assay is perfect) is a
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weighted average of the proportions of the strata (i.e., sum(w*(x/n))). The assay’s sensitivity and
specificity is measured by two populations, a positive control population gives a sensitivity estimate
(cp/mp), and a negative control population gives a specificity estimate (1 - cn/mn). The adjusted
prevalence estimate (adjusted for sensitivity and specificity) is the standard one described by Rogan
and Gladen (1978). The WprevSeSP gives confidence intervals on the prevalence that account for
the sampling variability in the survey (by a multinomial approximation), as well as for the varibility
in the sensitivity and specificity estimates, but it does not account for the variability of the weights.

There are two methods, the ’binomial’ method is based on the method of Korn and Graubard (1998)
which is developed using a modification of exact binomial intervals, and the ’poisson’ method which
is based on the gamma method of Fay and Feuer (1997) which is developed assuming a weighted
sum of Poisson variates. Simulations show that the ’poisson’ method had greater than nominal
coverage in all simulated scenarios at the cost of conservativeness, while the ’binomial’ method
was less conservative but had less than nominal coverage in some scenarios.

For details see Bayer, Fay and Graubard (2023).

Value

A list with class "htest" containing the following components:

estimate the adjusted prevalence estimate, adjusted for sensitivity and specificity

statistic the estimated sensitivity given by cp / mp

parameter the estimated specificity given by 1 - cn/ mn

conf.int a confidence interval for the prevalence

data.name a character string giving the unadjusted prevalence value

method the character string describing the output

References

Bayer, D.M., Fay, M.P., and Graubard, B.I. (2023). ”Confidence intervals for prevalence estimates
from complex surveys with imperfect assays” arXiv:2205.13494.

Fay MP, Feuer EJ. Confidence intervals for directly standardized rates: a method based on the
gamma distribution. Statistics in Medicine 1997; 16(7): 791-801.

Korn EL, Graubard BI. Confidence intervals for proportions with small expected number of positive
counts estimated from survey data. Survey Methodology 1998; 24: 193-201.

Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol
1978; 107(1): 71-76.

Examples

example_data_WprevSeSp <- list(
x = c(

53, 47, 63, 50, 54, 54, 57, 51, 66, 51, 52, 48, 37, 44, 59,
55, 50, 58, 52, 54, 41, 45, 49, 54, 37, 53, 57, 58, 55, 55, 56,
42, 58, 47, 49, 63, 54, 54, 54, 41, 43, 56, 44, 49, 47, 45, 62,
53, 54, 47

),
n = c(
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200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200

),
w = c(

0.0205962892844504, 0.0204062236737538, 0.0203843096373626,
0.0202785701233134, 0.0202617051778543, 0.0202138087214499, 0.0201972974884707,
0.0201818190015587, 0.0201631543739836, 0.0201560795402158, 0.0201555234250465,
0.0201461978246263, 0.0201342022821394, 0.0201264004067009, 0.0201167314250592,
0.0201015081093692, 0.0201003484427457, 0.0201002680000886, 0.0200817537259523,
0.0200573433887284, 0.0200443907258367, 0.0200358187073312, 0.0200349749335002,
0.0200264994605187, 0.0200112846914561, 0.020006219121804, 0.0199975642569458,
0.0199649774153205, 0.0199614929059539, 0.0199426355876479, 0.0199334287088002,
0.0199298633246975, 0.0199150015155486, 0.0199063452368827, 0.0198920051366782,
0.0198877425787182, 0.0198679831412633, 0.0198500844815989, 0.0198381388412286,
0.0198348595904904, 0.0198348180141822, 0.0198174510243331, 0.0197922036364436,
0.0197821574067888, 0.0197204417557631, 0.0197004976818864, 0.019682896458092,
0.019649677766428, 0.0196158425485035, 0.019563169292488

),
cn = 77,
cp = 58,
mn = 300,
mp = 60

)

WprevSeSp(
method = "binomial",
x = example_data_WprevSeSp$x,
n = example_data_WprevSeSp$n,
w = example_data_WprevSeSp$w,
cn = example_data_WprevSeSp$cn,
mn = example_data_WprevSeSp$mn,
cp = example_data_WprevSeSp$cp,
mp = example_data_WprevSeSp$mp

)

WprevSeSp(
method = "poisson",
x = example_data_WprevSeSp$x,
n = example_data_WprevSeSp$n,
w = example_data_WprevSeSp$w,
cn = example_data_WprevSeSp$cn,
mn = example_data_WprevSeSp$mn,
cp = example_data_WprevSeSp$cp,
mp = example_data_WprevSeSp$mp

)

wspoissonTest Test and Confidence Intervals on Weighted Sum of Poissons
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Description

The test is not as important as the confidence intervals, which are often used for directly standard-
ized rates. The default uses the gamma method by fay and Feuer (1997), which by all simulations
appears to retain nominal coverage for any set of parameters or weights. There is a mid-p-like
version that is less conservative.

Usage

wspoissonTest(x, w, nullValue = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, midp = FALSE, nmc = 0,
wmtype = c("max", "mean", "minmaxavg", "tcz"),
mult = 1, unirootTolFactor=10^(-6))

Arguments

x a vector of counts (each assumed Poisson with a different parameter)

w a vector of weights.

nullValue a null hypothesis value of the weighted sum of the Poisson means, if NULL no
test is done.

alternative type of alternative hypothesis

conf.level confidence level

midp logical, should the mid-p confidence distribution method be used

nmc Caculation method when midp=TRUE. If nmc=0 (default) does calculations that
are very accurate using uniroot. If nmc>0 does Monte Carlo simulations. The
Monte Carlo simulations are not needed for general use.

wmtype type of modification for the gamma confidence interval, ’max’ is the original
gamma method that adds max(w) to sum(x*w) for the upper interval, ’mean’
adds mean(w), ’minmaxavg’ adds mean(c(min(w),max(w)), ’tcz’ does a mod-
ification of Tiwari, Clegg, and Zou (2006).

mult a factor to multiply the estimate and confidence intervals by, to give rates per
mult

unirootTolFactor

tol factor used in uniroot for calculating when midp=TRUE and nmc=0. Value
multiplies by a value close to the quantile of interest in confidence interval, so
that if the standardized rates are very small (e.g., 0.00001 before using mult)
then the uniroot tol will be unirootTolFactor times that.

Details

Fay and Feuer (1997) developed the gamma method (wmtype=’max’) for calculating confidence
intervals on directly standardized rates. The assumptions is that the k by 1 vector of counts, x, are
Poisson with an unknown k by 1 vector of means, theta. There are standardizing weights, w. We
are interested in sum(theta*w).

For age-standardization, x is the vector of counts of the event for each of the k age groups. The
weights are n.standard/(n.x *sum(n.standard), where n.x[i] is the person-years associated
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x[i] and n.standard[i] is person-years fro the standard population associated with the ith age
group.

Since the gamma method is conservative, Tiwari, Clegg, and Zou (2006) proposed a modification
(wmtype=’tcz’) and also explored (wmtype=’mean’).

Ng, Filardo, and Zheng (2008) studied these and other methods (for example, wmtype=’minmaxavg’)
through extensive simulations. They showed that the gamma method (wmtype=’max’) was the only
method that maintained at least nominal coverage in all the simulations. But that method is conser-
vative.

Fay and Kim (2017) proposed the mid-p gamma method. It appears less conservative, while appear-
ing to retain the nominal coverage in almost all simulations. It is calculated by numeric calculations
using uniroot.

Value

a list of class htest, containing:

statistic k=length(x)

parameter a vector with sample variance of the calibrated weights (so sum(w)=k), and mult
(only if mult !=1)

p.value p-value, set to NA if null.value=NULL

conf.int confidence interval on true directly standardized rate, sum(theta*w)

estimate directly standardized rate, sum(x*w)

null.value null hypothesis value for true DSR

alternative alternative hypothesis

method description of method

data.name desciption of data

Author(s)

Michael P. Fay

References

Fay and Feuer (1997). "Confidence intervals for directly standardized rates: a method based on the
gamma distribution." Statistics in Medicine. 16: 791-801.

Fay and Kim (2017). "Confidence intervals for directly standardized rates using mid-p gamma
intervals." Biometrical Journal. 59(2): 377-387.

Ng, Filardo, and Zheng (2008). "Confidenc interval estimating procedures for standardized inci-
dence rates." Computational Statistics and Data Analysis 52: 3501-3516.

Tiwari, Clegg, and Zou (2006). "Efficient interval estimation for age-adjusted cancer rates." Statis-
tical Methods in Medical Research. 15: 547-569.
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Examples

## birth data on Down's syndrome from Michigan, 1950-1964
## see Table II of Fay and Feuer (1997)
##xfive= counts for mothers who have had 5 or more children
## nfive and ntotal are number of live births
xfive<-c(0,8,63,112,262,295)
nfive<-c(327,30666,123419,149919,104088,34392)
ntotal<-c(319933,931318,786511,488235,237863,61313)
## use mult =10^5 to give rates per 100,000
## gamma method of Fay and Feuer (1997) is default
wspoissonTest(xfive,ntotal/(nfive*sum(ntotal)),mult=10^5)

wsrTest Exact Wilcoxon Signed Rank Test

Description

Calculates the exact Wilcoxon signed rank test (using Pratt’s method if there are zero values). Gives
exact matching confidence intervals based on repeated calls to wilcoxsign_test, and gives asso-
ciated Hodges-Lehmann estimator of center of the symmetric distribution of the difference.

Usage

wsrTest(x, y = NULL, conf.int = TRUE, conf.level = 0.95,
mu = 0, alternative = c("two.sided", "less", "greater"),
digits = NULL, tieDigits=8)

Arguments

x numeric vector, either the difference (if y=NULL) or the first of the paired re-
sponses (so difference is x-y).

y second of paired differences. If NULL assumes x is the vector of paired differ-
ences.

conf.int logica, calculate confidence interval on median of differences

conf.level confidence level

mu null median difference

alternative alternative hypothesis

digits number of digits for accuracy of confidence intervals, results are accurate to
round(ci,cidigits). If digits=NULL picks about 4 digits if the range of the differ-
ences is 0 to 1, with similar accuracy as the range changes (see details).

tieDigits number of digits to round x and y, values closer than that number of digits are
treated as tied. This is to avoid rankings based on computer error.
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Details

The Wilcoxon signed rank test tests the null hypothesis of whether a set of values (x values, if
y=NULL) or differences (x-y, if y!=NULL) are symmetric about mu.

This function calculates the exact Wilcoxon signed rank test using the Pratt method if there are
zeros. In other words, rank the differences equal to zero together with the absolute value of the
differences, but then permute the signs of only the non-zero ranks. The p-values are calculated
using wilcoxsign_test, this function is just a wrapper to get confidence intervals.

When conf.int=TRUE, we get an estimator of the center of the symmetric distribution of the dif-
ferences based on the shift value where the one-sided p-values are equal (or the middle of the range
if there are many values where they are equal). This type of estimator is called a Hodges-Lehmann
estimator (see for example, Hodges and Lehmann, 1983). The upper confidence limit when al-
ternative=’less’ is the smallest shift value that gives a one-sided (alternative=’less’) p-value that is
less than alpha=1-conf.level. Analogously, the lower confidence limit when alternative=’greater’ is
the largest shift value that gives a one-sided (alternative=’greater’) p-value that is less than alpha.
When alternative=’two.sided’ the confidence interval is the union of the two one-sided intervals
each with level 1-alpha/2 (where alpha=1-conf.level). Under the symmetry assumption, the center
of a symmetric distribution is its median, pseudo-median, and mean.

Value

An object of class ’htest’, list with elements:

estimate estimator of median difference
p.value p.value associated with alternative
conf.int confidence interval
null.value null median difference
alternative alternative
method description of method

Note

The estimator and confidence interval here are different than the ones used in wilcox.test (with
paired=TRUE and exact=TRUE).

Author(s)

Michael P. Fay

References

Pratt, JW (1959). Remarks on zeros and ties in the Wilcoxon signed rank procedures. JASA 54(287)
655-667.

Hodges, JL, and Lehmann, EL (1983). Hodges-Lehmann Estimators. In Encyclopedian of Statis-
tics, Volume 3. Editors S. Kotz and NL Johnson. Wiley: New York.

See Also

wilcoxsign_test
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Examples

wsrTest((-3:8))
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