Package 'approxOT'

January 9, 2025

Type Package

Title Approximate and Exact Optimal Transport Methods

Version 1.2

Date 2025-01-06

Maintainer Eric Dunipace <edunipace@mail.harvard.edu>

Description R and C++ functions to perform exact and approximate optimal transport. All C++ methods can be linked to other R packages via their header files.

License GPL (== 3.0)

Imports Rcpp (>= 1.0.3), stats

LinkingTo Rcpp, RcppEigen, RcppCGAL, BH

BugReports https://github.com/ericdunipace/approxOT/issues

Suggests testthat (>= 2.1.0), transport

Encoding UTF-8

RoxygenNote 7.3.2

SystemRequirements C++17

URL https://github.com/ericdunipace/approxOT

NeedsCompilation yes

Author Eric Dunipace [aut, cre] (<https://orcid.org/0000-0001-8909-213X>), Andrew Johnson [ctb] (<https://orcid.org/0000-0001-7000-8065>), Espen Bernton [ctb] ('Hilbert Sort' adapted from their code), Mathieu Gerber [ctb] ('Hilbert Sort' adapted from their code), Pierre Jacob [ctb] ('Hilbert Sort' adapted from their code), Dominic Schuhmacher [ctb] ('Shortsimplex' optimal transport method adapted from their code), Nicolas Bonneel [ctb] ('network simplex' algorithm adapted from their code)

Repository CRAN

Date/Publication 2025-01-09 12:30:06 UTC

Contents

approxOT	2
as.matrix.transport.plan	2
as.transport.plan	3
cost_calc	4
hilbert.projection	5
is.transport.plan	5
transport_options	6
transport_plan	7
transport_plan_given_C	8
transport_plan_multimarg	9
wasserstein	10
	13

Index

approx0T

An R package to perform exact and approximate optimal transport.

Description

R and C++ functions to perform exact and approximate optimal transport. All C++ methods are linkable to other R packages via their header files.

Author(s)

Eric Dunipace

See Also

Useful links:

- https://github.com/ericdunipace/approxOT
- Report bugs at https://github.com/ericdunipace/approxOT/issues

as.matrix.transport.plan

Transform transportation plan to transportation matrix

Description

Transform transportation plan to transportation matrix

Usage

```
## S3 method for class 'transport.plan'
as.matrix(x, ...)
```

Arguments

х	An object of class 'transport.plan'. See output of (transport_plan)[transport_plan()]
	Unused arguments

Value

A matrix specifying the minimal joint distribution between samples. Margins will be equal to the marginal distributions of the samples

Examples

as.transport.plan Transform transportation matrix to transportation plan

Description

Transform transportation matrix to transportation plan

Usage

```
as.transport.plan(transport_matrix, ...)
```

Arguments

transport_matrix

A matrix that is a transportation matrix, i.e. the minimal joint distribution for two samples.

... Unused arguments

Value

An object of class 'transport.plan'. See output of (transport_plan)[transport_plan]

Examples

cost_calc

Calculate cost matrix

Description

Calculate cost matrix

Usage

```
cost_calc(X, Y, ground_p)
```

Arguments

Х	matrix of values in first sample. Observations should be by column, not rows.
Y	matrix of Values in second sample. Observations should be by column, not rows
ground_p	power of the Lp norm to use in cost calculation.

Value

matrix of costs

Examples

```
X <- matrix(rnorm(10*100), 10, 100)
Y <- matrix(rnorm(10*100), 10, 100)
# the Euclidean distance
cost <- cost_calc(X, Y, ground_p = 2)</pre>
```

4

hilbert.projection Get order along the Hilbert curve

Description

Get order along the Hilbert curve

Usage

```
hilbert.projection(X, Sigma = NULL)
```

Arguments

Х	matrix of values. Observations are unique by rows.
Sigma	Covariance of the data. If provided, uses a Mahalanobis distance.

Value

Index of orders

Examples

```
X <- matrix(rnorm(10*3), 3, 10)
idx <- hilbert.projection(X)
print(idx)
```

is.transport.plan Check if function is a transport.plan

Description

Check if function is a transport.plan

Usage

```
is.transport.plan(tplan)
```

Arguments

tplan An object of class 'transport.plan'. See output of (transport_plan)[transport_plan]

Value

Logical

Examples

transport_options Function returning supported optimal transportation methods.

Description

Function returning supported optimal transportation methods.

Usage

transport_options()

Details

The currently supported methods are

- exact, networkflow: Utilize the networkflow algorithm to solve the exact optimal transport problem
- shortsimplex: Use the shortsimplex algorithm to solve the exact optimal transport problem
- sinkhorn: Use Sinkhorn's algorithm to solve the approximate optimal transport problem
- sinkhorn_log: Use Sinkhorn's algorithm on a log-scale for added stability to solve the approximate optimal transport problem
- greenkhorn: Use the Greenkhorn algorithm to solve the approximate optimal transport problem
- · hilbert: Use hilbert sorting to perform approximate optimal transport
- rank: use the average covariate ranks to perform approximate optimal transport
- univariate: Use appropriate optimal transport methods for univariate data
- swapping: Utilize the swapping algorithm to perform approximate optimal transport
- sliced: Use the sliced optimal transport distance

Value

Returns a vector of supported transport methods

6

transport_plan Optimal transport plans

Description

Optimal transport plans

Usage

```
transport_plan(
    X,
    Y,
    a = NULL,
    b = NULL,
    p = 2,
    ground_p = 2,
    observation.orientation = c("rowwise", "colwise"),
    method = transport_options(),
    ...
)
```

Arguments

Х	The covariate data of the first sample.
Υ	The covariate data of the second sample.
а	Optional. Empirical measure of the first sample
b	Optional. Empirical measure of the second sample
р	The power of the Wasserstein distance
ground_p	The power of the Lp norm
observation.ori	entation
	Are observations by row ("rowwise") or column ("colwise").
method	Which transportation method to use. See [transport_options][transport_options]
	Additional arguments for various methods
	• "niter": The number of iterations to use for the entropically penalized opti- mal transport distances
	• "epsilon": The penalty for entropy penalized optimal transport distances. Should be > 0.
	• "unbiased": If using Sinkhorn distances, should the distance be de-biased? (TRUE/FALSE)
	• "nboot": If using sliced Wasserstein distances, specify the number of Monte Carlo samples

Value

a list with slots "tplan" and "cost". "tplan" is the optimal transport plan and "cost" is the optimal transport distance.

Examples

transport_plan_given_C

Optimal transport plans given a pre-specified cost

Description

Optimal transport plans given a pre-specified cost

Usage

```
transport_plan_given_C(
  mass_x,
  mass_y,
  p = 2,
  cost = NULL,
  method = "exact",
  cost_a = NULL,
  cost_b = NULL,
  ...
)
```

Arguments

mass_x	The empirical measure of the first sample
mass_y	The empirical measure of the second sample.
р	The power of the Wasserstein distance
cost	Specify the cost matrix in advance.
method	The transportation method to use, one of "exact", "networkflow", "shortsimplex", "sinkhorn", "greenkhorn"
cost_a	The cost matrix for the first sample with itself. Only used for unbiased Sinkhorn

cost_b	The cost matrix for the second sample with itself. Only used for unbiased Sinkhorn
	Additional arguments for various methods
	 "niter": The number of iterations to use for the entropically penalized optimal transport distances "epsilon": The penalty for entropy penalized optimal transport distances. Should be > 0.
	• "unbiased": If using Sinkhorn distances, should the distance be de-biased? (TRUE/FALSE)

Value

A transportation plan as an object of class "transport.plan", which is a list with slots "from", "to", and "mass".

Examples

```
n <- 32
d <- 5
set.seed(293897)
A <- matrix(stats::rnorm(n*d),nrow=d,ncol=n)
B <- matrix(stats::rnorm(n*d),nrow=d,ncol=n)
transp.meth <- "sinkhorn"
niter <- 1e2
test <- transport_plan_given_C(rep(1/n,n),
rep(1/n,n), 2, cost = cost_calc(A,B,2),
"sinkhorn", niter = niter)
```

transport_plan_multimarg

Multimarginal optimal transport plans

Description

Multimarginal optimal transport plans

Usage

```
transport_plan_multimarg(
    ...,
    p = 2,
    ground_p = 2,
    observation.orientation = c("rowwise", "colwise"),
    method = c("hilbert", "univariate", "sliced"),
    nsim = 1000
)
```

Arguments

	Either data matrices as separate arguments or a list of data matrices. Arguments after the data must be specified by name.
р	The power of the Wasserstein distance to use
ground_p	The power of the Euclidean distance to use
observation.orientation	
	Are observations by rows or columns
method	One of "hilbert", "univariate", or "sliced"
nsim	Number of simulations to use for the sliced method

Value

transport plan

Examples

```
set.seed(23423)
n <- 100
d <- 10
p <- ground_p <- 2 #euclidean cost, p = 2
x <- matrix(stats::rnorm((n + 11)*d), n + 11 , d)
y <- matrix(stats::rnorm(n*d), n, d)
z <- matrix(stats::rnorm((n +455)*d), n +455, d)
# make data a list
data <- list(x,y,z)
tplan <- transport_plan_multimarg(data, p = p, ground_p = ground_p,
observation.orientation = "rowwise", method = "hilbert")
#' #transpose data works too
datat <- lapply(data, t)
tplan2 <- transport_plan_multimarg(datat, p = p, ground_p = ground_p,
observation.orientation = "colwise", method = "hilbert")
```

wasserstein

Calculate the Wasserstein distance

Description

Calculate the Wasserstein distance

wasserstein

Usage

```
wasserstein(
  X = NULL,
  Y = NULL,
  a = NULL,
  b = NULL,
  cost = NULL,
  tplan = NULL,
  p = 2,
  ground_p = 2,
  method = transport_options(),
  cost_a = NULL,
  cost_b = NULL,
  ...
)
```

Arguments

Х	The covariate data of the first sample.
Υ	The covariate data of the second sample.
а	Optional. Empirical measure of the first sample
b	Optional. Empirical measure of the second sample
cost	Specify the cost matrix in advance.
tplan	Give a transportation plan with slots "from", "to", and "mass", like that returned by the [transportation_plan()] function.
р	The power of the Wasserstein distance
ground_p	The power of the Lp norm
method	Which transportation method to use. See [transport_options()]
cost_a	The cost matrix for the first sample with itself. Only used for unbiased Sinkhorn
cost_b	The cost matrix for the second sample with itself. Only used for unbiased Sinkhorn
	Additional arguments for various methods:
	• "niter": The number of iterations to use for the entropically penalized opti- mal transport distances
	• "epsilon": The multiple of the median cost to use as a penalty in the entrop- ically penalized optimal transport distances
	• "unbiased": If using Sinkhorn distances, should the distance be de-biased? (TRUE/FALSE)
	• "nboot": If using sliced Wasserstein distances, specify the number of Monte Carlo samples

Value

The p-Wasserstein distance, a numeric value

wasserstein

Examples

```
set.seed(11289374)
n <- 100
z <- stats::rnorm(n)
w <- stats::rnorm(n)
uni <- approxOT::wasserstein(X = z, Y = w,
p = 2, ground_p = 2,
observation.orientation = "colwise",
method = "univariate")</pre>
```

12

Index

approxOT, 2
approxOT-package (approxOT), 2
as.matrix.transport.plan, 2
as.transport.plan, 3

cost_calc, 4

hilbert.projection, 5

is.transport.plan,5

transport_options, 6
transport_plan, 7
transport_plan_given_C, 8
transport_plan_multimarg, 9

wasserstein, 10