Package ‘aoos’

October 12, 2022

Type Package

Title Another Object Orientation System
Version 0.5.0

Date 2017-05-06

BugReports https://github.com/wahani/aocos/issues

URL https://wahani.github.io/aoos

Description Another implementation of object-orientation in R. It provides
syntactic sugar for the S4 class system and two alternative new
implementations. One is an experimental version built around S4
and the other one makes it more convenient to work with lists as objects.

Depends methods, R(>=3.2.0)

Imports magrittr, utils, roxygen2

License MIT + file LICENSE

Suggests testthat, knitr, rbenchmark, R6, rmarkdown
Encoding UTF-8

VignetteBuilder knitr

ByteCompile TRUE

Collate 'DC-Binary.R' 'DC-Show.R' 'DC-a00s.R' 'DC-defineClass.R'
'DC-public-interfaces.R' NAMESPACE.R' 'RL-Infix.R'
'RL-envHelper.R' 'RL-retList.R' 'S4-expressions.R'
'S4-generics.R' 'S4-generics-test.R' 'S4-roxygen-parser.R’
'S4-types.R' 'S4RC-Accessor.R' 'S4RC-Private.R'
'S4RC-defineRefClass.R'

RoxygenNote 6.0.1

NeedsCompilation no

Author Sebastian Warnholz [aut, cre]

Maintainer Sebastian Warnholz <wahani@gmail.com>
Repository CRAN

Date/Publication 2017-05-07 05:33:32 UTC

https://github.com/wahani/aoos/issues
https://wahani.github.io/aoos

2 .genericTest

R topics documented:

genericTest . . L L L e e 2
Accessor-class e 3
A00S-Class e e e e 3
Binary-class 4
defineClass e e e e 5
defineRefClass e 7
eNVCODY . & vt e e e e e 8
parser_%m%o e e e e e e 9
print.Print 9
Private-class e 11
publicFunction 12
retList e e 12
Show-class e e 14
DoZT0 . . . e e e e e e e e e 15
TotypeTo . . . o e e e e e e e e e e 16

Index 19

.genericTest Generic Test
Description

This generic function only exists to test that the rexygen2 parser work correctly. Just ignore it.

Usage

.genericTest(x, ...)

S4 method for signature 'numeric'
.genericTest(x, ..., methodParam = function() 1)

Arguments
X Object
Object

methodParam Object

Accessor-class 3

Accessor-class Accessor class

Description

This is a virtual class to be contained in other class definitions. It overrides the default accessor $
and is intended to be used with the aoos class system (defineClass). Inherit from this class if you
want to access public fields in the same way you access lists.

Usage

S4 method for signature 'Accessor'
x$name

S4 replacement method for signature 'Accessor'
x$name <- value

Arguments
X object
name member name
value value to assign to.
aoos-class Class aoos
Description

This is an environment with some methods. Every class defined by defineClass will inherit from
aoos. Summary will show a list of public and private members with approximated memory usage.
Usage

S4 method for signature 'aoos'
show(object)

S4 method for signature 'aoos'
x$name

S4 replacement method for signature 'aoos'
x$name <- value

S3 method for class 'aoos'
summary(object, ...)

S4 method for signature 'aoos'
as.environment(x)

4 Binary-class

Arguments
object object
X object
name member name
value value to assign to. Will throw an error.
arguments passed to method (not used).
Binary-class Binary-class
Description

This is a virtual class to be contained in other class definitions. It can be used to define binary
operators, e.g. + or -, inside an aoos class definition (defineClass).

Details
At the moment you can define binary operators as methods by naming them as . <binaryOperator>
(see the example). This is implemented for the following operators: +, -, *, /, %%, *, <, >, ==,
>=, <=, &
Examples
Rational <- defineClass("”Rational”, contains = c("Show”, "Binary"”), {
numer <- @
denom <- 1
g <=1

.gcd <~ function(a, b) if(b == @) a else Recall(b, a %% b)

init <- function(numer, denom) {
.self$.g <- .gcd(numer, denom)
.self$numer <- numer / .g
.self$denom <- denom / .g

}

show <- function() {
cat(paste@(.self$numer, "/", .self$denom, "\n"))
}

".+" <- function(that) {
Rational(numer = numer * that$denom + that$numer x denom,
denom = denom * that$denom)

}

neg <- function() {

defineClass 5

Rational(numer = -.self$numer,
denom = .self$denom)

b

", =" <- function(that) {
.self + that$neg()
}

b

rational <- Rational(2, 3)
rational + rational
rational$neg()

rational - rational

defineClass Define a new class

Description

This is an experimental implementation of reference classes. Use defineRefClass or retList
instead. defineClass has side effects. The constructor is the return value of defineClass.

Usage

defineClass(name, expr, contains = NULL)
private(x)

S4 method for signature 'public'
private(x)

public(x = NULL, validity = function(x) TRUE)

S4 method for signature '‘function‘'
public(x = NULL, validity = function(x) TRUE)

S4 method for signature 'private'
public(x = NULL, validity = function(x) TRUE)

S4 method for signature 'public'
public(x = NULL, validity = function(x) TRUE)

Arguments
name character name of the class
expr expression

contains character name of class from which to inherit

6 defineClass

X an object made public
validity function to check the validity of an object
Details

defineClass creates a S4-Class which can be used for standard S4 method dispatch. It will also set
the method ’initialize’ which need not to be changed. If you want to have some operations carried
out on initialization use a function definition named init as part of expr. The return value from
defineClass is the constructor function. It has the argument . . . which will be passed to init.

All classes defined with defineClass inherit from class "aoos" which is a S4-class containing an
environment. In that environment expr is evaluated; for inheritance, all expr from all parents will
be evaluated first.

Everything in expr will be part of the new class definition. A leading dot in a name will be inter-
preted as private. You can use public and private to declare private and public members explicitly.
If x in a call to public is a function it will be a public member function (method). For any other
class the return value of public is a get and set method. If called without argument it will get the
value, if called with argument it will set the value. You can define a validity function which will
be called whenever the set method is called. Objects which inherit from class environment can be
accessed directly, i.e. not via get/set methods. If you want to access fields without get/set methods,
you can use the class Accessor-class.

See Also

Accessor-class, Binary-class, Show-class

Examples

test <- defineClass("test"”, {
x <= "Working ..."
.y <-0
doSomething <- public(function() {
self$.y <- .y + 1
cat(x(), "\n")

invisible(self)
D)
»
instance <- test()
Not run:

instance$.y # error

End(Not run)
instance$doSomething()$doSomething()
instance$x()

instance$x(2)

instance$x()

Example for reference classes as field

MoreTesting <- defineClass("MoreTesting”, {
refObj <- test()

»

defineRefClass 7

instance <- MoreTesting()
instance$refObj$x()

defineRefClass Define a Reference Class

Description

This is a wrapper around setRefClass. All arguments are defined in an expression (instead of lists)
which improves readability of the code. Besides that, no additional features are added.

Usage

defineRefClass(expr)
Arguments

expr an expression
See Also

Private-class

Examples

Not run:
vignette("Introduction”, "aoos")

End(Not run)

Minimal example:

Test <- defineRefClass({
Class <- "Test” # this is passed as argument to setRefClass
x <= "character” # all objects which are not functions are fields
do <- function() cat("Yes, Yes, I'm working...") # a method

b

test <- Test()
test$x <- "a"
test$do()

Inheritance and privacy:
pTest <- defineRefClass({
Class <- "pTest”
Privacy is solved by inheriting from a class 'Private' which redefines
the methods for access.
contains <- c("Test"”, "Private") # passed as argument to setRefClass

.y <= "numeric"” # this is going to be 'private'

8 envCopy

doSomething <- function() {
.self$.y <- 42
cat(x, .y, "\n")
invisible(.self)
}
»

instance <- pTest()
instance$x <- "Value of .y:"
instance$doSomething()

A notion of privacy:
stopifnot(inherits(try(instance$.y), "try-error”))
stopifnot(inherits(try(instance$.y <- 2), "try-error"))

envCopy Helpers for environments

Description

Functions to help working with environments.

Usage

envCopy(from, to)

envMerge(x, with)

Arguments
from environment
to environment
X environment
with environment
Details

envCopy tries to copy all objects in a given environment into the environment 'to’. Returns the
names of copied objects.

envMerge will merge x and with. Merge will copy all objects from x to with. Prior to that, the
environment of functions are changed to be with iff functions in x have environment x; else the
environment of functions are preserved.

See Also

retList where these are relevant.

parser_%m% 9

parser_%m% Parser for roxygen documentation

Description

These functions are used by roxygen?2 for generating documentation.

Usage

"parser_%m%" (call, env, block)
"parser_%g%" (call, env, block)

"parser_%type%" (call, env, block)

Arguments
call a call
env an environment
block is ignored
print.Print S3 helper classes
Description

There is no formal class definition for S3. Simply add *Infix’ or "Print’ to the class attribute and it
inherits the methods. It is the same as Binary-class or Show-class just for S3. This is inteded to
be used with retList.

Usage
S3 method for class 'Print'
print(x, ...)

S3 method for class 'Infix'
el + e2

S3 method for class 'Infix'
el - e2

S3 method for class 'Infix'
el / e2

S3 method for class 'Infix'

print.Print

'"Infix'

'"Infix'

"Infix'

'"Infix'

"Infix'

'"Infix'

"Infix'

'"Infix'

'"Infix'

arguments passed to the local print method.

The lhs is coerced with as.environment and in that environment the binary operators must be
found and named as .<binaryOperator> (see the example for retList). This is implemented for

=, %, /[, %%, N, <, >, ==, >=, <=, & Also part of the operators you

can implement with Infix is !, although it is unary.

10
el %% e2
S3 method for class
el * e2
S3 method for class
el < e2
S3 method for class
el > e2
S3 method for class
el == e2
S3 method for class
el >= e2
S3 method for class
el <= e2
S3 method for class
el & e2
S3 method for class
Ix
S3 method for class
as.environment(x)
Arguments
X an object
el lhs operand
e2 rhs operand
Details
the following operators: +,
See Also

Binary-class, retList

Private-class 11

Private-class Private class

Description

This is a virtual class to be contained in other class definitions. It overrides the default subset
functions $ and [[such that private member of a class can not be accessed. Private is every object
which has a name with a leading "." (grepl(”"#\\."”, name)). After this check the standard method
for class ’envRefClass’ is called or an error is reported.

Usage

S4 method for signature 'Private'’
x$name

S4 replacement method for signature 'Private'’
x$name <- value

S4 method for signature 'Private’

x[[i, j, ...]1]
S4 replacement method for signature 'Private'’
x[[i, j, ...1] <- value
Arguments
X the object
name name of field or method
value any object
i like name
j ignored
ignored
See Also
defineRefClass
Examples

ClassWithPrivateField <- defineRefClass({
Class <- "ClassWithPrivateField"
contains <- "Private”

.p <= "numeric”

getP <- function() .p
setP <- function(v) .self$.p <- v

12

b

retList

test <- ClassWithPrivateField()
stopifnot(inherits(try(test$.p), "try-error"))
stopifnot(inherits(try(test$.p <- 2), "try-error"))
stopifnot(inherits(try(test[[".p"]1]), "try-error™))
stopifnot(inherits(try(test[[".p"]1] <- 2), "try-error"))

publicFunction

Constructors for public members

Description

These functions are used internally. You should not rely on them. Use public instead.

Usage

publicFunction(fun)

publicValue(x = NULL, validity = function(x) TRUE)

S4 method for signature 'publicEnv'

x$name
Arguments
fun function definition
X a default value
validity an optional validity function for the set method. Returns TRUE or FALSE.
name name of member in refernece object
retList Generic constructor function
Description

This functions can be used to construct a list with class attribute and merged with another list called
super. The constructed list will contain (by default) all visible objects from the environment from
which retList is called.

retList 13

Usage

retList(class = NULL, public = 1ls(envir), super = list(),
superEnv = asEnv(super), mergeFun = envMerge, envir = parent.frame())

funNames(envir = parent.frame())

asEnv(x)
stripSelf(x)
Arguments
class character giving the class name.
public character with the names to include.
super a list/object to be extended.
superknv environment where new methods will live in.
mergeFun function with two arguments. Knows how to join/merge environments - mergeFun(envir,
superEnv). Default: envMerge.
envir this is the environment you want to convert into the list. Default is the environ-
ment from which the function is called.
X alist
Details

funNames returns the names of functions in the environment from which it is called.

asEnv trys to find an environment for x. If x is NULL or an empty list, the function returns NULL.
(Else) If x has an attribute called . self it is this attribute which is returned. (Else) If x is a list it is
converted to an environment.

See Also

Is, +.Infix, print.Print

Examples

To get a quick overview of the package:
vignette("Introduction”, "aoos")

To get more infos about retlList:
vignette("retListClasses"”, "aoos")

To get some infos about performance:
vignette("performance”, "aoos")

A simple class with one method:
Test <- function(.x) {
getX <- function() .x
retList("Test")

14

Show-class

stopifnot(Test(2)$getX() == 2)

A second example inheriting from Test
Test2 <- function(.y) {
getX2 <- function() .x x 2
retList("Test2", super = Test(.y))
3

stopifnot(Test2(2)$getX() == 2)
stopifnot(Test2(2)3$getX2() == 4)

Rational numbers example with infix operators and print method
Rational <- function(numer, denom) {
gcd <- function(a, b) if(b == @) a else Recall(b, a %% b)

g <- gcd(numer, denom)
numer <- numer / g
denom <- denom / g

print <- function(x, ...) cat(paste@(numer, "/", denom, "\n"))

".+" <= function(that) {
Rational(numer = numer * that$denom + that$numer * denom,
denom = denom * that$denom)

3

".=" <= function(that) {
if (missing(that)) {
Rational (-numer, denom)
} else {
.self + (-that)
}
}

Return only what should be visible from this scope:
retList(c("Rational”, "Infix", "Print"),
c("numer”, "denom”, "neg"”, "print"))

rational <- Rational(2, 3)
rational + rational
rational - rational

Show-class Show class

Bg% 15

Description

This is a virtual class to be contained in other class definitions. It overrides the default show method
and is intended to be used with the aoos class system (defineClass). The show method will simply
look for a method show defined as member of a class definition.

Usage
S4 method for signature 'Show'
show(object)

Arguments

object an object inheriting from Show

See Also
defineClass

Examples

ClassWithShowMethod <- defineClass("ClassWithShowMethod”, contains = "Show”, {
show <- function() print(summary(.self))

b

ClassWithShowMethod()

%E% Wrapper for writing S4 generics and methods

Description

These are two wrappers around setGeneric and setMethod. A relevant difference is that generics
and methods are stored in the environment in which %g% and %m% are called and not in the top-
environment. Furthermore both functions have side effects in that they will call globalVariables
for the arguments and name of the generic.

Usage
lhs %g% rhs
lhs %m% rhs

Arguments

lhs see details

rhs the body as an expression

16 %type%o

Details

The Syntax for the left hand side:

[<valueClass>:]<genericName>(<arglList>)

- valueClass optional, is the class of the return value (see setGeneric)

- genericName the name of the generic function

- arglList are name = value or name ~ type expressions. Name-Value expressions are just like in
a function definition. Name-Type expressions are used to define the signature of a method (see
setMethod). See %type% and the examples how to work with them.

Examples

A new generic function and a method:

numeric : generic(x) %g% standardGeneric("generic")
generic(x ~ numeric) %m% X

generic(1)

Polymorphic methods in an object:

Object <- function() {
numeric : generic(x) %g% standardGeneric("generic")
generic(x ~ numeric) %m% X
retList("Object”)

3

Object()$generic(1)

Class Unions:
This generic allows for return values of type numeric or character:
'numeric | character' : generic(x) %g% standardGeneric("generic")

This method also allows for numeric or character as argument:
generic(x ~ character | numeric) %m% x

generic(1)

generic("")

%type Types

Description

This function can be used to define new S4-classes which are called Type. They have an initial-
ize method and in the introduced syntax init-method and S4-class definition build a unit, hence
a type. This simply captures a typical setClass then setMethod("initialize”, ...) pattern
where often some redundancy is introduced. The function has side effects due to calling setClass,
setMethod and assigning the constructor function to the types name.

Usage

lhs %type% rhs

%type%

Arguments

lhs

rhs

Details

17

an expression of the form:

[<parent-name>:]J<type-name>([<slots>])

- <parent-name> optional, the name of the S4-class/type to inherit from, seper-
ated by :

- <type-name> the name for the new type and constructor function.

- <slots> optional, name = value or name ~ type expressions. Name-Value ex-
pressions are used to construct a prototype. From the prototype the class of the
slot will be inferred. They are also the defaults in the type constructor. Name-
Type expressions define the classes of the slots. If no value (or type) is supplied,
ANY is assumed.

the body of the initialize method as expression. It will be called with .Object
and ... as arguments. .Object should be the return value. With .Object
there is an instance of the type on which assertions can be formulated. Prior to
the body (rhs) .Object <- callNextMethod() will be evaluated which enables
proper initialization of your type and its inherited fields. See initialize for details.

Name-Type expressions are also used in %m%. Besides this you can formulate type unions in
type expressions or the inheritance structure. This has a side effect in that setClassUnion is called.
Whenever you write a type you can replace the name by an expression of the form: type1l | type2.
Outside the slots or argument list of a method these expressions have to be quoted. In this exam-
ple the following expression is evaluated for you: setClassUnion("typelORtype2”, c("typel”,

”typez”)),
Examples
This will create an S4-class named 'Test' with two slots; x = "numeric”

and y = "list"”; prototype: list(x =1, y = list()); and an initialize
method where some checks are performed.

Test(x = 1, y = list()) %type% {
stopifnot(.Object@x > @)

.Object
3

This will create an S4-class named 'Numeric' with a slot and some tests.

numeric : Numeric(metalnfo = character()) %type% {
stopifnot(length(.0Object) > 0)
stopifnot(all(.Object > @))

.Object
3

This will create an S4-class with slots, where the constructor function has
no defaults. All slots will allow for ANY type.

Anything(x, y ~ ANY, z = NULL) %type% .Object

Not run:

18

Anything() # error because x and y are missing

End(Not run)

Type Unions:
'character | numeric'
Either("", 1)

: Either(either ~ character | numeric) %type% .Object

%type%

Index

!'.Infix (print.Print), 9

+.Infix, 13

+.Infix (print.Print), 9

-.Infix (print.Print), 9

.genericTest, 2

.genericTest,numeric-method
(.genericTest), 2

/.Infix (print.Print), 9

<.Infix (print.Print), 9

<=.Infix (print.Print), 9

==.Infix (print.Print), 9

>.Infix (print.Print), 9

>=.Infix (print.Print), 9

[[,Private-method (Private-class), 11

[[<-,Private-method (Private-class), 11

$,Accessor-method (Accessor-class), 3

$,Private-method (Private-class), 11

$,aoo0s-method (acos-class), 3

$,publicEnv-method (publicFunction), 12

$<-,Accessor-method (Accessor-class), 3

$<-,Private-method (Private-class), 11

$<-,aoos-method (aoos-class), 3

%%.Infix (print.Print), 9

%m% (%g%), 15

&.Infix (print.Print), 9

%g%, 15

%m%, 17

%typek, 16, 16

A Infix (print.Print), 9

Accessor-class, 3

aoos-class, 3

as.environment,aoos-method
(aoos-class), 3

as.environment.Infix (print.Print), 9

asknv (retlList), 12

Binary-class, 4, 10

defineClass, 3, 4,5, 15

19

defineRefClass, 5,7, 11

envCopy, 8
envMerge, 13
envMerge (envCopy), 8

funNames (retList), 12
globalVariables, 15
initialize, 17

1s, 13

parser_%g% (parser_%m%), 9
parser_%type% (parser_%m%), 9
parser_%m%, 9

print.Print, 9, I3

private (defineClass), 5
private,public-method (defineClass), 5
Private-class, 7, 11

public, 12

public (defineClass), 5
public,function-method (defineClass), 5
public,private-method (defineClass), 5
public,public-method (defineClass), 5
publicFunction, 12

publicValue (publicFunction), 12

retList, 5, 8-10, 12

setClassUnion, 17

setGeneric, 16

setMethod, /16

setRefClass, 7

show, aoos-method (aoos-class), 3
show, Show-method (Show-class), 14
Show-class, 14

stripSelf (retList), 12
summary . aoos (aoos-class), 3

	.genericTest
	Accessor-class
	aoos-class
	Binary-class
	defineClass
	defineRefClass
	envCopy
	parser_%m%
	print.Print
	Private-class
	publicFunction
	retList
	Show-class
	%g%
	%type%
	Index

