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1 History of the package adehabitatL T

The package adehabitatLT contains functions dealing with the analysis of
animal movements that were originally available in the package adehabitat
(Calenge, 2006). The data used for such analysis are generally relocation data
collected on animals monitored using VHF or GPS collars.

I developped the package adehabitat during my PhD (Calenge, 2005) to
make easier the analysis of habitat selection by animals. The package adehabitat
was designed to extend the capabilities of the package ade4 concerning studies
of habitat selection by wildlife.

Since its first submission to CRAN in September 2004, a lot of work has
been done on the management and analysis of spatial data in R, and especially
with the release of the package sp (Pebesma and Bivand, 2005). The package
sp provides classes of data that are really useful to deal with spatial data...

In addition, with the increase of both the number (more than 250 functions
in Oct. 2008) and the diversity of the functions in the package adehabitat, it
soon became apparent that a reshaping of the package was needed, to make its
content clearer to the users. I decided to “split” the package adehabitat into
four packages:

e adehabitatHR package provides classes and methods for dealing with
home range analysis in R.



e adehabitatHS package provides classes and methods for dealing with habi-
tat selection analysis in R.

e adehabitatLT package provides classes and methods for dealing with an-
imals trajectory analysis in R.

e adehabitatMA package provides classes and methods for dealing with maps
in R.

We consider in this document the use of the package adehabitatLT to
deal with the analysis of animal movements. All the methods available in
adehabitat are also available in adehabitatLT. Contrary to the other brother
packages, the classes of data returned by the functions of adehabitatLT are the
same as those implemented in the original package adehabitat. Indeed, the
structure of these classes were described in a paper (Calenge et al. 2009).

Package adehabitatLT is loaded by

> library(adehabitatLT)

2 What is a trajectory?

2.1 Two types of trajectories

We designed the class 1traj to store the movements of animals monitored using
radio-tracking, GPS, etc. The rationale underlying the structure of this class
is described precisely in Calenge et al. (2009). We summarize this rationale in
this vignette.

Basically, the trajectory of an animal is the curve described by the animal
when it moves. The sampling of the trajectory implies a step of discretization,
i.e., the division of this continuous curve into a number of discrete “steps” con-
necting successive relocations of the animal (Turchin, 1998). Two main classes
of trajectories can be distinguished:

e Trajectories of type I are characterized by the fact that the time is
not precisely known or not taken into account for the relocations of the
trajectory;

e the trajectories of type II are characterized by the fact that the time is
known for each relocation. This type of trajectory may in turn be divided
into two subtypes:



— regular trajectories: these trajectories are characterized by a con-
stant time lag between successive relocations;

— irregular trajectories: these trajectories are characterized by a
variable time lag between successive relocations;

Note that the functions of adehabitatLT are mainly designed to deal with
type I or type II regular trajectories. Irregular trajectories are harder to ana-
lyze, as the descriptive parameters of these trajectories (see below) may not be
compared when computed on different time lags.

2.2 Descriptive parameters of the trajectory

Marsh and Jones (1988) noted that a good description of the trajectory is
achieved when the following criteria are fullfilled:

e the description is achieved with a minimum set of relatively easily mea-
sured parameters;

e the relationships between these parameters are defined precisely (e.g., with
the help of a model);

e the parameters and the relationships between them are sufficient to recon-
struct characteristic tracks without loosing any of their significant prop-
erties.

Based on a literature review (see Calenge et al. 2009), we have chosen to
characterize all the trajectories by the following parameters:



a: abs.angle
B: rel.angle

dx, dy, dt: these parameters measured at relocation ¢ describe the in-
crements of the x and y directions and time between the relocations ¢ and
i+ 1. Such parameters are often used in the framework of stochastic dif-
ferential equation modelling (e.g. Brillinger et al. 2004, Wiktorsson et al.
2004);

dist: the distance between successive relocations is often used in animal
movement analysis (e.g. Root and Kareiva 1984, Marsh and Jones 1988);

abs.angle: the absolute angle o; between the x direction and the step
built by relocations ¢ and 7 + 1 is sometimes used together with the pa-
rameter dist to fit movement models (e.g. Marsh and Jones 1988);

rel.angle: the relative angle 8; measures the change of direction between
the step built by relocations 7 — 1 and ¢ and the step built by relocations
i and ¢ + 1 (often called “turning angle”). It is often used together with
the parameter dist to fit movement models (e.g. Root and Kareiva 1984,
Marsh and Jones 1988);



e R2n: the squared distance between the first relocation of the trajectory
and the current relocation is often used to test some movements models
(e.g. the correlated random walk, see the seminal paper of Kareiva and
Shigesada, 1983).

2.3 Several bursts of relocations

Very often, animal monitoring leads to several “bursts”’ of relocations for each
monitored animal. For example, a GPS collar may be programmed to return
one relocation every ten minutes during the night and no relocation during the
day. Each night corresponds to a burst of relocations for each animal. We
designed the class 1traj to take into account this burst structure.

2.4 Understanding the class 1traj

An object of class 1traj is created with the function as.ltraj (see the help
page of this function). We will take an example to illustrate the creation of an
object of class 1traj. First load the dataset puechabonsp from the package
adehabitatMA:

> data(puechabonsp)
> locs <- puechabonsp$relocs
> locs <- as.data.frame(locs)
> head(locs)

Name Age Sex Date X Y
1 Brock 2 1 930701 699889 3161559
2 Brock 2 1 930703 700046 3161541
3 Brock 2 1 930706 698840 3161033
4 Brock 2 1 930707 699809 3161496
5 Brock 2 1 930708 698627 3160941
6 Brock 2 1 930709 698719 3160989

The data frame locs contains the relocations of 4 wild boar monitored us-
ing radio-tracking at Puechabon (Near Montpellier, South of France). First the
date needs to be transformed into an object of the class POSIXct.

Remark: The class POSIXt is designed to store time data in R (see the very
clear help page of POSIXt). This class extends two sub-classes:

e the class POSIX1t: This class stores a date in a list containing several
elements related to this date (day of the month, day of the week, day of
the year, month, year, time zone, hour, minute, second).



e the class POSIXct: This class stores a date in a vector, as the number of
seconds passed since January, 1st, 1970 at 1AM. This class is more con-
venient for storing dates into a data frame.

We will use the function strptime (see the help page of this function) to
convert the date in locs into a POSIX1t object, as then as.P0OSIXct to convert
it into the class POSIXct:

> da <- as.character(locs$Date)
> head(da)

[1] "930701" "930703" "930706" "930707" "930708" "930709"
> da <- as.PO0SIXct(strptime(as.character(locs$Date), ")y/imj4d", tz="Europe/Paris"))

We can then create an object of class 1traj to store the wild boar move-
ments:

> puech <- as.ltraj(xy = locs[,c("X","Y")], date = da, id = locs$Name)
> puech

fokkkkkkkkkk [ist of class ltraj skkkkkksksksksk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

1 Brock Brock 30 0 1993-07-01 1993-08-31
2 Calou Calou 19 0 1993-07-03 1993-08-31
3 Chou Chou 40 0 1992-07-29 1993-08-30
4 Jean Jean 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

The result is a list of class ltraj containing four bursts of relocations corre-
sponding to four animals. The trajectory is of type II and is irregular. There
are no missing values.

This object is actually a list containing 4 elements (the four bursts). Each
element is a data frame. Have a look, for example, at the first rows of the first
data frame:

> head(puech([[1]])



X y date dx dy dist dt R2n  abs.angle

1 699889 3161559 1993-07-01 157 -18 158.0285 172800 0 -0.11415127

2 700046 3161541 1993-07-03 -1206 -508 1308.6252 259200 24973 -2.74292194

3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032

4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603

5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728

6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869
rel.angle

1 NA

2 -2.6287707

3 -3.0945230

4 3.1348390

5 -3.0996920

6 -0.3855886

The function as.ltraj has automatically computed the descriptive param-
eters described in section 2.2 from the x and y coordinates, and from the date.
Note that dx,dy,dist are expressed in the units of the coordinates x,y (here,
metres) and abs.angle,rel.angle are expressed in radians.

A graphical display of the bursts can be obtained simply by:

> plot (puech)



Brock Calou

Chou Jean

2.5 Two points of views: steps (ltraj) or points (data.frame)?

We noted in the previous section that, in adehabitatLT, we consider the trajec-
tory as a collection of successive “steps” ordered in time. We will see later in this
vignette that most functions of adehabitatLT deal with trajectories considered
from this point of view. However, several users (in particular, many thanks to
Mathieu Basille and Bram van Moorter) noted that although this point of view
may be useful to manage and analyse trajectories, it may be too restrictive to
allow an easy management of such data.

Actually, the trajectory data may also be considered as a set of successive
points (the relocations) ordered in time. At first sight, the distinction between
these two models may seem trivial, but it is important to consider it in several
cases.

For example, any slight change in the coordinates/date of a relocation will
change the value of all derived statistics (dt, dist, etc.). In the previous versions
of adehabitat, it was possible to change directly the values of coordinates/dates
in the object, and then to compute again the steps characteristics thanks to the
function rec (it is still possible in the present version, but not recommended).



For example, consider the object puech created in the previous section. Have
a look at the first relocations of the first burst:

> head(puech[[1]])

X y date dx dy dist dt R2n  abs.angle
1 699889 3161559 1993-07-01 157 -18 158.0285 172800 0 -0.11415127
2 700046 3161541 1993-07-03 -1206 -508 1308.6252 259200 24973 -2.74292194
3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032
4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603
5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728
6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869
rel.angle
1 NA
2 -2.6287707
3 -3.0945230
4 3.1348390
5 -3.0996920
6 -0.3855886

Imagine that we realize that the X coordinate of the second relocation is
actually equal to 700146 instead of 700046:

> puech2 <- puech
puech2[[1]][2,1] <- 700146
> head(puech2[[1]])

v

X y date dx dy dist dt R2n  abs.angle
1 699889 3161559 1993-07-01 157 -18 158.0285 172800 0 -0.11415127
2 700146 3161541 1993-07-03 -1206 -508 1308.6252 259200 24973 -2.74292194
3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032
4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603
5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728
6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869
rel.angle
1 NA
2 -2.6287707
3 -3.0945230
4 3.1348390
5 -3.0996920
6 -0.3855886

The coordinate has been changed, but the step characteristics are now incor-
rect. The function rec recompute these statistics according to these changes:

> head(rec(puech2) [[1]])
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X y date dx dy dist dt R2n  abs.angle

1 699889 3161559 1993-07-01 257 -18 257.6296 172800 0 -0.06992472

2 700146 3161541 1993-07-03 -1306 -508 1401.3208 259200 66373 -2.77062747

3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032

4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603

5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728

6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869
rel.angle

1 NA

2 -2.7007027

3 -3.0668175

4 3.1348390

5 -3.0996920

6 -0.3855886

Although the function rec can be useful for sporadic use, it is limited when
a larger number of modifications is required on the relocations (e.g. filtering
incorrect relocations when “cleaning” GPS monitoring data). This is where the
class 1traj does not fit. For such work, it is more convenient to see the trajec-
tory as a set of points located in both space and time. And for such operations,
it is sometimes more convenient to work with data frames. Two functions are
provided to quickly convert a ltraj to and from data.frames: the functions 1d
and dl.

The function 1d allows to quickly convert an object of class 1traj to the class
data.frame. Consider for example the object puech created in the previous
section. We can quickly convert this object towards the class data.frame:

> puech2 <- 1d(puech)
> head (puech2)

X vy date dx dy dist dt R2n abs.angle
1 699889 3161559 1993-07-01 157 -18 158.0285 172800 0 -0.11415127
2 700046 3161541 1993-07-03 -1206 -508 1308.6252 259200 24973 -2.74292194
3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032
4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603
5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728
6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869

rel.angle id burst pkey

NA Brock Brock Brock.1993-07-01
-2.6287707 Brock Brock Brock.1993-07-03
-3.0945230 Brock Brock Brock.1993-07-06
3.1348390 Brock Brock Brock.1993-07-07
-3.0996920 Brock Brock Brock.1993-07-08
-0.3855886 Brock Brock Brock.1993-07-09

DO WN -

Note that the data frame contains all the descriptors of the steps. In ad-
dition, two variables burst and id allow to quickly convert this object back
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towards the class 1traj, with the function d1:
> d1(puech2)

fokkkkkkkkkk [ist of class ltraj skkkkkksksksksk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

1 Brock Brock 30 0 1993-07-01 1993-08-31
2 Calou Calou 19 0 1993-07-03 1993-08-31
3 Chou Chou 40 0 1992-07-29 1993-08-30
4 Jean Jean 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

Using d1 and 1d can be extremey useful during the first steps of the analysis,
especially during data “cleaning”.

3 Managing objects of class 1traj

3.1 Cutting a burst into several segments

Now, let us analyse the object puech created in the previous section. We noted
that the object puech was not regular:

> is.regular (puech)
[1] FALSE

The function is.regular returns a Boolean... such a result can be obtained
from a regular trajectory where just one relocation is missing, or from a com-
pletely irregular trajectory... we need more precision!

Have a look at the value of dt according to the date, using the function
plotltr. Because dt is measured in seconds and that no more than one relo-
cation is coellected every day, we convert this time lag into days by dividing it
by 24 (hours/day) x 3600 (seconds / hour):

> plotltr(puech, "dt/3600/24")
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The wild boar Chou was monitored during two successive summers (1992 and
1993). We need to “cut” this burst into two “sub-burst”. We will use the function
cutltraj to proceed. We first define a function foo that returns TRUE when
the time lag between two successive relocations is greater than 100 days:

> foo <- function(dt) {
+ return(dt> (100%3600%24))
+ }

Then, we use the function cutltraj to cut any burst relocations with a value
of dt such that foo(dt) is true, into several bursts for which no value of dt

fullfills this criterion:

> puech2 <- cutltraj(puech, "foo(dt)", nextr = TRUE)
> puech?2

skkkkkkkkkk List of class ltraj skkkkkkkkkk
Type of the traject: Type II (time recorded)

* Time zone: Europe/Paris *
Irregular traject. Variable time lag between two locs
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Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Chou Chou.1 16 0 1992-07-29 1992-08-28
4 Chou Chou.2 24 0 1993-07-02 1993-08-30
5 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

Now, note that the burst of Chou has been splitted into two bursts: the first
burst corresponds to the monitoring of Chou during 1992, and the second burst
corresponds to the monitoring of Chou during 1993. We can give more explicit
names to these bursts:

> burst(puech2) [3:4] <- c("Chou.1992", "Chou.1993")
> puech?2

sookkokkkkkk List of class ltraj kkskskskskskokkk
Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris x*

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock  Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Chou Chou.1992 16 0 1992-07-29 1992-08-28
4 Chou Chou.1993 24 0 1993-07-02 1993-08-30
5 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:

[1] "pkey"

Note that the function id() can be used similarly to replace the IDs of the

animals.

3.2 Playing with bursts

The bursts in an object 1traj can be easily managed. For example, consider te

object puech2 created previously:
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> puech?2

wkkkkckkkkkk List of class ltraj #kkkkkkkkkk

Type of the traject: Type II (time recorded)

* Time zone: Europe/Paris *

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock  Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Chou Chou.1992 16 0 1992-07-29 1992-08-28
4 Chou Chou.1993 24 0 1993-07-02 1993-08-30
5 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

Imagine that we want to work only on the males (Brock, Calou and Jean). We
can subset this object using a classical extraction function:

> puech2b <- puech2[c(1,2,5)]
> puech2b

wokxkkkkkkxk List of class 1ltraj skkkskkkrkk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end

1 Brock Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

Or, if we want to study the animals monitored in 1993, we may combine this
object with the monitoring of Chou in 1993:

> puech2c <- c(puech2b, puech2[4])
> puech2c

15



sopkkkokkkkkk List of class ltraj skkkksskkosok
Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock  Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Jean Jean.1 30 0 1993-07-01 1993-08-31
4 Chou Chou.1993 24 0 1993-07-02 1993-08-30

infolocs provided. The following variables are available:
[1] "pkey"

It is also possible to select the bursts according to their id of their burst id (see
the help page of Extract.ltraj for additional information, and in particular
the example section).

The function which.ltraj can also be used to identify the bursts satisfying
a condition. For example, imagine that we want to identify the bursts where the
distance between successive relocations was greater than 2000 metres at least
once:

> bu <- which.ltraj(puech2, "dist>2000")
> bu

id burst results
1 Jean Jean.1 18
2 Jean Jean.l1 19

This data frame contains the ID, burst ID and relocation numbers satisfying
the specified criterion. We can then extract the bursts satisfying this criterion:

> puech2[burst (puech2) j;inj,bu$burst]

wkkkkkkkkkk List of class ltraj skkkxkkkkrrk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Jean Jean.1 30 0 1993-07-01 1993-08-31
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infolocs provided. The following variables are available:
[1] "pkey"

3.3 Placing the missing values in the trajectory

Now, look again at the time lag between successive relocations:

> plotltr(puech2, "dt/3600/24")
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The relocations have been collected daily, but there are many days during which
this relocation was not possible (storm, lack of field workers, etc.). We need to
add missing values to define a regular trajectory. To proceed, we will use the
function setNA. We have to define a reference date:

> refda <- strptime("00:00", "JH:JM", tz="Europe/Paris")
> refda

[1] "2025-06-17 CEST"
This reference date will be used to check that each date in the object of class

ltraj is separated from this reference by an integer multiple of the theoretical
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dt (here, one day), and place the missing values at the times when relocations
should theoretically have been collected. We use the function setNA:

> puech3 <- setNA(puech2, refda, 1, units = "day")
> puech3

sookkokkkkkk List of class ltraj skskskskskskskokkk
Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *

Regular traject. Time lag between two locs: 86400 seconds

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock  Brock.1 62 32 1993-07-01 1993-08-31
2 Calou Calou.1 60 41 1993-07-03 1993-08-31
3 Chou Chou.1992 31 15 1992-07-29 1992-08-28
4 Chou Chou.1993 60 36 1993-07-02 1993-08-30
5 Jean Jean.1 62 32 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

The trajectories are now regular, but there are now a lot of missing values!

3.4 Rounding the timing of the trajectories to define a
regular trajectory

In some cases, despite the fact that the relocations were expected to be collected
to return a regular trajectory, a minor delay is sometimes observed in this timing
(e.g. the GPS collar needs some time to relocate). For example, consider the
monitoring of four ibex in the Belledonne Mountains (French Alps):

> data(ibexraw)
> ibexraw

sokkkkokkkkkk List of class ltraj sskkkkskskkokk
Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 A153 A153 71 0 2003-06-01 00:00:56 2003-06-14 20:01:33
2 A160 A160 59 0 2003-06-01 08:01:35 2003-06-14 16:02:20
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3 A286 A286 68 0 2003-06-01 00:02:45 2003-06-14 16:01:41
4 A289 A289 58 0 2003-06-01 00:01:31 2003-06-14 20:02:32

There is a variable time lag between successive relocations. Look at the time
lag between successive relocations:

> plotltr(ibexraw, "dt/3600")
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The relocations should have been collected every 4 hours, but there are some
missing values. Use the function setNA to place the missing values, as in the
section 3.3. We define a reference date and place the missing values:

> refda <- strptime("2003-06-01 00:00", "}Y-Jm-7d %H:%M", tz="Europe/Paris")
> ib2 <- setNA(ibexraw, refda, 4, units = "hour")
> ib2

skkkkkkkkkk List of class ltraj skkkkkkkkksk
Type of the traject: Type II (time recorded)

* Time zone: Europe/Paris *
Irregular traject. Variable time lag between two locs

19



Characteristics of the bursts:

id burst nb.reloc NAs

date

.begin

date.end

1 A153 A153 84 13 2003-06-01 00:00:56 2003-06-14 20:01:33
2 A160 A160 81 22 2003-06-01 08:01:35 2003-06-14 16:02:20
3 A286 A286 83 15 2003-06-01 00:02:45 2003-06-14 16:01:41
4 A289 A289 84 26 2003-06-01 00:01:31 2003-06-14 20:02:32

Even when filling the gaps with NAs, the trajectory is still not regular. Now,
look again at the time lag between successive relocations:

> plotltr(ib2, "dt/3600")
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We can see that the time lag is only slightly different from 4 hour. The function
settO can be used to “round” the timing of the coordinates:

> ib3 <- sett0(ib2, refda, 4, units "hour")

> ib3
fkkkkkkkkkk List of class ltraj skkkskskskskskskk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
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Regular traject. Time lag between two locs: 14400 seconds

Characteristics of the bursts:
id burst nb.reloc

1 A153
2 A160
3 A286
4 A289

A153
A160
A286
A289

84
81
83
84

NAs
13
22
15
26

The trajectory is now regular.

date.begin date.end
2003-06-01 00:00:00 2003-06-14 20:00:00
2003-06-01 08:00:00 2003-06-14 16:00:00
2003-06-01 00:00:00 2003-06-14 16:00:00
2003-06-01 00:00:00 2003-06-14 20:00:00

Important note: The functions setNA and settO are to be used to define
a regular trajectory from a nearly regular trajectory. It is NOT intended
to transform an irregular trajectory into a regular one (many users of
adehabitat asked this question).

3.5 A special type of trajectories: same duration

In some cases, an object of class 1traj contains several regular bursts of the
same duration characterized by relocations collected at the same time (same
time lags between successive relocations, same number of relocations). We can
check whether an object of class “ltraj” is of this type with the function is.sd.
For example, consider again the movement of 4 ibexes monitored using GPS,
stored in an object of class 1traj created in the previous section:

> is.sd(ib3)

[1] FALSE

This object is not of the type sd (same duration). However, theoretically, all
the trajectories should have been sampled at the same time points. It is regular,
but there are mismatches between the time of the relocations:

> ib3

wkkkkkkkkkk List of class ltraj skkkxkkkkkk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
Regular traject. Time lag between two locs: 14400 seconds

Characteristics of the bursts:
id burst nb.reloc

1 A153
2 A160
3 A286
4 A289

A153
A160
A286
A289

84
81
83
84

NAs
13
22
15
26

date.begin date.end
2003-06-01 00:00:00 2003-06-14 20:00:00
2003-06-01 08:00:00 2003-06-14 16:00:00
2003-06-01 00:00:00 2003-06-14 16:00:00
2003-06-01 00:00:00 2003-06-14 20:00:00
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This is caused by the fact that there are missing relocations at the beginning
and/or end of the monitoring for several animals (A160 and A286). We can
use the function set.limits to define the time of beginning and ending of
the trajectories. This function adds NAs to the beginning and ending of the
monitoring when required:

> ib4 <- set.limits(ib3, begin = "2003-06-01 00:00",

+ dur = 14, units = "day", pattern = "JY-Jm-7d 7H:7M",
+ tz="Europe/Paris")
> ib4

wkkkkckkkkkk List of class ltraj #kkkkkkkkkk

Type of the traject: Type II (time recorded)
* Time zone unspecified: dates printed in user time zone *
Regular traject. Time lag between two locs: 14400 seconds

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

1 A153 A153 85 14 2003-06-01 2003-06-15
2 A160 A160 85 26 2003-06-01 2003-06-15
3 A286 A286 85 17 2003-06-01 2003-06-15
4 A289 A289 85 27 2003-06-01 2003-06-15

All the trajectory are now covering the same time period:
> is.sd(ib4)
[1] TRUE

Remark: in our example, all the bursts are covering exactly the same time
period (all begin at the same time and date and all stop at the same time and
date). However, the function set.limits is much more flexible. Imagine for
example that we are studying the movement of an animal during the night, from
00:00 to 06:00. If we have one burst per night, then it is possible to define an
object of class 1traj, type sd, containing several nights of monitoring, even if
the nights of monitoring do not correspond to the same date. If we consider that
all the bursts cover the same period, then it is still possible to use the function
set.limits to define an object of type sd (this is explained deeply on the help
page of set.limits).

It is then possible to store some parameters of sd objects into a data frame
(with one relocation per row and one burst per column), using the function
sd2df. For example, considering the distance between successive relocations:

> di <- sd2df(ib4, "dist")
> head(di)
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A153 A160 A286 A289
1 41.04875 NA 214.2008 15.65248
2 NA NA 428.8508 293.60007
3 NA 517.4882 606.9802 837.70401
4 NA 1533.7881 637.1538 1108.75065
5 NA 608.6912 216.0000 72.61543
6 244.66303 2264.8366 216.8156 383.65870

This data frame can then be used to study the interactions or similarities be-
tween the bursts.

3.6 Metadata on the trajectories (Precision of the reloca-
tions, etc.)

Sometimes, additional information is available for each relocation, and we may
wish to store this information in the object of class 1traj, to allow the analysis
of the relationships between these additional variables and the parameters of
the trajectory.

This meta information can be stored in the attribute infolocs of each burst.
This should be defined when creating the object 1traj, but can also be de-
fined later (see section 4.6 for an example). For example, load the dataset
capreochiz:

> data(capreochiz)
> head(capreochiz)

X y date Dop Status Temp Act Conv
1 967.3994 1137.488 2004-02-13 17:02:18 5.7 3DDif 10 O 0
2 961.9346 1141.413 2004-02-14 00:31:23 3.6 3DDif 3 0 0
3 961.9340 1141.401 2004-02-14 12:02:17 6.9 3DDif 8 0 0
4 961.9426 1141.409 2004-02-15 00:00:47 5.0 3DDif 3 0 0
5 961.9472 1141.405 2004-02-15 00:30:13 4.1 3DDif 2 0 0
6 961.9430 1141.409 2004-02-15 12:01:11 8.1 3DDif 5 0 0

This dataset contains the relocations of one roe deer monitored using a GPS
collar in the Chize forest (Deux-Sevres, France). This dataset contains the x
and y coordinates (in kilometres), the date, and several variables characterizing
the precision of the relocations. Note that the date is already of class POSIXct.
We now define the object of class 1traj, storing the variables Dop, Status,
Temp, Act, Conv in the attribute infolocs of the object:

> capreo <- as.ltraj(xy = capreochiz[,c("x","y")], date = capreochiz$date,
+ id "Roe.Deer",

+ infolocs = capreochiz[,4:8])

> capreo
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okkkkkkkkkk List of class 1ltraj sxkkkkxkrkk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end
1 Roe.Deer Roe.Deer 2355 0 2004-02-13 17:02:18 2004-08-31 06:00:47

infolocs provided. The following variables are available:
[1] "DOp" "Status" "Temp" "ACt" "COIIV"

The object capreo can be managed as usual. The function infolocs()
can be used to retrieve the attributes infolocs of the bursts building up a
trajectory:

> inf <- infolocs(capreo)
> head(inf[[1]])

Dop Status Temp Act Conv

1 5.7 3DDif 10 O 0
2 3.6 3DDif 3 0 0
3 6.9 3DDif 8 0 0
4 5.0 3DDif 3 0 0
5 4.1 3DDif 2 0 0
6 8.1 3DDif 5 0 0

The function removeinfo can be used to set the attribute infolocs of all
bursts to NULL.

Note that it is required that:

e all the bursts are characterized by the same variables in the attribute
infolocs. For example, it is not possible to store only the variable Dop
for one burst and only the variable Status for another burst into the same
object;

e cach row of the data frame stored as attributes infolocs correspond to
one relocation (that is, the number of rows of the attribute should be the
same as the number of relocations in the corresponding burst).

Most functions of the package adehabitatLT do manage this attribute. For
example, the functions cutltraj and plotltr can be used by calling variables
stored in this attribute (as well as many other functions). For example:
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> plotltr(capreo, "log(Dop)")
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4 Analyzing the trajectories

In this section, we will describe several tools available in adehabitatLT to anal-
yse a trajectory.

4.1 Randomness of the missing values

A first important point is the examination of the distribution of the missing
values in the trajectory. Missing values are frequent in the trajectories of an-
imals collected using telemetry (e.g., GPS collar may not receive the signal of
the satellite at the time of relocation, due for example to the habitat structure
obscuring the signal, etc.). As noted by Graves and Waller (2006), the analysis
of the patterns of missing values should be part of trajectory analysis.

The package adehabitatLT provides several tools for this analysis. For ex-
ample, consider the object ib4 created in section 3.5, and containing 4 bursts
describing the movements of 4 ibexes in the Belledonne moutain. We can first
test whether the missing values occur at random in the monitoring using the
function runsNAltraj:
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> runsNAltraj(ib4)
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In this case, no difference appears between the number of runs actually ob-
served in our trajectories and the distribution of the number of runs under the
hypothesis of a random distribution of the NAs. The hypothesis of a random
distribution of the NAs seems reasonable here. The statistics used here for the
test is the number of runs in the sequence of relocations. For example, the se-
quence reloc-NA-NA-reloc-reloc-reloc-NA-NA-NA-reloc contains 5 runs, 3 runs
of successful relocations and 2 runs of missing values. Under the hypothesis
of random distribution of the missing values in the sequence, the theoretical
expectation and standard deviation of the number of runs is known. The runs
test is a randomization test that compares the standardized value of the num-
ber of runs (i.e. (value-expectation)/(standard deviation)) to the distribution
of values obtained after randomizing the distribution of the NA in the sequence.
Thus, a negative value of this standardized number of runs indicates that the
missing values tend to be clustered together in the sequence.

But now, consider the distribution of the missing values in the case of the
monitoring of one brown bear using a GPS collar:
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> data(bear)
> bear

okkkkkkkkkk List of class 1ltraj sxkkkkkkrkk

Type of the traject: Type II (time recorded)
* Time zone: UTC *
Regular traject. Time lag between two locs: 1800 seconds

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end
1 W0208 w0208 1157 157 2004-04-19 16:30:00 2004-05-13 18:30:00

This trajectory is regular. The bear was monitored during one month, with
one relocation every 30 minutes. We now test for a random distribution of the
missing values for this trajectory:

> runsNAltraj (bear)
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In this case, the missing values are not distributed at random. Have a look at
the distribution of the missing values:

> plotNAltraj(bear)
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Because of the high number of relocations in this trajectory, this graph is
not very clear. So a better way to study the distribution of the missing values
is to work directly on the vector indicating whether the relocations are missing
or not. That is:

> missval <- as.numeric(is.na(bear[[1]]$x))
> head(missval)

[tToo0O0O0O0O

This vector can then be analyzed using classical time series methods (e.g. Diggle
1990). We do not pursue on this aspect, as this is not the aim of this vignette
to describe time series methods.

4.2 Should we consider the time?
4.2.1 Type II or type I?

Until now, we have only considered trajectories of type II (time recorded). How-
ever, a common approach to the analysis of animal movements is to consider the
movement as a discretized curve, and to study the geometrical properties of this
curve (e.g., Turchin 1998; Benhamou 2004). That is, even if the data collection
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implied the recording of the time, it is often more convenient to consider the
monitored movement as a trajectory of type I. There are two ways to define a
type I trajectory with the functions of adehabitatLT. The first is to set the
argument typeII=FALSE when calling the function as.ltraj. The second is to
use the function typeII2typel. For example, considering the trajectory of the
bear loaded in the previous section, we can transform it into a type I object by:

> bearI <- typeII2typel(bear)
> bearl

skkkkkkkkkk List of class ltraj skkkkkkkkkk
Type of the traject: Type I (time not recorded)

Characteristics of the bursts:
id burst Nb.reloc NAs
1 W0208 W0208 1157 157

infolocs provided. The following variables are available:
[1] "pkey"

Nothing has changed, except that the time is replaced by an integer vector
ordering the relocations in the trajectory.

4.2.2 Rediscretizing the trajectory in space

Several authors have advised to rediscretize type I trajectories so that they are
built by steps with a constant length (e.g. Turchin 1998). This is a convenient
approach to the analysis, as all the geometrical properties of the trajectory can
be summarized by studying the variation of the relative angles.

The function redisltraj can be used for this rediscretization. For example,
look at the trajectory of the brown bear stored in bearI (created in the previous

section):

> plot(bearI)
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Now, rediscretize this trajectory with constant step length of 500 metres:

> bearIr <- redisltraj(bearI, 500)
> bearlr

sokkkookkkkkk List of class ltraj sskkkskskskokksksk
Type of the traject: Type I (time not recorded)
Characteristics of the bursts:

id burst Nb.reloc NAs
1 W0208 W0208.R500 131 0

infolocs provided. The following variables are available:
[1] llpkeyll

The number of relocations has increased. Have a look at the rediscretized tra-
jectory:

> plot(bearIr)
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Then, the geometrical properties can be studied by examining the distribution
of the relative angles. For example, the function sliwinltr can be used to
smooth the cosine of relative angle using a sliding window method:

> sliwinltr(bearIr, function(x) mean(cos (x$rel.angle)), type="locs", step=30)
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The beginning of the trajectory is characterized by mean cosine close to 0.5
(tortuous trajectory). Then the movements of the animal is more linear (i.e.,
less tortuous). A finer analysis should now be done on these data. So that we
need to get the relative angles from this rediscretized trajectory:

> cosrelangle <- cos(bearIr[[1]]$rel.angle)
> head(cosrelangle)

[1] 1.00000000 0.17250586 -0.95704496 -0.02868422 0.90540259 1.00000000

This vector can now be analyzed using classical time series analysis methods.
We do not pursue this analysis further, as this is beyond the scope of this
vignette.

4.2.3 Rediscretizing the trajectory in time

A common way to deal with missing values consist in linear interpolation. That
is given relocations ry = (x1,y1,t1) and r3 = (x3,ys, t2), it is possible to estimate
the relocation ro9 collected at to with:

(t2 —t1)

(ts )2~
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(ta —t1)
I P (y3 — y1)

Such an interpolation may be of limited value when many reloca-
tions are missing (because it supposes implicitly that the animal is moving
along a straight line). However, it can be useful to “fill in” a small number of relo-
cations. Such an interpolation can be carried out with the function redisltraj,
setting the argument type = "time". In this case, this function rediscretizes
the trajectory so that the time lag between successive relocations is constant.
For example, consider the data set porpoise:

> data(porpoise)
> porpoise

wkkkkckkkkkk List of class ltraj #kkkxkkkkkk
Type of the traject: Type II (time recorded)
* Time zone: UTC *

Regular traject. Time lag between two locs: 86400 seconds

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 GUS GUS 64 0 2004-01-20 11:00:00 2004-03-23 11:00:00
2 David David 101 5 1999-08-02 18:00:00 1999-11-10 17:00:00
3 Mitchell Mitchell 97 9 1999-08-09 23:00:00 1999-11-13 22:00:00
4 Eric Eric 96 36 2000-08-19 13:00:00 2000-11-22 12:00:00

We focus on the first three animals. David and Mitchell contain a small
number of missing relocations, so that it can be a good idea to interpolate these
relocations, to facilitate later calculations. We first remove the missing values
with na.omit and then interpolate the trajectory so that the time lag between
successive relocations is constant:

> (porpoise2 <- redisltraj(na.omit(porpoise[1:3]), 86400, type="time"))

sokkkkokkkkkk List of class ltraj sskskkkskskskokskok
Type of the traject: Type II (time recorded)
* Time zone: UTC *

Regular traject. Time lag between two locs: 86400 seconds

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 David David 100 0 1999-08-02 18:00:00 1999-11-09 18:00:00
2 GUS GUS 63 0 2004-01-20 11:00:00 2004-03-22 11:00:00
3 Mitchell Mitchell 96 0 1999-08-09 23:00:00 1999-11-12 23:00:00
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infolocs provided. The following variables are available:

[1] "pkey"

The object porpoise2 now does not contain any missing values. Note that

the rediscretization step should be expressed in seconds.

4.3 Dynamic exploration of a trajectory

The package adehabitatLT provides a function very useful for the dynamic
exploration of animal movement: the function trajdyn. This function allows to
dynamically zoom/unzoom, measure distance between several bursts or several
relocations, explore the trajectory in space and time, etc. For example, the ibex

data set is explored by typing:

> trajdyn(ib4)

|Left-click
|Right-click
|eri

I

Exploration of Animal Movements

2003-06-14 20:01:33

e

burst of [relocations)
R

B

2160
A286
B289

————————— to obtain this help, type 'h' —————- 0K |

HMezt/Previcus relocaticn

[ — | %]

show all relocations

Go to...

show a given part of the path

change Burst

add/remove other bursts on the graph
Zoom infout

measure the distance between two points
identify a relocation

add or remove points/Lines

Quit

show bursts:

aled

R286 AZBY

|distance: 2769.%4812129707

Note that this function can draw a background defined by an object of class

SpatialPixelsDataFrame or SpatialPolygonsDataFrame.

34




4.4 Analyzing autocorrelation

Dray et al. (2010) noted that the analysis of the sequential autocorrelation of
the descriptive parameters presented in section 2.2 is essential to the under-
standing of the mechanisms driving these movements. The approach proposed
by these authors is implemented in adehabitatLT. In this section, we describe
the functions that can be used to carry out this kind of analysis.

A positive autocorrelation of a parameter means that values taken near to
each other tend to be either more similar (positive autocorrelation) or less similar
(negative autocorrelation) than would be expected from a random arrangement.

4.4.1 Testing for autocorrelation of the linear parameters

The independence test of Wald and Wolfowitz (1944) is implemented in the
generic function wawotest. Basically, this function can be used to test the
sequential autocorrelation in a vector. However, the method wawotest.ltraj
allows to test autocorrelation for the three linear parameters dx, dy and dist
for each burst in an object of class 1traj. For example, consider again the
monitoring of movements of the bear:

> wawotest (bear)

249 NA removed
249 NA removed
249 NA removed
[[1]1]

dx dy dist
a 1.180527e+02 2.089499e+02 405.90227
ea -1.000000e+00 -1.000000e+00 -1.00000
va 8.927603e+02 8.612297e+02 878.76704
za 3.984481e+00 7.154119e+00 13.72629
P 3.381395e-05 4.211076e-13 0.00000

Note that this function removes the missing values before the test. The row p
indicates the P-value of the test. We can see that the three linear parameters are
strongly positively autocorrelated. There are periods during which the animal
is traveling at large speed and periods when the animals are walking at lower
speed. Note that this was already apparent on the graph showing the changes
with time of the distance between successive relocations:

> plotltr(bear, "dist")
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This was even clearer on the graph showing the moving average of the distance
(with a window of 5 days):

> sliwinltr(bear, function(x) mean(na.omit (x$dist)),
+ 5%48, type="locs")

(not executed in this report).

4.4.2 Analyzing the autocorrelation of the parameters

The autocorrelation function (ACF) p(a) measures the correlation between a
parameter measured at time t and the same parameter measured at time ¢ — a
in the same time series (Diggle, 1990). This allows to analyze the autocorre-
lation, and to identify the scales at which this autocorrelation occurs. Dray
et al. (2010) noted that the autocorrelation function measured at lag 1 (p(1))
is mathematically equivalent to the independence test of Wald and Wolfowitz
(1944).

Dray et al. (2010) extended the mathematical bases underlying the ACF to
handle the missing data occurring frequently in the trajectories. Their approach
is implemented in the function acfdist.ltraj (the management of NAs is
described in detail on the help page of this function). For example, consider
again the monitoring of a brown bear:
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> acfdist.ltraj(bear, lag=5, which="dist")
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We have calculated here the ACF for the distance for a time lag up to 5
relocations. The interested reader can try to calculate the ACF for trajectories
up to 100 relocations to see the cyclic patterns occurring in this trajectory.

4.4.3 Testing autocorrelation of the angles

The test of the autocorrelation of the angular parameters (relative or absolute
angles, see section 2.2) is based on the chord distance between successive angles
(see Dray et al. 2010 for additional details):
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Criteria f for the measure of independence between successive
angles at time i-1 and i

For example, the function testang.ltraj is a randomization test using the
mean squared chord distance as a criteria. For example, considering again the
trajectory of the bear, we can test the autocorrelation of the relative angles
between successive moves:

> testang.ltraj(bear, "relative")

[[1]1]
Monte-Carlo test
Call: as.randtest(sim = res$sim[-1], obs = res$sim[1], alter = alter)

Observation: 1471.667
Based on 999 replicates
Simulated p-value: 0.052

Alternative hypothesis: two-sided

Std.0Obs Expectation Variance
-1.910304 1544.766108 1464.266878
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4.4.4 Analyzing the autocorrelation of angular parameters

Dray et al. (2010) extended the ACF to angular parameters by considering the
chord distance as a criteria to build the ACF. This approach is implemented in
the function acfang.ltraj. Considering again the bear dataset:

> acfang.ltraj(bear, lag=>5)

autocorrelation
2.00 2.05
| |

1.95
|

1.90
|

Lag

We can see that the relative angle observed at time ¢ is significantly correlated
with the angle observed at time 7 — 1.

4.5 Segmenting a trajectory into segments characterized
by a homogenous behaviour

4.5.1 The method of Gueguen (2001)

We implemented a new approach to the segmentation of movement data, re-
lying on a Bayesian partitioning of a sequence. This approach was originally
developed in molecular biology, to partition DNA sequences (Gueguen 2001).
We describe this approach in this section.

Biologically, a positive autocorrelation in any of the descriptive parameters
may mean that the animal behaviour is changing with time (there are periods
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during which the animal is feeding, other during which the animal is resting,
etc.). The idea is then to segment the trajectory of the animal into homogenous
segments.

We will use the movements of a porpoise monitored using an Argos collar to
illustrate this method. First we load the data:

> data(porpoise)
> gus <- porpoise[1]
> gus

wkkkkckkkkkk List of class ltraj #kkkkkkkkkk

Type of the traject: Type II (time recorded)
* Time zone: UTC =*
Regular traject. Time lag between two locs: 86400 seconds

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end
1 GUS GUS 64 0 2004-01-20 11:00:00 2004-03-23 11:00:00

The trajectory is regular and is built by relocations collected every 24 hours
during two months. Plot the data:

> plot(gus)
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Visually, the trajectory seems to be built by three segments. At the
very beginning of the trajectory, the animal is performing very short moves.
Then, the animal is travelling faster toward the southwest, and finally, the ani-
mal is again performing very small moves.

We can draw the ACF for the distance between successive relocations to
illustrate the autocorrelation pattern from another point of view:

> acfdist.ltraj(gus, "dist", lag=20)
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There is a strong autocorrelation pattern present in the data, up to lag 8.
We can plot the distances between successive relocations according to the date

> plotltr(gus, "dist")
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Now, let us suppose that the distances between successive relocations have
been generated by a normal distribution, with different means corresponding to
different behaviours. Let us built 10 models corresponding to 10 values of the
mean distance ranging from 0 to 130 km/day:

> (tested.means <- round(seq(0, 130000, length = 10), 0))
[1] 0 14444 28889 43333 57778 72222 86667 101111 115556 130000

Based on the visual exploration of the distribution of distance, we set the
standard deviation of the distribution to 5 km. We can now define 10 models
characterized by 10 different values of means and with a standard deviation of
5 km:

> (limod <- as.list(paste("dnorm(dist, mean =",

+ tested.means,
+ ", sd = 5000)")))
[[1]]

[1] "dnorm(dist, mean = 0 , sd = 5000)"

[[211
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(1]

[[3]1]
(1]

[[4]1]
[1]

[[5]11]
(1]

[[6]1]
[1]

[L71]
[11]

[[8]]
(1]

[[9]11]
[1]

[[101]
[1]

"dnorm(dist,

"dnorm(dist,

"dnorm(dist,

"dnorm(dist,

"dnorm(dist,

"dnorm(dist,

"dnorm(dist,

"dnorm(dist,

"dnorm(dist,

mean

mean

mean

mean

mean

mean

mean

mean

mean

14444

28889 ,

43333 ,

57778 ,

72222 ,

86667 ,

101111 ,

115556 ,

130000 ,

sd = 5000)"
sd = 5000)"
sd = 5000)"
sd = 5000)"
sd = 5000)"
sd = 5000)"
sd = 5000)"
sd = 5000)"
sd = 5000)"

The approach of Gueguen (2001) allows, based on these a priori models, to
find both the number and the limits of the segments building up the trajectory.
Any model can be supposed for any parameter of the steps (the distance, rela-
tive angles, etc.), provided that the model is Markovian.

Given the set of a priori models, for a given step of the trajectory, it is
possible to compute the probability density that the step has been generated
by each model of the set. The function modpartltraj computes the matrix
containing the probability densities associated to each step (rows), under each
model of the set (columns):

> mod <- modpartltraj(gus, limod)

> mod

sk sk sk ok o o ok sk ok o o ok sk sk ok o sk sk ok o ok sk sk sk sk o sk sk sk o ok sk sk ok sk ok
* Probabilities computed for a trajectory

* with the following models:

[1]
(9]

"mod.1"
"mod.9"

"mod.2"
"mod.10"

"mod.3"

"mod.4"
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Then, we can estimate the optimal number of segments in the trajectory,
given the set of a priori models, using the function bestpartmod, taking as
argument the matrix mod:

> bestpartmod (mod)

Maximum likelihood for K = 4

600
|

c(yye2)
400
|

200
|

L L L I
13 5 7 9 11 13 15 17 19 21 23 25 27 29

fac

This graph presents the value of the log-likelihood (y) that the trajectory
is actually made of K segments (x). Note that this log-likelihood is actually
corrected using the method of Gueguen (2001) (which implies the Monte Carlo
simulation of the independence of the steps in the trajectory — explaining the
boxplots —, see the help page of bestpartmod for further details on this proce-
dure). In this case, the method indicates that 4 segments are a reasonable choice
for the segmentation. This is a surprise for us, as we rather expected 3
segments (actually, the number of segments returned by the function depend
on the models supposed a priori).

Finally, the function partmod.ltraj can be used to compute the segmen-
tation. The mathematical rationale underlying these two functions is the fol-
lowing: given an optimal k-partition of the trajectory, if the i*" step of the
trajectory belongs to the segment k predicted by the model d, then either the
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relocation ¢ — 1 belongs to the same segment, in which case the segment contain-
ing 1—1 is predicted by d, or the relocation i —1 belongs to another segment, and
the other (k—1) segments together constitute an optimal (k—1) partition of the
trajectory [1—(i — 1)]. These two probabilities are computed recursively by the
functions from the matrix mod, observing that the probability of a 1-partition
(partition built by one segment) of the trajectory from 1 to i described by the
model m is simply the product of the probability densities of the steps from 1
to i under the model m.

Remark: this approach relies on the hypothesis of the independence of the
steps within each segment.

Now, use the function partmod.ltraj to partition the trajectory of the
porpoise into 4 segments:

> (pm <- partmod.ltraj(gus, 4, mod))

Number of partitions: 4
Partition structure:
relocation Num Model

1 1 cm mmmee
2 | 2 mod.2
3 -
4 | 5 mod.5
5 p): S
6 | 8 mod.8
7 <} S
8 | 2 mod.2
9 Y

The segments are contained in the component $ltraj of the list

We can see that the models at the beginning of the trajectory and at the
end of the trajectory are the same. Have a look at this segmentation:

> plot(pm)
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This is very interesting: we already noted that the movements at the very
beginning and the end of the trajectory were much slower that the rest of the
trajectory, and this is confirmed by this partition. However, this segmentation
illustrates a change of speed at the middle of the “migration”. The end of the
migration is much faster than the beginning. This is clearer on the graph show-
ing the changes in distance between successive relocations with the date. Let
us plot this graph together with the segmentation:

> ## Shows the segmentation on the distances:

> plotltr(gus, "dist")

> tmp <- lapply(1:length(pm$ltraj), function(i) {

+ coul <- c("red","green","blue") [as.numeric(factor (pm$stats$mod)) [i]]
+ lines(pm$ltraj[[i]]$date, rep(tested.means[pm$stats$mod[il],
+ nrow(pm$ltraj[[i]])),

+ col=coul, lwd=2)
+
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The end of the migration is nearly two times faster than the beginning of
the migration.

To conclude, have a look at the residuals of this segmentation:

> ## Computes the residuals

> res <- unlist(lapply(1:length(pm$ltraj), function(i) {

+ pm$ltraj[[i]]$dist - rep(tested.means[pm$stats$mod[il],
+ nrow(pm$ltraj[[i]]))

+ 1))

> plot(res, ty = "1")
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And a Wald and Wolfowitz test suggests that the residuals of this segmen-
tation are independent, confirming the validity of the approach:

> wawotest (res)

4 NA removed

a ea va za P
-5.4712718 -1.0000000 59.2571538 -0.5808456 0.7193277

4.5.2 The method of Lavielle (1999, 2005)

Barraquand and Benhamou (2008) proposed an approach to partition the trajec-
tory, to identify the places where the animal stays a long time (based on the cal-
culation of the residence time: see the help page of the function residenceTime).
Once the residence time has been calculated for each relocation, they propose to
use the method of Lavielle (1999, 2005) to partition the trajectory. We describe
this method in this section.

The method of Lavielle per se finds the best segmentation of a time series,
given that it is built by K segments. It searches the segmentation for which
a contrast function (measuring the contrast between the actual series and the
model underlying the segmented series) is minimized. Let Y; be the value of
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the focus variable (e.g. the speed, the residence time, etc.) at time ¢, and n the
number of observations. We suppose that the data have been generated by the
following model:

Y = p; +oi6

where p; and o; are respectively the mean and the standard deviation of Y,
and ¢; is a sequence of zero mean random variables with unit variance. Note
that it is not required that the €; are independent. The model underlying the
segmentation relies on the hypothesis that the parameters u; and o; are con-
stant within a segment, but also that they vary between successive segments.
Several contrast functions can be used to measure the discrepancy between the
observed series and a given segmentation model, depending on assumptions on
this variation:

e we can suppose a priori that only the mean u; changes between segments,
and that o; = o is the same for all segments. Then, for a given partition of
the series built by K segments with known limits, the following function
can be used to measure the discrepancy between the observed series and
the model supposing a mean constant within segments and changing from
one segment to the next:

Jr(Y) = Z G (Yiicr)
k

where Y; ;¢ is the set of observations in the segment &, and
tl;;(k) -
G (Yiier) = > _ (Y — Y3)?
i=tk
with ¥ and tfl( ) the indices of the first and last observations of segment k
respectively, and Y}, the sample mean of the observations in the segment k;

e we can suppose a priori that only the standard deviation o; changes be-
tween segments, and that u; = p is the same for all segments. Then, for
a given partition of the series built by K segments with known limits,
the following function can be used to measure the discrepancy between
the observed series and the model supposing a variance constant within
segments and changing from one segment to the next:

J(Y)=>_ Gi(Yiier)
k

where

1 1 _
2 a — § - 2
Gk(}/z,’tek) ’I’L(k) 1Og n 4 (}/l Y)
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with n(k) the number of observations in the segment k& and Y the mean
of the whole series;

e finally, we can suppose a priori that both the standard deviation o; and
the mean p; change between segments. Then, for a given partition of
the series built by K segments with known limits, the following function
can be used to measure the discrepancy between the observed series and
the model supposing a mean and variance constant within segments but
changing from one segment to the next:

Te(Y) = G} (Yiier)
k

where
, 1 1 tﬁ(k,) .
Yiier) = —~1 — Y, -
Gy, (Yiiek) (k) og n(k) Z( k)

Sy
1=ty

The three contrast functions can be used to measure the contrast between a
given series and the model underlying a given segmentation of this series. For
a giwen number of segments K, the method of Lavielle consists in the search of
the best segmentation of the series, i.e. the segmentation for which the chosen
contrast function is minimized.

For example, consider a series of 10 observations. First, we calculate an
upper triangular 10 x 10 matrix containing the value of the contrast function
for all possible segments built by the successive observations of the series. This
matrix is called the contrast matrix:
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Contrast function measured on the segment
beginning at observation 2 and ending at observation 7

1 2 3 4 5\6 7 8 9 10

10

Given a number K of segments, the Lavielle method consists in the search of
the best path from the first to the last observation in this matrix. For example,
consider the following path:
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This segmentation is built by 3 segments:

e the first segment begins at the first observation and ends at the fifth
observation. The value of the contrast function for this segment is at the
intersection between the first row and the fifth column.

e the second segment begins at the sixth observation and ends at the eighth
observation. The value of the contrast function for this segment is at the
intersection between the sixth row and the eighth column.

e the last segment begins at the ninth observation and ends at the tenth
observation. The value of the contrast function for this segment is at the
intersection between the ninth row and the tenth column.

The value of the contrast function for the whole segmentation is the sum
of the values located at the dots. For a given value of the number of segments
(in this example K = 3), a dynamic programming algorithm allows to identify
the best segmentation, i.e. the path through the matrix for which the contrast
function is minimized.

Remark: in practice, a minimum number of observations L,,;, in the segments
should be specified. For example, if L,,;, = 3, no segment will contain less than
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3 observations.

Now, remains the question of the choice of the optimal number of segments
Kopt. Several approaches have been proposed to guide the choice of K,,:. The
approaches proposed by Lavielle (2005) rely on the examination of the decrease
of the contrast function J(K) with the number of segments K. Indeed, the
more there are segments, and the smaller the contrast function will be (because
a segmentation built by more segments will fit more closely to the actual se-
ries). However, there should be a clear "break" in the decrease of this function
after the optimal value K,p¢. Therefore, the number of segments can be chosen
graphically, based on the examination of the decrease of this contrast function
J(K) with K. Lavielle (2005) also suggested an alternative way to estimate
automatically the optimal number of segments, also relying on the presence of a
"break" in the decrease of the contrast function. He proposed to choose the last
value of K for which the second derivative D(K) of a standardized constrast
function is greater than a threshold S (see Lavielle, 2005 for details). Based on
numerical experiments, he proposed to choose the value S = 0.75.

Note that the standardization of the contrast function is based on the spec-
ification of a value of K4, the maximum number of segments expected by
the user (see Lavielle 2005 for details). Note that the value of K4, chosen by
the user may have a strong effect on the resulting value of K, in particular
for small time series (i.e. less than 500 observations). Barraquand (com. pers)
noted from simulations that values of K, .. set to about 3 or 4 times the ex-
pected value of K,,; seem to give the best results.

The Lavielle method is implemented in the function lavielle. For example,
consider the following time series, built by 6 segments of 100 observations each,
drawn from a normal distribution with a mean varying from one segment to the

next (0, 2, 0, -3, 0, 2):

> suppressWarnings (RNGversion("3.5.0"))

> set.seed(129)

> seri <- c(rnorm(100), rnorm(100, mean=2),

+ rnorm(100), rnorm(100, mean=-3),

+ rnorm(100), rnorm(100, mean=2))

> plot(seri, ty="1", xlab="time", ylab="Series")
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Series

0 100 200 300 400 500 600

time

We will use the Lavielle method to see whether we can identify the limits
used to generate this series. We can use the function lavielle to calculate the
contrast matrix:

> (1 <- lavielle(seri, Lmin=10, Kmax=20, type="mean"))

Segmentation of a series using the method of Lavielle
$contmat: contrast matrix

$sumcont: optimal contrast

$matpath: matrix of the path

$Kmax: maximum number of segments
$Lmin: Minimum number of obs. to build a segment
$1d: The size of the subsampling grid

$series: the series

Note that we indicate that each segment should contain at least 10 obser-
vations (Lmin=10) and that the whole series is built by at most 20 segments
(Kmax = 20). The result of the function is a list of class "lavielle" containing
various results, but the most interesting one here is the contrast matrix. We
can have a look at the decrease of the contrast function when the number K of
segments increase, with the function chooseseg;:

> chooseseg(1)
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D Jk
Inf 599.0000
-5.5485861559 506.4326
7.3267868763 281.6300
1.1530621869 231.4410
1.0341982627 208.7321
1.9327670882 161.3760
0.0074135521 160.0819
-0.0074135521 158.9646
-0.0107869455 157.6706
.0107869455 156.1195
.0040387117 154.8255
.0064045526 153.6277
.0002814105 152.5826
.0010609576 151.5307
.0063271203 150.5042
.0003941470 149.6284
.0004747425 148.7620
.0004747425 147.9070
.0005643351 147.0406
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This function returns: (i) the value of the contrast function Jk for various
values of K, (ii) the value of the second derivative of the contrast function D
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for various values of K, and (iii) a graph showing the decrease of Jk with K.
The slope of the contrast function is strongly negative when K < 6, but there
is a sharp break at K = 6. Visually, the value of K,,; = 6 seems therefore
reasonable. Moreover, the last value of K for which D > 0.75 is K = 6, which
confirms our first visual choice (the second derivative is actually very strong for
this value of K). We can have a look at the best segmentation with 6 segments
with the function findpath:

> fp <- findpath(1, 6)

series

0 100 200 300 400 500 600

Index

The Lavielle method does a pretty good job in this ideal situation. Note
that fp is a list containing the indices of the first and last observations of the
series building the segment:

> fp

[[1]1]

[1] 1 99
[[21]

[1] 100 201
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[[3]1]
[1] 202 299

[[4]1]
[1] 300 400

[s1]
[1] 401 498

[[6]1]
[1] 499 600

The limits found by the method are very close to the actual limits here.

The function lavielle is a generic function that has a method for objects
of class "ltraj". For example, consider again the porpoise described in the
previous section. We will perform a segmentation of this trajectory based on
the distances travelled by the animal from one relocation to the next.

> plotltr(gus, "dist")
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We can use the function lavielle to partition this trajectory into segments
with homogeneous speed. A priori, based on a visual examination, there is no
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reason to expect that this series is built by more than 20 segments. We will use
the Lavielle method, with K4 = 20 and L,,;,, = 2 (we suppose that there are
at least 2 observations in a segment):

> lav <- lavielle(gus, Lmin=2, Kmax=20)
> chooseseg(lav)

K D Jk
1 1 Inf 62.000000
2 2 6.0646620289 29.916691
3 3 2.4909974271 16.121554
4 4 1.6466711405 9.838095
5 5 0.3122344015 8.520223
6 6 0.0230477679 8.143903
7 7 -0.0242022033 7.837084
8 8 0.0011544354 7.457283
9 9 0.0371514816 7.080963
10 10 0.0056043674 6.816674
11 11 0.0116307321 6.569285
12 12 -0.0115498156 6.356970
13 13 0.0115498156 6.109825
14 14 -0.0113274369 5.897509
15 15 0.0113274369 5.651035
16 16 0.0006966657 5.438720
17 17 0.0097325552 5.228505
18 18 -0.0061039466 5.047639
19 19 0.0185150717 4.848366
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There is a clear break in the decrease of the contrast function after K = 4.
In addition, this is also the last value of K for which D > 0.75. Look at the
segmentation of the series of distances:

> kk <- findpath(lav, 4)
> kk

wkkkkckkkkkk List of class ltraj skkkxkkkkkk

Type of the traject: Type II (time recorded)

* Time zone: UTC x*

Regular traject. Time lag between two locs: 86400 seconds

Characteristics of the bursts:

id burst nb.reloc NAs
1 GUS Segment.1 5 0
2 GUS Segment.2 21 0
3 GUS Segment.3 6 O
4 GUS Segment.4 32 0

date
2004-01-20 11
2004-01-25 11
2004-02-15 11
2004-02-21 11

60

.begin date.end
:00:00 2004-01-24 11:00:00
:00:00 2004-02-14 11:00:00
:00:00 2004-02-20 11:00:00
:00:00 2004-03-23 11:00:00
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Note that the red lines indicate the beginning of new segments. The function
findpath here returns an object of class "ltraj" with one burst per segment:

> plot (kk)
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Note that this segmentation is nearly identical to the one found with the
method of Gueguen (2001).

Important Remark: The Lavielle method implies the calculation of a contrast
matrix with dimensions equal to n x n, where n is the number of observations in
the series. However, as n increases, the size of the contrast matrix may exceed
the memory limit of the computer. In this case, a possibility consists in the cal-
culation of the contrast function along a grid of size l;. Therefore the contrast
function will not be calculated for all possible segments in the series, but for all
possible segments containing multiple of [; observations. For example, if [; = 3,
possible segments beginning by observation 1 are (1,2,3), (1, 2, ..., 6), (1, 2, ...,
9), (1, 2, ..., 12), etc. Therefore, l; defines the resolution of the segmentation:
the segment limits can only occur for observations located at indices multiple
of lg. This sub-sampling approach is possible with the function lavielle, by
setting the parameter 1d to a value greater than 1. Note that in this case, Lmin
should necessarily be a multiple of 1d (the function fails otherwise).

Remark: The Lavielle method was originally propose to partition a trajectory
based on the residence time of the animal. The residence time method is im-
plemented in the function residenceTime. The use of this function will add a
new variable in the component "infolocs" of the object of class "1traj" that
can be used with the Lavielle method (see the help page of this function).
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4.6 Rasterizing a trajectory

In some cases, it may be useful to rasterize a trajectory. In particular, when the
aim of the study is to examine the habitat traversed by the animal, this approach
may be useful. For example, consider the dataset puechcirc, containing 3
trajectories of 2 wild boars. It may be useful to identify the habitat traversed
by the animal during each step. A habitat map is available in the dataset
puechabonsp:

> data(puechcirc)
> data(puechabonsp)
> mimage (puechabonsp$map)

Elevation Aspect

Herbaceous

We can rasterize the trajectories of the wild boars:
> ii <- rasterize.ltraj(puechcirc, puechabonsp$map)

The result is a list containing 3 objects of class "SpatialPointsDataFrame"
(one per animal). Let us examine the first one:

> trl <- ii[[1]]
> head(trl)
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coordinates step
(700300, 3158400)
(700200, 3158400)
(700200, 3158300)
(700200, 3158300)
(700200, 3158400)
10 (700300, 3158400) 4
Coordinate Reference System (CRS) arguments: NA

© 00 N O U»
oW ww

This data frame contains the coordinates of the pixels traversed by each step.
For example, the rasterized trajectory for the first animal is:

> plot(tri)
> points(trl[tr1[[1]]1==3,], col="red")

+
+ +
+ 4+ + +
++ +
++  ++
++ 4+
+ 4
+ o+ + +
+ o+ ++ 4
+++ +
+ +
+++ ++ + +
+4++++ +
++ +
+ 4+
++ 4+ +
+++  +
+ o+
+ +
+

The red points indicate the pixels traversed by the third step. These results
can be used to identify the habitat characteristics of each step. For example, we
may calculate the mean elevation for each step. To proceed, we use the function
over of the package sp.

> ov <- over(trl, puechabonsp$map)
> mo <- tapply(ov[[1]], tr1[[1]], mean)
> plot(mo, ty="1")
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Here, we can see that the first animal stays on the plateau at the beginning
at the monitoring, then goes down to the crops, and goes back to the plateau.
It is easy to repeat the operation for all the animals. We will make use of the
infolocs attribute. We first build a list containing data frames, each data

frame containing on variable describing the mean elevation traversed by the
animal between relocation 7 — 1 and relocation i:

> val <- lapply(1:length(ii), function(i) {

## get the rasterized trajectory
tr <- ii[[i]]

## over with the map
ov <- over(tr, puechabonsp$map)

## calculate the mean elevation
mo <- tapply(ov[[1]], tr[[1]], mean)

## prepare the output
elev <- rep(NA, nrow(puechcirc[[i]]))

+ o+ F F R+ o+ o+ o+ F

## place the average values at the right place

65



## names (mo) contains the step number (i.e. relocation
## number +1)

elev[as.numeric (names (mo))+1] <- mo

df <- data.frame(elevation = elev)

## same row.names as in the ltraj
row.names (df) <- row.names (puechcirc[[i]])

return(df)

-
\

V o+ o+ o+ o+ F o+ o+ + o+t

Then, we define the infolocs attribute:
> infolocs(puechcirc) <- val
and finally, we can plot the mean elevation as a function of date:

> plotltr(puechcirc, "elevation")

elevation
200

“.Iﬁ-thf"

100

18:00 21:00 00:00 03:00 06:00

200

elevation

T i

100

21:00 00:00 03:00 06:00

Time

[

250
7
3

elevation
150

21:00 00:00 03:00 06:00

4.7 Models of animal movements

Several movement models have been proposed in the litteratured to describe
animal movements. The package adehabitatLT contains several functions al-
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lowing to simulate these models. Such simulations can be very useful to test
hypotheses concerning a trajectory, because all the descriptive parameters of
the steps are also generated by the functions. Actually, the package proposes 6
functions to simulate such models:

e simm.brown can be used to simulate a Brownian motion;

e simm.crw can be used to simulate a correlated random walk. This model
has been often used to describe animal movements (Kareiva and Shigesada
1983);

e simm.mba can be used to simulate an arithmetic Brownian motion (with
a drift parameter and a covariance between the coordinates, see Brillinger
et al. 2002);

e simm.bb can be used to simulate a Brownian bridge motion (i.e. a Brow-
nian motion constrained by a fixed start and end point);

e simm.mou can be used to simulate a bivariate Ornstein-Uhlenbeck motion
(often used to describe the sedentarity of an animal, e.g. Dunn and Gipson
1977);

e simm.levy can be used to simulate a Levy walk, as described (Bartumeus
et al. 2005).

All these functions return an object of class 1traj. For example, simulate a
correlated random walk built by 1000 steps characterized by a mean cosine of
the relative angles equal to 0.95 and a scale parameter for the step length equal
to 1 (see the help page of simm.crw for additional details on the meaning of
these parameters):

> sim <- simm.crw(1:1000, r=0.95)
> sim

sorkkskokkkokkk List of class ltraj skskskskskskokkkk
Type of the traject: Type II (time recorded)

* Time zone unspecified: dates printed in user time zone *
Regular traject. Time lag between two locs: 1 seconds

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 A1 Al 1000 0 1970-01-01 01:00:01 1970-01-01 01:16:40

infolocs provided. The following variables are available:
[1] llpkeyll
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Note that the vector 1:1000 passes as an argument is considered here as a
vector of dates (it is converted to the class POSIXct by the function, see section
2.4 for more details on this class). Other dates can be passed to the functions.
Have a look at the simulated trajectory:

> plot(sim, addp=FALSE)

-50

-150
|

-50 0 50 100

5 Null models of animal movements

5.1 What is a null model?

The package adehabitatLT provides several functions to perform a null model
analysis of trajectories. Null models are frequently used in community ecology
to test hypotheses about the processes that generated the data. Gotelli and
Graves (1996) defined the null model as “a pattern generating model that is
based on randomization of ecological data or random sampling from a known or
mmagined distribution. The null model is designed with respect to some ecolog-
ical or evolutionary process of interest. Certain elements of the data are held
constant, and others are allowed to vary stochastically to create new assemblage
patterns. The randomization is designed to produce a pattern that would be ex-
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pected in the absence of a particular ecological mechanism’”.

Gotelli (2001) gave a more detailed description of the null model approach:
“to build a null model, an index of community structure, such as the amount of
niche overlap (...), is first measured for the real data. Next, a null community
18 generated according to an algorithm or set of rules for randomization, and
this same index is measured for the null community. A large number of null
communities are used to generate a frequency histogram of index values expected
if the null hypothesis is true. The position of the observed index in the tails of
this null distribution is then used to assign a probability value to the pattern,
just as in a conventional statistical analysis.

Although mostly used in community ecology, this approach was also advo-
cated for trajectory data, e.g. in the analysis of habitat selection (Martin et al.
2008) and the study of the interactions between animals (Richard et al. 2012).
This approach can indeed be very useful to test hypotheses related to animal
movements. The package adehabitatLT propose several general null models that
can be used to test biological hypotheses.

5.2 The problem

For example, consider the first animal in the object puechcirc loaded previ-
ously. We plot this trajectory on an elevation map:

> data(puechcirc)

> data(puechabonsp)

> boarl <- puechcirc[1]

> x0 <- coordinates (puechabonsp$map)

> ## Note that xo is a matrix containing the coordinates of the

> ## pixels of the elevation map (we will use it later to define
> ## the limits of the study area).

>

>

plot(boarl, spixdf=puechabonsp$map, xlim=range(xo[,1]), ylim=range(xo[,2]))
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At first sight, it seems that the animal occupies a large range of values of
elevation. We may want to test whether the variance of elevation values at
animal relocations could have been observed under the hypothesis of random
habitat use. The question is therefore: what do we mean by “random habitat
use”” We can precise our aim here. We may consider the animal as a random
sample of all animals living on the study area. If we focus on the second scale
of habitat selection as defined by Johnson (1980), i.e. on the selection of the
home range in the study area, under the hypothesis of random habitat use, the
observed trajectory could have been located anywhere on the study area.

Therefore, if we want to know if the actual elevation variance could have
been observed under the hypothesis of random habitat use, one possibility is
to simulate this kind of random habitat use a large number of times, and to
calculate the elevation variance for each simulated data set. If the observed
value is far from the distribution of simulated values, this would allow to rule
out the null model.

One possibility to simulate this kind of “random habitat use” for this animal
could be to randomly rotate and shift the observed trajectory over the study
area. Rotating and shifting the trajectory as a whole allows to keep the trajec-
tory structure unchanged (therefore taking into account the internal constraints
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of the animal, see Martin et al. 2008). The function NMs .randomShiftRotation
from the package adehabitatLT allows to define this type of null model (but
other null models are also available in adehabitatLT, see section 5.7), and the
function testNM allows to simulate it.

5.3 The principle of the approach

The basic principle of the null model approach implemented in the package is
the following:

e first write a treatment function that will be used to calculate a criterion
characterizing the process under study from the simulated data (see below
for how to write such a function);

e then choose a null model and define the constraints to be satisfied by simu-
lated datasets. Define this null model with one function NMs. * (see section
5.7 or the help page of testNM for a list of the available null models), and
simulate N random data sets generated by this model using the function
testNM;

e finally compare the observed criterion with the distribution of simulated
values to determine whether the observed data set could have been gen-
erated by the null model.

The function testNM, used to simulate the model, generates at each step
of the simulation process a data frame x with three columns: the coordinates
x, v, and the date (whatever the chosen type of null model). The treatment
function defines how to calculate the criterion used in the test from this data
frame. The treatment function can be any function defined by the user, but
must take arguments x and par, where:

e x is the data frame generated by the null model;

e par can be any R object (e.g. a list) containing the parameters required
by the treatment function. Note that this argument is needed even if no
parameters are required by the treatment function. In this case, the ar-
gument par will not be used by the function, but must be present in the
function definition).
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We will define a treatment function that calculate the elevation variance
from a simulated trajectory later. For the moment, we will define a treatment
function that just plot the simulated trajectories on an elevation map. Consider
the following function:

> plotfun <- function(x, par)
+{

+ image (par)

+ points(x[,1:2], pch=16)
+ lines(x[,1:2])

+ return (x)

+}

This function will be used to plot the simulations of the null model. In this
case, the argument par correspond to a map of the study area. Note that this
function also returns the data frame x. Now, define the following null model:

> nmo <- NMs.randomShiftRotation(na.omit(boarl), rshift TRUE, rrot = TRUE,

+ rx = range(xo[,1]), ry = range(xo[,2]),

+ treatment.func = plotfun,

+ treatment.par = puechabonsp$mapl[,1], nrep=9)
> nmo

stk sk ok o ok ok sk sk ok e ok sk sk ok o ke sk sk sk ok ke sk sk sk sk e ok sk sk ok ok ok
Null Model object of type randomShiftRotation (single)

9 repetitions will be carried out

Please consider the function testNM() for the simulations

We have removed the missing values from the object of class 1traj (this
function does not accept missing values in the trajectory). The arguments
rshift and rrot indicate that we want to randomly rotate the trajectory and
shift it over the study area. The study area is necessarily a rectangle defined
by its x and y limits rx and ry. We indicate that the treatment function is the
function plotfun that we just wrote, and that the argument par that will be
passed to the treatment function (i.e. treatment.par) is the elevation map.
We only define 9 repetitions of the null model. Now, we simulate the model
using the function testNM:

> suppressWarnings (RNGversion("3.5.0"))
> set.seed(90909)

> par (mfrow=c(3,3), mar=c(0,0,0,0))

> resu <- testNM(amo, count = FALSE)
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This figure illustrates the datasets generated by the null model. We can
see that each data set corresponds to the original trajectory after a random
rotation and shift over the study area. First, we can see a problem: some of
the generated trajectories are located outside the study area (because the study
area is necessarily defined as a rectangle in this type of null model). It here
necessary to define a constraint function when defining the null model. Like the
treatment function, the constraint function takes two arguments x and par, and
must return a logical value indicating whether the constraint(s) are satisfied
or not. In our example, we would like that all the relocations building the
trajectory fall within the study area. In other words, if we overlap spatially the
relocations and the elevation map, there should be no missing value. Define the
following constraint function:

> confun <- function(x, par)

+{

+ ## Define a SpatialPointsDataFrame from the trajectory
+ coordinates (x) <- x[,1:2]

+ ## overlap the relocations x to the elevation map par
+ jo <- join(x, par)

+ ## checks that there are no missing value

+ res <- all(!is.na(jo))

+ ## return this check



+

return(res)

+ }
Now, define again the null model, but also define the constraint function:

nmo2 <- NMs.randomShiftRotation(na.omit (boarl), rshift
rx = range(xol[,1]), ry
treatment.func = plotfun,
treatment.par = puechabonsp$mapl[, 1],
constraint.func = confun,
constraint.par = puechabonsp$map(,1],
nrep=9)

TRUE, rrot = TRUE,
range(xo[,2]),

+ + + + + +V

Now, if we simulate the null model, only those data sets satisfying the con-

straint will be returned by the function:

> suppressWarnings (RNGversion("3.5.0"))
> set.seed(90909)

> par (mfrow=c(3,3), mar=c(0,0,0,0))

> resu <- testNM(amo2, count = FALSE)

&
&
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5.4 Back to the problem

Now consider again our problem: is the variance of the elevation values at
the relocations greater than expected under the hypothesis of random use of
space? We can write a treatment function that calculates the variance of eleva-
tion values from a data frame x containing the relocations and a SpatialPixels-
DataFrame par containing the elevation map:

> varel <- function(x, par)

+ {

+ coordinates (x) <- x[,1:2]
+ jo <- join(x, par)

+ return (var (jo))

+ }

We can define again a null model to calculate a distribution of values of
variance expected under the null model. We use the function varel as treatment
function in the null model. To save some time, we calculate only 99 values under
this null model, but the user is encouraged to try the function with a larger value:

> nmo3 <- NMs.randomShiftRotation(na.omit (boarl), rshift = TRUE, rrot = TRUE,
+ rx = range(xo[,1]), ry = range(xo[,2]),

+ treatment.func = varel,

+ treatment.par = puechabonsp$mapl,1],

+ constraint.func = confun,

+ constraint.par = puechabonsp$map[,1],

+ nrep=99)

Note that we define the same constraint function as before (all relocations
should be located inside the study area. We now simulate the null model:

> sim <- testNM(nmo3, count=FALSE)

Now, calculate the observed value of variance:
> (obs <- varel(na.omit(boarl) [[1]], puechabonsp$map[,1]))
[1] 6208.397

And compare this observation with the distribution obtained under the null
model, using the function as.randtest from the package ade4:

> (ran <- as.randtest(unlist(sim[[1]]), obs))

Monte-Carlo test
Call: as.randtest(sim = unlist(sim[[1]]), obs = obs)

Observation: 6208.397

()



Based on 99 replicates
Simulated p-value: 0.07
Alternative hypothesis: greater

Std.0Obs Expectation Variance
1.222352e+00 2.669105e+03 8.383787e+06

> plot(ran)
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The P-value is rather low, which seems to indicate that the range of eleva-
tions used by the boar is important in comparison to what would be expected
under the hypothesis of random habitat use.

5.5 Null model with several animals

Now, consider again the data set puechcirc. This data set contains three
trajectories of two wild boars:

> puechcirc

okkkkckkkkkk List of class ltraj skkkxkkkkkk

Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *
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Regular traject. Time lag between two locs: 600 seconds

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 CH93 CH930824 80 16 1993-08-24 17:00:00 1993-08-25 06:10:00
2 CH93 CH930827 69 17 1993-08-27 19:10:00 1993-08-28 06:30:00
3 JE93 JE930827 66 19 1993-08-27 19:20:00 1993-08-28 06:10:00

> plot(puechcirc)

CH93

Note that the two trajectories of CH93 are roughly located at the same place
on the study area. We decide to bind these two trajectories into one:

> (boar <- bindltraj(puechcirc))

sokkokkkokkk List of class ltraj sksskskskokkkkk
Type of the traject: Type II (time recorded)
* Time zone: Europe/Paris *

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

7



1 CH93 CH93 149 33 1993-08-24 17:00:00 1993-08-28 06:30:00
2 JE93 JE93 66 19 1993-08-27 19:20:00 1993-08-28 06:10:00

infolocs provided. The following variables are available:
[1] "pkey"

Now, we can reproduce the null model analysis separately for each animal.
When the object of class 1traj passed as argument contains several trajectories,
the simulations are performed separately for each one. Therefore, to define the
null model for all animals in boar, we can use the same command line as before,
just replacing boarl by boar:

> nmo4 <- NMs.randomShiftRotation(na.omit (boar), rshift = TRUE, rrot = TRUE,
rx = range(xo[,1]), ry = range(xo[,2]),
treatment.func = varel,

treatment.par = puechabonsp$mapl,1],
constraint.func = confun,

constraint.par = puechabonsp$map[,1],
nrep=99)

+ + + + + o+

We now simulate this null model with the function testNM:
> sim2 <- testNM(nmo4, count=FALSE)

sim2 is a list with two components (one per trajectory), each component
being itself a list with nrep=99 elements (the elevation variance calculated for
each of the 99 datasets generated by the null model). We can calculate the
observed elevation variance for each observed trajectory:

> (obs <- lapply(na.omit(boar), function(x) {
+ varel(x, puechabonsp$map[,1])
+}))

[[1]1]
[1] 5661.974

[[21]
[1] 3265.768

And calculate a P-value for each animal separately:

> lapply(1:2, function(i) {
+ as.randtest(unlist(sim2[[i]]), obs[[i]])
+ })

(0111

Monte-Carlo test
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Call: as.randtest(sim = unlist(sim2[[i]]), obs = obs[[i]])
Observation: 5661.974

Based on 99 replicates
Simulated p-value: 0.19
Alternative hypothesis: greater

Std.0Obs Expectation Variance
4.130523e-01 3.753411e+03 2.135023e+07

[[2]]
Monte-Carlo test
Call: as.randtest(sim = unlist(sim2[[i]]), obs = obs[[i]l])

Observation: 3265.768

Based on 99 replicates
Simulated p-value: 0.34
Alternative hypothesis: greater

Std.0Obs Expectation Variance
2.343670e-01 2.701657e+03 5.793429e+06

In this case, none of the two tests are significant at the conventional o = 5%
level.

5.6 Single null models and multiple null models

In the previous section, we showed how to build a null model and simulate this
null model for several trajectories separately. Now, we may find more conve-
nient to design a global criterion (measured on all animals) to test whether the
elevation variance is greater than expected under the null model. This is the
principle of “multiple null models”. This approach is the following:

e First define a global criterion that will be used to test the hypothesis under
study;

e Define “single null models” using any of the functions NMs.* (see below),
i.e. the randomization approach and the constraints that will be used to
simulate a trajectory for each animal;

e Define a “multiple null model” from the “single null models”, by defining
the constraints that should be satisfied by each set of simulated trajectories
and the treatment function that will be applied to each set;
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e Simulate the null model nrep times to obtain nrep values of the criterion
under the defined null model, using the function testNM

e Calculate the observed value of the criterion and calculate a P-value by
comparing the observed value to the distribution of values expected under
the null model.

We illustrate this approach on our example. We first define, as a global
criterion, the mean elevation variance, i.e. the elevation variance averaged over
all animals. We need to define a treatment function allowing to calculate this
global criterion. The treatment function should take two arguments named x
and par. The argument x should be an object of class "ltraj" (i.e. the set
of trajectories simulated by the null model at each step of the randomization
process) and the argument par can be any R object (e.g. a list) containing the
parameters needed by the treatment function. In our example, the treatment
function will be the following:

> meanvarel <- function(x, par)

+ 1

+ livar <- lapply(x, function(y) {
+ coordinates(y) <- y[,1:2]

+ jo <- join(y, par)

+ return(var (jo))
+ »

+ mean(unlist(livar))
+

}

We have defined the single null models in the previous section. We now
define a multiple null model from this object using the function NMs2NMm:

> nmo5 <- NMs2NMm(nmo4, treatment.func = meanvarel,
+ treatment.par = puechabonsp$map, nrep = 99)

Note that both the treatment function and the number of repetitions that we
have defined in the function NMs.randomShiftRotation will be ignored when
the multiple null model will be simulated. We can now simulate the model:

> sim3 <- testNM(nmo5, count=FALSE)

At each step of the randomization process, two trajectories are simulated
(under the null model and satisfying the constraints) and the treatment function
is applied to the simulated trajectories. The result is therefore a list with nrep
component, each component containing the result of the treatment function.
We now calculate the observed criterion:

> (obs <- meanvarel (na.omit (boar), puechabonsp$map))

[1] 280.3734
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And we define a randomization test from these results, using the function
as.randtest from the package ade4:

> (ran <- as.randtest(unlist(sim3), obs))

Monte-Carlo test
Call: as.randtest(sim = unlist(sim3), obs = obs)

Observation: 280.3734
Based on 99 replicates
Simulated p-value: 0.23

Alternative hypothesis: greater

Std.0Obs Expectation Variance
4.906214e-01 1.988151e+02 2.763395e+04

> plot(ran)
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As a conclusion, we are unable to highlight any difference between the ob-

served mean elevation variance and the distribution of values expected under
the null model.
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5.7 Several important remarks

We give in this section several important remarks:

e We have illustrated null models in this vignette with the help of the
function NMs.randomShiftRotation. However, several other null mod-
els are available in the package. The function NMs.randomCRW can be
used to simulate a correlated random walk, with the distribution of turn-
ing angles and distances between successive relocations calculated from
the data. The function NMs.CRW implements a purely parametric corre-
lated random walk (see ?simm.crw), where parameters are specified by
the used. Finally, the function NMs.randomCs is similar to the function
NMs .randomShiftRotation, but give a finer control on the distances be-
tween trajectory barycenter and a set of capture sites. The help page of
testNM given further details and examples of use.

e We have illustrated the use of null models to test for habitat selection,
but it can be used for a wide variety of hypotheses (interactions between
animals, etc.).

e The main argument of the functions NMs.* is an object of class 1ltraj.
However, in some cases, the null models can be useful to test hypotheses
on other types of data. For example, imagine that we want to measure
the overlap between the home-range of several animals monitored using
radio-tracking, and that, for each animal, only the X and Y coordinates
are available. It is therefore impossible, in theory, to define an object of
class 1traj (since a date is needed for such objects), though it might be
biologically sensible to compare the observed overlap with the overlap ex-
pected under a random distribution of the animals. It is still possible to
use the functions NMs.randomShiftRotation and NMs.randomCs for this
kind of analysis. In this case, the user can create a “fake” date variable
(e.g. if there are nr rows in the data frame containing the X and Y co-
ordinates, a “fake” date variable can be created by fa <- 1:nr, and can
be used to create an object of class 1traj that can be used in null model
analysis.

e Note that for multiple null models, two kinds of constraints are possible:
it is possible to define constraints for the individual trajectories in the
function NMs. * (e.g. the simulated trajectory should fall within the study
area), and for the whole set of trajectories in the function NMs2NMn (e.g. at
least 80% of the trajectories should be located in a given habitat type, see
Richard et al., 2012 for an example). The two types of constraint function
are taken into account when simulating the null model.
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e Note that missing relocations are not allowed in null model analysis.
Therefore, if there are missing relocations in the trajectory, the use of
na.omit.ltraj is required prior to the analysis.

6 Conclusion and perspectives

Several other methods can be used to analyze a trajectory. Thus, the first pas-
sage time method, developed by Fauchald and Tveraa (2003) to identify the
areas where area restricted search occur is implemented in the function fpt.
Several methods are available in the package adehabitatHR to estimate a home
range based on objects of class 1traj. Thus, the Brownian bridge kernel method
(Bullard 1999, Horne et al. 2007), the biased random bridge kernel method
(Benhamou and Cornelis 2010, Benhamou 2011), and the product kernel algo-
rithm (Keating and Cherry 2009) are implemented in the functions kernelbb
and kernelkc respectively.

But one thing is important: at many places in this vignette, we have noted
that the descriptive parameters of the steps can be analysed as a (possibly mul-
tiple) time series. The R environment provides many functions to perform such
analyses, and we stress that the package adehabitatLT should be con-
sidered as a springboard toward such functions.

We included in the package adehabitatLT several functions allowing the
analysis of animal movements. All the brother packages adehabitat* contain
a vignette similar to this one, which explains not only the functions, but also in
some cases the philosophy underlying the analysis of animal space use.
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