| Title: | Exclusion-Based Parentage Assignment Using Multilocus Genotype Data | 
| Version: | 0.1.0 | 
| Description: | Exclusion-based parentage assignment is essential for studies in biodiversity conservation and breeding programs - Kang Huang, Rui Mi, Derek W Dunn, Tongcheng Wang, Baoguo Li, (2018), <doi:10.1534/genetics.118.301592>. The tool compares multilocus genotype data of potential parents and offspring, identifying likely parentage relationships while accounting for genotyping errors, missing data, and duplicate genotypes. 'acoRn' includes two algorithms: one generates synthetic genotype data based on user-defined parameters, while the other analyzes existing genotype data to identify parentage patterns. The package is versatile, applicable to diverse organisms, and offers clear visual outputs, making it a valuable resource for researchers. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| Imports: | data.table, stringr, stringi | 
| Depends: | R (≥ 2.10) | 
| LazyData: | true | 
| Suggests: | testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-10-01 09:03:08 UTC; nikospech | 
| Author: | Nikos Pechlivanis | 
| Maintainer: | Nikos Pechlivanis <npechlv@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-10-02 14:00:02 UTC | 
acoRn workflow
Description
acoRn workflow
Usage
acoRn(adults, progeny)
Arguments
| adults | a data.frame | 
| progeny | a data.frame | 
Value
a data.frame
Title
Description
Title
Usage
clean_input(genotypes)
Arguments
| genotypes | data.table | 
Value
data.table
Title
Description
Title
Usage
create_mock_parents(nmarkers = 10, ntrees = 100, nvariants = 4, maf = NULL)
Arguments
| nmarkers | number of markers | 
| ntrees | number of trees | 
| nvariants | number of trees | 
| maf | minimum allele frequency | 
Value
a list
Title
Description
Title
Usage
create_mock_progeny(info, fparents, mparents, prog)
Arguments
| info | mock parents, as generated from  | 
| fparents | number of female parents | 
| mparents | number of male parents | 
| prog | number of progeny?? | 
Value
a data table
Report duplicates
Description
Report duplicates
Usage
exclude_duplicates(parents, adults = NULL, progeny = NULL)
Arguments
| parents | a data.frame | 
| adults | a data.frame | 
| progeny | a data.frame | 
Value
a data.frame
Identify relationships between parents and progenies
Description
Identify relationships between parents and progenies
Usage
find_parents(adults, progeny)
Arguments
| adults | a data.frame containing | 
| progeny | a data.frame | 
Value
a data.frame
Identify duplicates in genotypes (i.e. parents or progenies)
Description
Identify duplicates in genotypes (i.e. parents or progenies)
Usage
identify_duplicates(genotypes, abbr = NULL)
Arguments
| genotypes | a data.frame with the genotypes | 
| abbr | a string with abbreviation to use | 
Value
a data.frame
Tree progeny data set
Description
An example of tree progeny data set
Usage
offspring
Format
offspring
A data frame with 7,240 rows and 60 columns:
- country
- Country name 
- iso2, iso3
- 2 & 3 letter ISO country codes 
- year
- Year 
...
Source
https://www.who.int/teams/global-tuberculosis-programme/data
Tree parents data set
Description
An example of tree parents data set
Usage
parents
Format
parents
A data frame with 7,240 rows and 60 columns:
- country
- Country name 
- iso2, iso3
- 2 & 3 letter ISO country codes 
- year
- Year 
...
Source
https://www.who.int/teams/global-tuberculosis-programme/data