Package ‘WriteXLS’

May 22, 2025

Version 6.8.0
Date 2025-05-22

Title Cross-Platform Perl Based R Function to Create Excel 2003 (XLS)
and Excel 2007 (XLSX) Files

Description
Cross-platform Perl based R function to create Excel 2003 (XLS) and Excel 2007 (XLSX)
files from one or more data frames. Each data frame will be
written to a separate named worksheet in the Excel spreadsheet.
The worksheet name will be the name of the data frame it contains
or can be specified by the user.

Copyright The copyright holders of the Perl files are listed in each
.pm file under the Perl directory.

License GPL (>=2)
SystemRequirements Perl

Imports utils
URL https://github.com/marcschwartz/WriteXLS

BugReports https://github.com/marcschwartz/WriteXLS/issues
NeedsCompilation no

Author Marc Schwartz [aut, cre],
Various authors for Perl modules listed in each .pm file. [aut]

Maintainer Marc Schwartz <marc_schwartz@me.com>
Repository CRAN
Date/Publication 2025-05-22 17:00:02 UTC

Contents
testPerl L e e 2
WriteXLS e 3
Index 10

https://github.com/marcschwartz/WriteXLS
https://github.com/marcschwartz/WriteXLS/issues

2 testPerl

testPerl Test Perl installation and required modules for WriteXLS()

Description

Test Perl installation and required modules for WriteXLS()

Usage
testPerl(perl = "perl”, verbose = TRUE)

Arguments
perl Name of the perl executable to be called.
verbose Output test result messages.

Details

This function will test your current system to be sure that Perl is installed and if so, whether or not
all of the Perl modules required for WriteXLS() are present.

Success and/or error messages as appropriate will be output.

Value

A boolean value (TRUE or FALSE). TRUE if Perl and ALL required modules are found

Note

Please be sure to read the included INSTALL file (in the main package installation directory)
for additional details on meeting the requirements for Perl and the additional Perl modules that
are necessary for WriteXLS to work properly. The file includes platform specific recommenda-
tions for common scenarios. The path to the package installation directory can be located using
system.file(package = "WriteXLS").

A working installed version of Perl must be present in the current system searchpath or the exact
path of the perl executable must be provided via the perl argument. Perl modules required for this
function that may not be part of a default Perl installation are included with this package. These
modules include:

Archive::Zip, OLE::Storage_Lite, Parse::RecDescent, Spreadsheet:: WriteExcel, Excel::Writer:: XLSX
and Text::CSV_PP

File::Basename and Getopt::Long are "Core" Perl modules and should be part of a standard Perl
installation, however, they are both included in WriteXLS as a fall back.

Author(s)

Marc Schwartz <marc_schwartz@me.com>

Many thanks to Prof. Brian Ripley for his assistance in the testing of this package.

WriteXLS 3
See Also
WriteXLS
WriteXLS Cross-platform Perl based R function to create Excel 2003 (XLS) or
Excel 2007 (XLSX) files
Description

Writes one or more R data frames to an Excel 2003 or Excel 2007 file

Usage

WriteXLS(x, ExcelFileName = "R.xls", SheetNames = NULL,

perl

= "perl”, verbose = FALSE,

Encoding = c("UTF-8", "latin1", "cp1252"), AllText = FALSE,
row.names = FALSE, col.names = TRUE,

AdjWidth = FALSE, AutoFilter = FALSE, BoldHeaderRow = FALSE,
ReadOnly = FALSE,

na =

nn

FreezeRow = @, FreezeCol = 0,
envir = parent.frame())

Arguments

X

ExcelFileName

SheetNames

perl

verbose

Encoding

AllText

A character vector or factor containing the names of one or more R data frames;
A character vector or factor containing the name of a single list which contains
one or more R data frames; a single list object of one or more data frames; a
single data frame object.

The name of the Excel file to be created. If the file extension is .XLS, an Excel
2003 file will be created. If the file extension is .XLSX, an Excel 2007 file will
be created. Must be a valid Excel filename. May include an existing path.
normalizePath is used to support tilde expansion, etc.

A character vector containing the names of each worksheet to be created. If
NULL (the default), the names of the dataframes will be used instead. Worksheet
names may be up to 31 characters in length and must be unique. If specified,
length(SheetNames) must be the same as length(x). NOTE: The order of
the names here must match the order of the data frames as listed in x.

Name of the perl executable to be called.

Output step-by-step status messages during the creation of the Excel file. De-
fault is FALSE.

Define the character encoding to be used for the exported data frames. Defaults
to UTF-8.

If TRUE, all cell contents of the Excel file will be written as text. Default is
FALSE. See Details.

4 WriteXLS

row.names If TRUE, the row names of the data frames are included in the Excel file work-
sheets.

col.names If TRUE, the column names of the data frames are included in the Excel file
worksheets.

AdjWidth If TRUE, will adjust the worksheet column widths based upon the longest entry

in each column. This is approximate.

AutoFilter If TRUE, will add autofiltering to each column in each worksheet. Note that not
all spreadsheet applications support this feature.

BoldHeaderRow If TRUE, will apply a bold font to the header row for each worksheet.

ReadOnly If TRUE, each worksheet will be set to Read Only (Protected mode) to prevent
inadvertent changes to the contents when the file is opened in Excel or a com-
patible application. See Details.

nn

na The string to use for missing values in the data. Defaults to

FreezeRow Rows including this row and above this row will be frozen and not scroll. The
default value of @ will scroll the entire sheet. Note that not all spreadsheet ap-
plications support this feature.

FreezeCol Columns including this column and to the left of this column will be frozen and
not scroll. The default value of @ will scroll the entire sheet. Note that not all
spreadsheet applications support this feature.

envir The environment in which to look for the data frames named in x. This defaults
to the environment in which WriteXLS was called.

Details

This function takes: a character vector or factor containing the names of one or more R data frames;
A character vector or factor containing the name of a single list which contains one or more R
data frames; a single list object containing one or more data frames; a single data frame object
and exports them to an Excel 2003 or 2007 spreadsheet file. Each data frame will be written to a
separate worksheet in the same Excel file.

The order of the worksheets created in the Excel file will match the order of the entries in x.

The actual creation of the Excel file is performed by Perl scripts called WriteXLS.pl (for XLS files)
and WriteXLSX.pl (for XLSX files), which are included with this package.

Note that the named Excel file, if it already exists, will be overwritten and no warning is given. In
addition, if the file exists and is open by another application (eg. Excel, OO.org, LibreOffice, etc.)
you will likely get an error message regarding the inability to open the file and/or that the file is
already in use by another application or user. Errors can also occur if the file has been marked as
read-only or if your access rights do not allow you to overwrite the file or write to the folder you
have indicated in the path to the file.

There is an intermediate step, where the R data frames are first written to CSV files usingwriteLines
with argument useBytes = TRUE before being written to the Excel file by the relevant Perl script.
tempdir is used to determine the current R session temporary directory and a new sub-directory
called “WriteXLS” will be created there. The CSV files will be written to that directory and both
the files and the directory will be deleted prior to the function terminating normally using on.exit.
It is possible that these will remain in place if this function terminates abnormally or is aborted prior
to completion.

WriteXLS 5

Since as.character is used to coerce data frame column content to character vectors prior to
export, data types supported by as.character will be exported to their character representation
correctly. For other data types, it is recommended that you first coerce them to character columns,
formatted as you require, and then use WriteXLS to create the Excel file.

All of the CSV files will be created prior to the creation of the Excel file as the Perl script will loop
over them as part of the process. Thus, sufficient free disk space must be available for these files
and the Excel file at the same time. Note, importantly, that in the course of creating XL.SX files,
which are ZIP compressed XML files, Perl will require free disk space that is some multiple of the
size of the resultant XL.SX file, in the course of creating the XML files before compression into the
XLSX file. Thus, additional free disk space, in addition to the CSV files noted above, will also be
required temporarily.

A text file called "SheetNames.txt" will be created in the same temporary directory as the CSV files.
This file will contain the sheet names, one per line and will be used by the Perl script to name the
worksheets in the Excel file.

Each worksheet will be named using either the names in SheetNames, the names of the data frames
in x or the names of the list elements if x is a list (up to the first 31 characters, which is an Excel
limitation). If any the data frame names specified in x are longer than 31 characters, they will be
truncated to 31 characters. SheetNames if specified, will be checked to make sure that all of the
entries are less than or equal to 31 characters. If not, an error message will be displayed.

Note that the order of the names in SheetNames MUST match the order of the data frames named
in Xx.

Note that the worksheets must have unique names. Thus, if SheetNames is NULL, the data frame
names will be checked to be sure that they are unique up through the first 31 characters. If
SheetNames is specified, the entries will be checked to be sure that they are unique. If not, an
error message will be displayed.

Note that the following characters are not allowed for Excel worksheet names: []:*7/\

The data frame column names will be exported "as is" and will be the first row in the corresponding
worksheet, if col.names = TRUE.

UTF-8 encoded content in the data frame should be properly exported by default. If you are op-
erating in a ’latinl’ based locale (also known as is0-8859-1) or a Windows CP-1252 locale, set
Encoding to ’latinl’ or ’cp1252’, respectively.

As of version 5.0.0, Unicode character based content is better supported if running on a Win-
dows based operating system. This is achieved by generating the intermediate CSV files using
writeLines(..., useBytes = TRUE), which should avoid the re-encoding of the content of the
CSV files into the operating locale of the relevant computer. Set Encoding to "UTF-8’ in this case
to preserve the Unicode content in the Excel file. Since Encoding applies to all data frames and
columns therein being exported to the same Excel file, if mixed character encodings are present,
this may cause errors in the character representations in the Excel file. If you note errors from Perl
regarding characters not mapping to Unicode, or illegal characters in UTF-8, try setting Encoding
to ’latin1’. If mixed encodings are present, you may want to explore the use of iconv to standardize
the data to a single encoding.

If one or more of the data frame columns have been assigned a comment attribute using the comment
function, these will be used to create a worksheet cell comment in this first row of the worksheet
for each column with this attribute. These can serve to provide descriptive information for each
column. This will work for both the Excel 2003 and 2007 file formats.

WriteXLS

Values containing leading and/or trailing zeroes in data frame content will be treated, by default,
as text, such that these zeroes will be preserved in the Excel worksheet content, rather than being
coerced to numeric values and being stripped, which is the default Excel behavior. These values will
be left-justified in the cells, rather than being right-justified, and there may be a mix of justification
in a single column, based upon the data present.

If A11Text = TRUE, all data frame contents, including numeric values, will be written to the Excel
file as text, and will be left-justified. There may be content in the source data frame(s), that contain
leading and/or trailing zeros or other pre-formatted content which would otherwise be modified by
Excel, and which is the default Excel behavior. Thus, this option is provided to fully override the
default behavior in Excel. Note that if you open the Excel file after creation, you may note little
colored triangles in the upper left hand corner of the relevant cells, indicating that a number is stored
as text. This is expected and if you manually edit the cell content, it may revert to a number, losing
any desired formatting.

If verbose = TRUE, messages will be output during key steps in the process of creating the Excel
file and intermediate steps. In the case of the Perl scripts parsing the intermediate CSV files, CSV
file line numbers will be output to hopefully assist in the debugging of possible content problems
that may compromise the integrity of the resultant Excel file. Note that the line numbers are 0
based, rather than 1 based, and will include an additional line for the column names if col . names =
TRUE. An additional line is also included to be able to handle any comment attributes, and you will
observe a repeat of either line 0, if col.names = FALSE or line 1, if col.names = TRUE, as a result.
The actual source data frame content will begin on the subsequent line.

If ReadOnly = TRUE, each worksheet will be set to Protected (read only) mode to prevent the inad-
vertent editing of the contents when the file is opened in Excel or a compatible application. This is
not the same as the file being password protected and encrypted, which is not supported. The con-
tents of the worksheets will be readable and copyable, but not editable. Each worksheet will show
a lock icon on the worksheet tab. Protected mode can be disabled by the user by right-clicking on
each worksheet tab and selecting *Unprotect Sheet’ in the menu.

Note that as of version 6.0.0, more robust handling of embedded newline (*\n’) and carriage return
(’\r’) characters, double quotes, and two character sequences of a backslash character ('\’) followed
by another character, within a data frame value has been implemented.

If you have installed the RTools utilities under Windows from CRAN, version 4.x or greater, RTools
includes a Cygwin based Perl distribution from the MSYS2 project, which emulates Linux/Unix be-
havior and will be used by default. This causes a conflict in reading the temporary text files created
here, as Linux/Unix uses LF character for line endings, rather than a CRLF character sequence,
which is the default under Windows, and will result in an error. Starting with WriteXLS version
6.7.0, this has been resolved, if you should elect to use the RTools Perl distribution.

If there any issues parsing the lines in the CSV file, such that the number of fields in the current line
is different than the prior line, perhaps due to atypical character content, an error will be issued. If
this occurs, you may wish to set verbose = TRUE in order to obtain additional debugging informa-
tion to help identify where in the CSV file the error may be located. You may need to pre-process
the data in the source data frame (e.g. using gsub) in order to resolve this issue. While this handling
is now more robust, the user is strongly encouraged to verify the content of the resultant Excel file
to ensure that the integrity of the exported data frame(s) is maintained and that all source data have
been written correctly to the worksheet(s). The user is strongly encouraged to be aware of any data
frame content that includes escaped character sequences or other atypical content, and to consider
pre-processing these as may be apropos, prior to using this function.

WriteXLS 7

Note that arguments AdjWidth, AutoFilter, BoldHeaderRow, ReadOnly, FreezeRow, FreezeCol,
Encoding, row.names, col.names and A11Text will apply to ALL worksheets exported.

Value

TRUE if the Excel file was successfully created. FALSE if any errors occurred.

Note

Please be sure to read the included INSTALL file (in the main package installation directory) for
additional details on meeting the requirements for Perl and the additional Perl modules that are
necessary for this function to work properly. The file includes platform specific recommenda-
tions for common scenarios. The path to the package installation directory can be located using
system.file(package = "WriteXLS").

A working installed version of Perl must be present in the current system searchpath or the exact
path of the perl executable must be provided via the perl argument. Perl modules required for this
function that may not be part of a default Perl installation are included with this package. These
modules include:

Archive::Zip, OLE::Storage_Lite, Parse::RecDescent, Spreadsheet::WriteExcel, Excel::Writer:: XLSX
and Text::CSV_PP

File::Basename and Getopt::Long are "Core" Perl modules and should be part of a standard Perl
installation, however, they are both included in WriteXLS as a fall back.

To test your Perl installation and verify that all required Perl modules are available, use the testPerl
function provided in this package.

Author(s)

Marc Schwartz <marc_schwartz@me.com>

Many thanks to Prof. Brian Ripley for his assistance in the testing of this package.

References
Spreadsheet::WriteExcel Perl Module https://metacpan.org/release/Spreadsheet-WriteExcel
Excel::Writer:: XLSX Perl Module https://metacpan.org/release/Excel-Writer-XLSX

Excel 2007 Specifications and Limitations https://support.microsoft.com/en-us/office/
excel-specifications-and-1imits-1672b34d-7043-467e-8e27-269d656771c3

For Perl Unicode Issues https://ahinea.com/en/tech/perl-unicode-struggle.html and/or
https://www.perl.com/pub/2012/04/perlunicook-standard-preamble.html/

See Also

writelLines, testPerl, comment and iconv

https://metacpan.org/release/Spreadsheet-WriteExcel
https://metacpan.org/release/Excel-Writer-XLSX
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://ahinea.com/en/tech/perl-unicode-struggle.html
https://www.perl.com/pub/2012/04/perlunicook-standard-preamble.html/

WriteXLS

Examples

Only run the examples if Perl and all modules are present
if (testPerl(verbose = FALSE))

{

Examples using built-in data frames
Create XLSX (Excel 2007) files
WriteXLS("iris"”, "iris.xlsx")

WriteXLS(c("iris"”, "infert”, "esoph"), "Example.xlsx")

iris.split <- split(iris, iris$Species)
WriteXLS("iris.split”, "irissplit.xlsx")

Example using comment()
Commented cells with have a small red triangle in the
upper right hand corner of the cell. Click on the cell
or place the cursor over the cell to see the pop-up
containing the comment text.
Adjust the column widths
Bold the header row
comment (iris$Sepal.Length) <- "Length of the sepals (cm)”
comment (iris$Sepal.Width) <- "Width of the sepals (cm)”
comment (iris$Petal.Length) <- "Length of the petals (cm)”
comment (iris$Petal .Width) <- "Width of the petals (cm)”
comment (iris$Species) <- "Species of the flowers”
WriteXLS("iris"”, "iriscomments.xlsx"”,

AdjWwidth = TRUE, BoldHeaderRow = TRUE)

Add row names
WriteXLS("iris"”, "irisrownames.xlsx",
AdjWidth = TRUE, BoldHeaderRow = TRUE, row.names = TRUE)

Use latinl Encoding
WriteXLS("iris"”, "irisLatinl.xlsx"”, Encoding = "latinl")

Write a @ row data frame

Worksheet will contain header row only

DF@ <- data.frame("A" = numeric(), "B" = numeric(), "C" = numeric())
WriteXLS("DFQ", "DFQ.xlsx", AdjWidth = TRUE, BoldHeaderRow = TRUE)

'x' is a single data frame object
WriteXLS(iris, "irisDF.x1sx")

'x' is a list object containing data frames
WriteXLS(iris.split, "irisList.x1lsx")

Behavior with leading and/or trailing zeroes
DFLO <- data.frame(A = c("01234", "12345", "012300", "1050", "10230"),
B = c("000-00", "123-45", "000-10-1230", ".1.2.3.40", "0123.45.6"),
C = c("0123.4", "001234.5", "0.1234", "1234.0", "1234.00"))
WriteXLS(DFL@, "DFL@.x1lsx”, AdjWidth = TRUE, BoldHeaderRow = TRUE)
WriteXLS(DFL@, "DFLQAT.x1lsx”, AdjWidth = TRUE, BoldHeaderRow = TRUE, AllText = TRUE)

WriteXLS 9

Embedded newline, carriage return and a two character backslash sequence
DF.NL <- data.frame(RL = "This is normal text”,
LF = "This sample text \n has a LF",
CR = "This sample text \r has a CR",
CRLF = "This sample text \r\n has a CRLF",
BSChar = "This sample text \\I has a character preceded by a backslash")
WriteXLS(DF.NL, "DFNL.x1lsx"”, Adjwidth = TRUE, BoldHeaderRow = TRUE)

Embedded comma, single and double quotes
DF.Embed <- data.frame(A = "This is sample text, with a comma”,
B = "This is \"sample text\"” with a double quote”,
C = "This is \'sample text\' with a single quote"”)
WriteXLS(DF.Embed, "DFEmbed.x1sx")

Clean up and delete XLSX files
rm(iris.split)

rm(DFQ)

rm(DFLOQ)

rm(DF .NL)

rm(DF . Embed)
unlink("iris.x1lsx")
unlink("Example.xlsx")
unlink("irissplit.x1lsx")
unlink("iriscomments.x1lsx")
unlink("irisrownames.xlsx")
unlink("irisLatinl.x1lsx")
unlink ("DF@.x1sx")
unlink("irisDF.x1sx")
unlink("irisList.x1sx")
unlink ("DFLO.x1sx")

unlink ("DFL@AT.x1sx")
unlink ("DFNL.x1sx")

unlink ("DFEmbed.x1sx")

Index

x file
testPerl, 2
WriteXLS, 3

comment, 7
iconv, 7
testPerl, 2,7

writelLines, 7
WriteXLS, 3,3

10

	testPerl
	WriteXLS
	Index

