## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE) library(VizTest) library(carData) library(dplyr) library(tidyr) ## ----------------------------------------------------------------------------- library(VizTest) data(iris) mod <- lm(Petal.Width ~ Species, data = iris) summary(mod) v <- viztest(mod) library(marginaleffects) preds <- avg_predictions(mod, variables="Species", conf_level = .9999) preds data(esoph) esoph$agegp <- as.factor(as.character(esoph$agegp)) esoph$tobgp <- factor(as.character(esoph$tobgp), levels=c("0-9g/day", "10-19", "20-29", "30+")) esoph$alcgp <- factor(as.character(esoph$alcgp), levels=c("0-39g/day", "40-79", "80-119", "120+")) model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp + alcgp, data = esoph, family = binomial()) preds <- avg_predictions(model1, variables = "tobgp") ## ----------------------------------------------------------------------------- ests <- preds$estimate names(ests) <- preds$tobgp ## ----------------------------------------------------------------------------- tmpl <- make_diff_template(ests, include_intercept = FALSE, include_zero = FALSE) tmpl ## ----------------------------------------------------------------------------- diff <- c(1,1,1, 0, 0,0) ## ----------------------------------------------------------------------------- tmpl$sig <- diff tmpl ## ----------------------------------------------------------------------------- viztest(preds, include_zero=FALSE, include_intercept = FALSE, sig_diffs = diff,range_levels = c(.25, .999)) ## ----------------------------------------------------------------------------- viztest(preds, include_zero=FALSE, include_intercept = FALSE)