
Package ‘VLMC’
January 20, 2025

Version 1.4-4

VersionNote Released 1.4-3-1 on 2019-04-29

Date 2024-08-14

Title Variable Length Markov Chains ('VLMC') Models

Description Functions, Classes & Methods for estimation, prediction, and
simulation (bootstrap) of Variable Length Markov Chain ('VLMC') Models.

Imports stats, MASS

Suggests astsa

SuggestsNote {astsa} mentioned in docu only.

BuildResaveData no

License GPL (>= 2)

NeedsCompilation yes

Author Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2024-08-19 09:50:10 UTC

Contents
alpha2int . 2
alphabet . 3
as.dendrogram.vlmc . 3
bnrf1 . 4
deviance.vlmc . 5
draw.vlmc . 6
id2ctxt . 8
int2char . 8
logLik . 9
OZrain . 11
predict.vlmc . 12
prt.vvec . 14

1

https://orcid.org/0000-0002-8685-9910

2 alpha2int

RCplot . 15
residuals.vlmc . 17
simulate.vlmc . 18
summary.vlmc . 19
vlmc . 20
vlmc.version . 23
vlmctree . 23

Index 25

alpha2int ‘Single Character’ <–> Integer Conversion for Discrete Data

Description

Simple conversion functions for discrete data (e.g., time series), between 0:k integers and single
letter characters.

Usage

alpha2int(x, alpha)
int2alpha(i, alpha)

Arguments

x character vector of single letters.

alpha the alphabet, as one character string.

i integer vector of numbers in 0:k.

Value

alpha2int(x,*) returns an integer vector of the same length as x, consisting of values from 0:k
where k + 1 is the length of the alphabet, nchar(alpha).

int2alpha(i,*) returns a vector of single letter character of the same length as i.

See Also

vlmc, and int2char() and its inverse, char2int(), both working with multi-character strings
instead of vectors of single characters; further, alphabet.

Examples

alphabet <- "abcdefghijk"
(ch <- sample(letters[1:10], 30, replace = TRUE))
(ic <- alpha2int(ch, alphabet))
stopifnot(int2alpha(ic, alphabet) == ch)

alphabet 3

alphabet The Alphabet in Use

Description

Return the alphabet in use, as a vector of “characters”.

Usage

alphabet(x, ...)
S3 method for class 'vlmc'
alphabet(x, ...)

Arguments

x any R object, currently only available for vlmc ones.

... potential further arguments passed to and from methods.

Value

a character vector, say r, with length equal to the alphabet size. Currently, typically all r[i] are
strings of just one character.

See Also

alpha2int for conversion to and from integer codings.

Examples

data(bnrf1)
vb <- vlmc(bnrf1EB, cutoff = 5)
alphabet(vb) # |--> "a" "c" "g" "t"

as.dendrogram.vlmc Dendrogram Construction from VLMCs

Description

This is a method for the as.dendrogram generic function

Usage

S3 method for class 'vlmc'
as.dendrogram(object, ...)

4 bnrf1

Arguments

object a vlmc object.
... further arguments passed to and from methods.

Value

An object of class dendrogram, i.e. a nested list described on that page.

See Also

as.dendrogram, plot.dendrogram.

Examples

data(presidents)
dpr <- factor(cut(presidents, c(0,45,70,100)), exclude=NULL)# NA = 4th level
(vlmc.pres <- vlmc(dpr))
draw(vlmc.pres)
(dv.dpr <- as.dendrogram(vlmc.pres))
str(dv.dpr)
str(unclass(dv.dpr))

plot(dv.dpr, type ="tr", nodePar = list(pch=c(1,16), cex = 1.5))

Artificial example
f1 <- c(1,0,0,0) ; f2 <- rep(1:0, 2)
(dt1 <- c(f1,f1,f2,f1,f2,f2,f1))
(vlmc.dt1c01 <- vlmc(dts = dt1, cutoff.prune = 0.1))
(dvlmc <- as.dendrogram(vlmc.dt1c01))
str(dvlmc)
not so useful:
plot(dvlmc, nodePar= list(pch=c(1,16)))
complete disaster:
plot(dvlmc, type ="tr", nodePar= list(pch=c(1,16)))

but this is not (yet) so much better (want the same angles to left
and right!!
plot(dvlmc, type ="tr", nodePar = list(pch=c(1,16)), center=TRUE,

main = format(vlmc.dt1c01$call))
mtext(paste("dt1 =", gsub(" ","",deparse(dt1,width=100))))

bnrf1 BNRF1 Gene DNA sequences: Epstein-Barr and Herpes

Description

Two gene DNA data “discrete time series”,

bnrf1EB the BNRF1 gene from the Epstein-Barr virus,
bnrf1HV the BNRF1 gene from the herpes virus.

deviance.vlmc 5

Usage

data(bnrf1)

Format

The EB sequence is of length 3954, whereas the HV has 3741 nucleotides. Both are R factors
with the four levels c("a","c","g","t").

Author(s)

Martin Maechler (original packaging for R).

Source

See the references; data used to be at https://anson.ucdavis.edu/~shumway/tsa.html, and are
now available in CRAN package astsa, e.g., bnrf1ebv.

References

Shumway, R. and Stoffer, D. (2000) Time Series Analysis and its Applications. Springer Texts in
Statistics.

Examples

data(bnrf1)
bnrf1EB[1:500]
table(bnrf1EB)
table(bnrf1HV)
n <- length(bnrf1HV)
table(t = bnrf1HV[-1], "t-1" = bnrf1HV[-n])

plot(as.integer(bnrf1EB[1:500]), type = "b")

Simplistic gene matching:
percent.eq <- sapply(0:200,

function(i) 100 * sum(bnrf1EB[(1+i):(n+i)] == bnrf1HV))/n
plot.ts(percent.eq)

deviance.vlmc Compute the Deviance of a Fitted VLMC Object

Description

Compute the Deviance, i.e., - 2 log[likelihood(*)] of a fitted VLMC object. The log-likelihood is
also known as “entropy”.

https://CRAN.R-project.org/package=astsa

6 draw.vlmc

Usage

S3 method for class 'vlmc'
deviance(object, ...)

Arguments

object typically the result of vlmc(..).

... possibly further arguments (none at the moment).

Value

A number, the deviance, i.e., −2log.likelihood(∗). where the log.likelihood is really what we
currently have as entropy().

Author(s)

Martin Maechler

See Also

entropy, vlmc,residuals.vlmc

Examples

example(vlmc)
deviance(vlmc.pres)

devianceR <- function(object)
{

dn <- dimnames(pr <- predict(object))
-2 * sum(log(pr[cbind(2:nrow(pr), match(dn[[1]][-1], dn[[2]]))]))

}
all.equal(deviance(vlmc.pres), devianceR(vlmc.pres), tol = 1e-14)

draw.vlmc Draw a "VLMC" Object (in ASCII) as Tree

Description

Draws a vlmc object, typically the result of vlmc(.), to the R console, using one line per node.

Usage

draw(x, ...)
S3 method for class 'vlmc'
draw(x, kind = 3, flag = TRUE, show.hidden = 0,

cumulative = TRUE, delta = cumulative, debug = FALSE, ...)

draw.vlmc 7

Arguments

x typically the result of vlmc(..).

kind integer code for the “kind of drawing”, in {0,1,2,3}.

flag logical; ..

show.hidden integer code; if not 0, give some indications about hidden (final) nodes

cumulative logical indicating if the cumulative counts should be shown for nonterminal
nodes; the ‘delta’s can only be computed from the cumulative counts, i.e., cumulative
= FALSE should be used only by the knowing one.

delta logical indicating if delta, i.e. δ(n, p(n)) should be computed and printed for
each (non-root) node n with parent p(n). Note that this does not really make
sense when cumulative = FALSE.

debug logical; if TRUE, some extraneous progress information is printed to the R con-
sole.

... (potentially more arguments)

Details

.............

.............

Note that the counts internally are stored “non-cumulatively”, i.e., as difference counts which is
useful for likelihood (ratio) computations. In the internal C code, the difference counts are origi-
nally computed by the comp_difference() function after tree generation. draw(*, cumulative =
TRUE) internally calls the C function cumulate() for the cumulative sums.

Value

nothing is returned.

Author(s)

Martin Maechler

See Also

vlmc.

Examples

example(vlmc)
draw(vlmc.dt1c01)
draw(vlmc.dt1c01, flag = FALSE)
draw(vlmc.dt1c01, kind = 1)
draw(vlmc.dt1)
draw(vlmc.dt1, show = 3)
draw(vlmc.dt1, cumulative = FALSE)

8 int2char

id2ctxt VLMC Context ID Conversion

Description

Utility for converting a vlmc state ID to the corresponding context. Of rare interest to the average
user.

Usage

id2ctxt(id, m=nchar(alpha), alpha=NULL)

Arguments

id integer, a context ID such as optionally returned by predict.vlmc.

m integer, the alphabet length. Defaults to nchar(alpha), the alphabet size if that
is given.

alpha alphabet string

Value

a list (if alpha is not specified) or character vector of the same length as id, giving the context (as
integer vector or single string) of the corresponding id

See Also

predict.vlmc(*, type = "ID").

Examples

id2ctxt(c(2,3,5,9), alpha = "Ab")
str(id2ctxt(c(2,3,5,9), 2))

int2char Character - Integer Conversion

Description

Simple conversion utilities for character to integer conversion and vice versa.

Usage

int2char(i, alpha)
char2int(x, alpha)

logLik 9

Arguments

i integer vectors, typically in 0:m when alpha has m+ 1 letters.

alpha character string with several letters, representing the alphabet.

x character string, typically with letters from alpha.

Value

int2char() gives a string (length 1 character) with as many characters as length(i), by 0-
indexing into the alphabet alpha.

char2int() gives an integer vector of length nchar(x) of integer codes according to alpha (start-
ing at 0 !).

See Also

int2alpha() (which is used by int2char) and its inverse, int2alpha(), both working with vec-
tors of single characters instead of multi-character strings.

Examples

char2int("vlmc", paste(letters, collapse=""))

int2char(c(0:3, 3:1), "abcd")
int2char(c(1:0,3,3), "abc") # to eat ;-)

logLik Log Likelihood of and between VLMC objects

Description

Compute the log-likelihood or “entropy” of a fitted vlmc object. This is a method for the generic
logLik.

Usage

entropy(object)
S3 method for class 'vlmc'
logLik(object, ...)
entropy2(ivlmc1, ivlmc2, alpha.len = ivlmc1[1])

Arguments

object typically the result of vlmc(..).

ivlmc1, ivlmc2 two vlmc (sub) trees, see vlmc.

alpha.len positive integer specifying the alphabet length.

... (potentially more arguments; required by generic)

10 logLik

Details

The logLik.vlmc() method computes the log likelihood for a fitted vlmc object. entropy is an
alias for logLik for reasons of back compatibility.

entropy2 is less clear [[[FIXME]]]

Value

a negative number, in some contexts typically further divided by log(x$alpha.len).

Note that the logLik method is used by the default method of the AIC generic function (from R
version 1.4.x), and hence provides AIC(object) for vlmc objects. Also, since vlmc version 1.3-13,
BIC() works as well.

Author(s)

Martin Maechler

See Also

deviance.vlmc, vlmc, draw.vlmc.

Examples

dd <- cumsum(rpois(999, 1.5)) %% 10
(vd <- vlmc(dd))
entropy(vd)# the bare number
logLik(vd)
logLik(vdL <- vlmc(dd, cutoff = 3))
entropy2(vd $vlmc.vec,

vdL$vlmc.vec)

AIC model selection:
f1 <- c(1,0,0,0) # as in example(vlmc)
f2 <- rep(1:0,2)
(dt1 <- c(f1,f1,f2,f1,f2,f2,f1))
AIC(print(vlmc(dt1)))
AIC(print(vlmc(dt1, cutoff = 2.6)))
AIC(print(vlmc(dt1, cutoff = 0.4)))# these two differ ``not really''
AIC(print(vlmc(dt1, cutoff = 0.1)))

Show how to compute it from the fitted conditional probabilities :
logLikR <- function(x) {

dn <- dimnames(pr <- predict(x))
sum(log(pr[cbind(2:nrow(pr), match(dn[[1]][-1], dn[[2]]))]))

}

all.equal(logLikR(vd),
c(logLik (vd)), tol=1e-10) # TRUE, they do the same

Compare different ones: [cheap example]:
example(draw)
for(n in ls())

OZrain 11

if(is.vlmc(get(n))) {
vv <- get(n)
cat(n,":",formatC(logLik(vv) / log(vv$alpha.len),

format= "f", wid=10),"\n")
}

OZrain Daily Rainfall in Melbourne, Australia, 1981-1990

Description

Amount of daily rainfall in Melbourne, Australia, 1981-1990, measured in millimeters. The amounts
are integers with many zeros and three days of more than 500mm rain.

Usage

data(OZrain)

Format

A time-series of length 3653 with the amount of daily rainfall in mm. Because of the two leap years
1984 and ’88, we have constructed it with ts(*, start=1981, frequency=365.25, end = 1981+
(3653 - 1)/365.25).

Note

There must be one extra observation since for the ten years with two leap years, there are only 3652
days. In 61 out of 100 days, there’s no rain.

Source

‘rainfall.dat’ in Rob J. Hyndman’s Time Series Data Library, currently available at https:
//pkg.yangzhuoranyang.com/tsdl/

originally, Australian Bureau of Meteorology, https://www.abs.gov.au.

Examples

data(OZrain)
(n <- length(OZrain)) ## should be 1 more than
ISOdate(1990,12,31) - ISOdate(1981, 1,1)## but it's 2 ..

has.rain <- OZrain > 0

summary(OZrain[has.rain])# Median = 18, Q3 = 50
table(rain01 <- as.integer(has.rain))
table(rain4c <- cut(OZrain, c(-.1, 0.5, 18.5, 50.1, 1000)))

https://pkg.yangzhuoranyang.com/tsdl/
https://pkg.yangzhuoranyang.com/tsdl/
https://www.abs.gov.au

12 predict.vlmc

AIC(v1 <- vlmc(rain01))# cutoff = 1.92
AIC(v00 <- vlmc(rain01, cut = 1.4))
AIC(v0 <- vlmc(rain01, cut = 1.5))

hist(OZrain)
hist(OZrain, breaks = c(0,1,5,10,50,1000), xlim = c(0,100))

plot(OZrain, main = "Rainfall 1981-1990 in Melbourne")
plot(OZrain, log="y", main = "Non-0 Rainfall [LOG scale]")

lOZ <- lowess(log10(OZrain[has.rain]), f= .05)
lines(time(OZrain)[has.rain], 10^lOZ$y, col = 2, lwd = 2)

predict.vlmc Prediction of VLMC for (new) Series

Description

Compute predictions on a fitted VLMC object for each (but the first) element of another discrete
time series. Computes by default a matrix of prediction probabilities. The argument type al-
lows other predictions such as the most probable "class" or "response", the context length (tree
"depth"), or an "ID" of the corresponding context.

Usage

S3 method for class 'vlmc'
predict(object, newdata,

type = c("probs", "class","response", "id.node", "depth", "ALL"),
se.fit = FALSE,
allow.subset = TRUE, check.alphabet=TRUE,
...)

S3 method for class 'vlmc'
fitted(object, ...)

Arguments

object typically the result of vlmc(..).

newdata a discrete “time series”, a numeric, character or factor, as the dts argument of
vlmc(.).

type character indicating the type of prediction required, options given in the Usage
secion above, see also the Value section below. The default "probs" returns a
matrix of prediction probabilties, whereas "class" or "response" give the cor-
responding most probable class. The value of this argument can be abbreviated.

se.fit a switch indicating if standard errors are required.
— NOT YET supported — .

predict.vlmc 13

allow.subset logical; if TRUE, newdata may not have all different “alphabet letters” used in x.

check.alphabet logical; if TRUE, consistency of newdata’s alphabet with those of x is checked.

... (potentially further arguments) required by generic.

Value

Depending on the type argument,

"probs" an n ×m matrix pm of (prediction) probabilities, i.e., all the rows of pm sum to
1.

pm[i,k] is P̂ [Yi = k|Yi−1, . . .] (and is therefore NA for i=1). The dimnames of
pm are the values of newdata[] and the alphabet letters k.

"class", "response"
the corresponding most probable value of Y[]; as factor for "class" and as
integer in 0:(m-1) for type = "response". If there is more than one most prob-
able value, the first one is chosen.

"id.node" an (integer) “ID” of the current context (= node of the tree represented VLMC).

"depth" the context length, i.e., the depth of the Markov chain, at the current observation
(of newdata).

"ALL" an object of class "predict.vlmc", a list with the following components,

ID integer vector as for type = "id.node",

probs prediction probability matrix, as above,

flags integer vector, non-zero for particular states only, rather for debugging.

ctxt character, ctxt[i] a string giving the context (backwards) for newdata[i],
using alphabet letters.

fitted character with fitted values, i.e., the alphabet letter with the highest prob-
ability, using max.col where ties are broken at random.

alpha, alpha.len the alphabet (single string) and its length.

which has its own print method (print.predict.vlmc).

Note

The predict method and its possible arguments may still be developed, and we are considering to
return the marginal probabilities instead of NA for the first value(s).

The print method print.predict.vlmc uses fractions from package MASS to display the
probabilities Pr[X = j], for j ∈ {0, 1, . . . }, as these are rational numbers, shown as fractions of
integers.

See Also

vlmc and residuals.vlmc. For simulation, simulate.vlmc.

14 prt.vvec

Examples

f1 <- c(1,0,0,0)
f2 <- rep(1:0,2)
(dt2 <- rep(c(f1,f1,f2,f1,f2,f2,f1),2))

(vlmc.dt2c15 <- vlmc(dt2, cutoff = 1.5))
draw(vlmc.dt2c15)

Fitted Values:
all.equal(predict(vlmc.dt2c15, dt2), predict(vlmc.dt2c15))
(pa2c15 <- predict(vlmc.dt2c15, type = "ALL"))

Depth = context length ([1] : NA) :
stopifnot(nchar(pa2c15 $ ctxt)[-1] ==

predict(vlmc.dt2c15, type = "depth")[-1])

same <- (ff1 <- pa2c15 $ fitted) ==
(ff2 <- int2alpha(predict(vlmc.dt2c15, type ="response"), alpha="01"))

which(!same) #-> some are different, since max.col() breaks ties at random!

ndt2 <- c(rep(0,6),f1,f1,f2)
predict(vlmc.dt2c15, ndt2, "ALL")

(newdt2 <- sample(dt2, 17))
pm <- predict(vlmc.dt2c15, newdt2, allow.subset = TRUE)
summary(apply(pm, 1, sum))# all 1

predict(vlmc.dt2c15, newdt2, type = "ALL")

data(bnrf1)
(vbnrf <- vlmc(bnrf1EB))
(pA <- predict(vbnrf, bnrf1EB[1:24], type = "ALL"))
pc <- predict(vbnrf, bnrf1EB[1:24], type = "class")
pr <- predict(vbnrf, bnrf1EB[1:24], type = "resp")

stopifnot(as.integer (pc[-1]) == 1 + pr[-1],
as.character(pc[-1]) == strsplit(vbnrf$alpha,NULL)[[1]][1 + pr[-1]])

##-- Example of a "perfect" fit -- just for illustration:
the default, thresh = 2 doesn't fit perfectly(i=38)
(vlmc.dt2c0th1 <- vlmc(dt2, cutoff = 0, thresh = 1))

"Fitted" = "Data" (but the first which can't be predicted):
stopifnot(dt2[-1] == predict(vlmc.dt2c0th1,type = "response")[-1])

prt.vvec Recursively Print the VLMC Result Vector

Description

This is an auxiliary function which recursively displays (prints) the integer result vector of a vlmc
fit.

RCplot 15

Usage

prt.vvec(v, nalph, pad=" ")

Arguments

v typically x $ vlmc.vec[-1] where x is the result of vlmc(*).

nalph alphabet size; typically x $ vlmc.vec[1].

pad character, to be used for padding paste(*, collapse=pad).

See Also

summary.vlmc which uses prt.vvec.

Examples

example(vlmc)
str(vv <- vlmc.dt1$vlmc)
prt.vvec(vv[-1], n = 2)
prt.vvec(vv[-1], n = 2, pad = " | ")

RCplot Residuals vs Context plot

Description

Plots the residuals of a fitted VLMC model against the contexts, i.e., produces a boxplot of residuals
for all contexts used in the model fit.

This has proven to be useful function, and the many optional arguments allow quite a bit of cus-
tomization. However, the current implementation is somewhat experimental and the defaults have
been chosen from only a few examples.

Usage

RCplot(x, r2 = residuals(x, "deviance")^2,
alphabet = x$alpha, lab.horiz = k <= 20,
do.call = TRUE,
cex.axis = if (k <= 20) 1 else if (k <= 40) 0.8 else 0.6,
y.fact = if (.Device == "postscript") 1.2 else 0.75,
col = "gray70", xlab = "Context", main = NULL,
med.pars = list(col = "red", pch = 12, cex = 1.25 * cex.axis),
ylim = range(0, r2, finite = TRUE),
...)

16 RCplot

Arguments

x an R object of class vlmc.

r2 numeric vector, by default of squared deviance residuals of x, but conceptually
any (typically non-negative) vector of the appropriate length.

alphabet the alphabet to use for labeling the contexts, via id2ctxt.

lab.horiz logical indicating if the context labels should be written horizontally or verti-
cally.

do.call logical indicating if the vlmc call should be put as subtitle.

cex.axis the character expansion for axis labeling, see also par. The default is only ap-
proximately good.

y.fact numeric factor for expanding the space to use for the context labels (when
lab.horiz is false).

col color used for filling the boxes.

xlab x axis label (with default).

main main title to be used, NULL entailing a sensible default.

med.pars graphical parameters to be used for coding of medians that are almost 0.

ylim y range limits for plotting.

... further arguments to be passed to plot().

Value

Invisibly, a list with components

k the number of contexts (and hence box plots) used.

fID a factor (as used in the interncal call to plot.factor).

rp a list as resulting from the above call to plot.factor().

Author(s)

Martin Maechler

References

Mächler M. and Bühlmann P. (2004) Variable Length Markov Chains: Methodology, Computing,
and Software. J. Computational and Graphical Statistics 2, 435–455.

See Also

summary.vlmc for other properties of a VLMC model.

Examples

example(vlmc)
RCplot(vlmc.pres)
RCplot(vlmc.dt1c01)## << almost perfect fit (0 resid.)

residuals.vlmc 17

residuals.vlmc Compute Residuals of a Fitted VLMC Object

Description

Compute residuals of a fitted vlmc object.

This is yet a matter of research and may change in the future.

Usage

S3 method for class 'vlmc'
residuals(object,

type = c("classwise",
"deviance", "pearson", "working", "response", "partial"),

y = object$y, ...)

Arguments

object typically the result of vlmc(..).

type The type of residuals to compute, defaults to "classwise" which returns an
n × m matrix, see below. The other types only make sense when the discrete
values of y are ordered which always includes the binary case (m = 2).
The "deviance" residuals r are defined similarly as for logistic regression, see
below.
"pearson", "working" and "response" are currently identical and give the differ-
ence of the underlying integer code (of the discrete data). Note that "partial"
residuals are not yet defined!

y discrete time series with respect to which the residuals are to be computed.

... possibly further arguments (none at the moment).

Value

If type = "classwise" (the default), a numeric matrix of dimension n × m of values Ii,j − pi,j
where the indicator Ii,j is 1 iff y[i] == a[j] and a is the alphabet (or levels) of y, and pi,j are the
elements of the estimated (1-step ahead) predicted probabilities, p <- predict(object). Hence,
for each i, the only positive residual stands for the observed class.

For all other types, the result is a numeric vector of the length of the original time-series (with first
element NA).
For type = "deviance", ri = ±

√
−2 log(Pi) where Pi is the predicted probability for the i-th

observation which is the same as pi,yi above (now assuming yi ∈ {1, 2, . . . ,m). The sum of the
squared deviance residuals is the deviance of the fitted model.

Author(s)

Martin Maechler

18 simulate.vlmc

See Also

vlmc,deviance.vlmc, and RCplot for a novel residual plot.

Examples

example(vlmc)
rp <- residuals(vlmc.pres)
stopifnot(all(abs(apply(rp[-1,],1,sum)) < 1e-15))
matplot(seq(presidents), rp, ylab = "residuals", type="l")
``Tukey-Anscombe'' (the following is first stab at plot method):
matplot(fitted(vlmc.pres), rp, ylab = "residuals", xaxt = "n",

type="b", pch=vlmc.pres$alpha)
axis(1, at = 0:(vlmc.pres$alpha.len-1),

labels = strsplit(vlmc.pres$alpha,"")[[1]])

summary(rd <- residuals(vlmc.pres, type = "dev"))
rd[1:7]
sum of squared dev.residuals === deviance :
all.equal(sum(rd[-1] ^ 2),

deviance(vlmc.pres))

simulate.vlmc Simulate a Discrete Time Series from fitted VLMC model

Description

Simulate from fitted VLMC model – basis of the VLMC bootstrap

Usage

S3 method for class 'vlmc'
simulate(object, nsim = 1, seed = NULL, n,

n.start = 64 * object$size[["context"]],
integer.return = FALSE, keep.RSeed = TRUE, ...)

Arguments

object typically the result of vlmc(..).
nsim, n non-negative integer, giving the length of the result. Note that n is deprecated

and just there for back compatibility.
seed random seed initializer; see simulate.
n.start the number of initial values to be discarded (because of initial effects).
integer.return logical; if TRUE, the result will be an integer vector with values in 0:(k-1);

otherwise the resulting vector consists of letters from the alphabet x$alpha.
keep.RSeed logical indicating if the seed should be stored with the result (as ‘required’ by the

generic simulate). Only set this FALSE with good reasons (back compatibility).
... (potentially further arguments for other simulate methods.

summary.vlmc 19

Details

The .Random.seed is used and updated as with other random number generation routines such as
rbinom.

Note that if you want to simulate from a given start sequence x0, you’d use predict.vlmc(x, x0,
type= "response") — actually not quite yet.

Value

A "simulate.vlmc" object, basically a vector of length nsim. Either integer or character,
depending on the integer.return argument, see above. Further, if keep.RSeed was true (as by
default), a "seed" attribute with the random seed at the start of the simulation, for reproducibility.

Author(s)

Martin Maechler

See Also

vlmc and predict.vlmc.

Examples

example(vlmc)

simulate(vlmc.dt1, 100)
simulate(vlmc.dt1c01, 100, int = TRUE)
n.start = 0: 1st few observations will resemble the data
simulate(vlmc.dt1c01, 20, n.start=0, int = TRUE)

summary.vlmc Summary of Fitted Variable Length Markov Chain (VLMC)

Description

Compute (and print) a summary of a vlmc object which is typically the result of vlmc(..).

Usage

S3 method for class 'vlmc'
summary(object, ...)
S3 method for class 'summary.vlmc'
print(x, digits = getOption("digits"),

vvec.printing = FALSE, ...)

20 vlmc

Arguments

object an R object of class vlmc.

x an R object of class summary.vlmc.

digits integer giving the number of significant digits for printing numbers.

vvec.printing logical indicating if the vvec component should be printed recursively via prt.vvec().

... potentially further arguments [Generic].

Value

summary.vlmc() returns an object of class "summary.vlmc" for which there’s a print method. It is
basically a list containing all of object, plus additionally

confusion.table

the symmetric contingency table of data vs fitted.

depth.stats statistics of Markov chain depth along the data; currently just summary(predict(object,
type="depth")).

R2 the R2 statistic, i.e. the percentage (in [0,1]) of correctly predicted data.

See Also

vlmc, draw.vlmc.

Examples

data(bnrf1)
vb <- vlmc(bnrf1EB)
svb <- summary(vb)
svb

vlmc Fit a Variable Length Markov Chain (VLMC)

Description

Fit a Variable Length Markov Chain (VLMC) to a discrete time series, in basically two steps:
First a large Markov Chain is generated containing (all if threshold.gen = 1) the context states of
the time series. In the second step, many states of the MC are collapsed by pruning the correspond-
ing context tree.

Currently, the “alphabet” may contain can at most 26 different “character”s.

vlmc 21

Usage

vlmc(dts,
cutoff.prune = qchisq(alpha.c, df=max(.1,alpha.len-1),lower.tail=FALSE)/2,
alpha.c = 0.05,
threshold.gen = 2,
code1char = TRUE, y = TRUE, debug = FALSE, quiet = FALSE,
dump = 0, ctl.dump = c(width.ct = 1+log10(n), nmax.set = -1))

is.vlmc(x)
S3 method for class 'vlmc'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

dts a discrete “time series”; can be a numeric, character or factor.

cutoff.prune non-negative number; the cutoff used for pruning; defaults to half the α-quantile
of a chisq distribution, where α = alpha.c, the following argument:

alpha.c number in (0,1) used to specify cutoff.prune in the more intuitive χ2 quantile
scale; defaulting to 5%.

threshold.gen integer >= 1 (usually left at 2). When generating the initial large tree, only
generate nodes with count >= threshold.gen.

code1char logical; if true (default), the data dts will beFIXME...........

y logical; if true (default), the data dts will be returned. This allows to ensure that
residuals (residuals.vlmc) and “k-step ahead” predictions can be computed
from the result.

debug logical; should debugging info be printed to stderr.

quiet logical; if true, don’t print some warnings.

dump integer in 0:2. If positive, the pruned tree is dumped to stderr; if 2, the initial
unpruned tree is dumped as well.

ctl.dump integer of length 2, say ctl[1:2] controlling the above dump when dump > 0.
ctl[1] is the width (number of characters) for the “counts”, ctl[2] the max-
imal number of set elements that are printed per node; when the latter is not
positive (by default), currently max(6, 15 - log10(n)) is used.

x a fitted "vlmc" object.

digits integer giving the number of significant digits for printing numbers.

... potentially further arguments [Generic].

Value

A "vlmc" object, basically a list with components

nobs length of data series when fit. (was named "n" in earlier versions.)
threshold.gen, cutoff.prune

the arguments (or their defaults).

alpha.len the alphabet size.

22 vlmc

alpha the alphabet used, as one string.

size a named integer vector of length (>=) 4, giving characteristic sizes of the fitted
VLMC. Its named components are

"ord.MC" the (maximal) order of the Markov chain,
"context" the “context tree size”, i.e., the number of leaves plus number of

“hidden nodes”,
"nr.leaves" is the number of leaves, and
"total" the number of integers needed to encode the VLMC tree, i.e., length(vlmc.vec)

(see below).

vlmc.vec integer vector, containing (an encoding of) the fitted VLMC tree.

y if y = TRUE, the data dts, as character, using the letters from alpha.

call the call vlmc(..) used.

Note

Set cutoff = 0, thresh = 1 for getting a “perfect fit”, i.e. a VLMC which perfectly re-predicts the
data (apart from the first observation). Note that even with cutoff = 0 some pruning may happen,
for all (terminal) nodes with δ=0.

Author(s)

Martin Maechler

References

Buhlmann P. and Wyner A. (1998) Variable Length Markov Chains. Annals of Statistics 27, 480–
513.

Mächler M. and Bühlmann P. (2004) Variable Length Markov Chains: Methodology, Computing,
and Software. J. Computational and Graphical Statistics 2, 435–455.

Mächler M. (2004) VLMC — Implementation and R interface; working paper.

See Also

draw.vlmc, entropy, simulate.vlmc for “VLMC bootstrapping”.

Examples

f1 <- c(1,0,0,0)
f2 <- rep(1:0,2)
(dt1 <- c(f1,f1,f2,f1,f2,f2,f1))

(vlmc.dt1 <- vlmc(dt1))
vlmc(dt1, dump = 1,

ctl.dump = c(wid = 3, nmax = 20), debug = TRUE)
(vlmc.dt1c01 <- vlmc(dts = dt1, cutoff.prune = .1, dump=1))

data(presidents)
dpres <- cut(presidents, c(0,45,70, 100)) # three values + NA

vlmc.version 23

table(dpres <- factor(dpres, exclude = NULL)) # NA as 4th level
levels(dpres)#-> make the alphabet -> warning
vlmc.pres <- vlmc(dpres, debug = TRUE)
vlmc.pres

alphabet & and its length:
vlmc.pres$alpha
stopifnot(

length(print(strsplit(vlmc.pres$alpha,NULL)[[1]])) == vlmc.pres$ alpha.len
)

You now can use larger alphabets (up to 95) letters:
set.seed(7); it <- sample(40, 20000, replace=TRUE)
v40 <- vlmc(it)
v40
even larger alphabets now give an error:
il <- sample(100, 10000, replace=TRUE)
ee <- tryCatch(vlmc(il), error= function(e)e)
stopifnot(is(ee, "error"))

vlmc.version Version of VLMC Package

Description

Character string, giving the version number (and date) of the VLMC package.

Examples

vlmc.version
Not run:
[1] "VLMC 1.3-14; after $Date: 2014/06/03 08:05:21 $ UTC"

End(Not run)

vlmctree Compute the tree structure of a "vlmc" object

Description

Compute the tree representation of a "vlmc" object as R list.

Usage

vlmctree(x)

S3 method for class 'vtree'
str(object, ...)
.vvec2tree(vv, k, chk.lev)

24 vlmctree

Arguments

x, object typically the result of vlmc(..).

vv integer vector encoding the fitted vlmc, typically x$vlmc.vec[-1].

k integer, the alphabet size.

chk.lev integer internally used for consistency checking.

... further arguments passed to or from methods.

Details

.vvec2tree is the internal (recursive) function building up the tree.

str.vtree is a method for the generic str function and typically for the output of vlmctree().
For each node, it gives the “parenting level” in braces and the counts.

Value

A list of class "vtree" representing the tree structure recursively.

Each “node” of the tree is itself a list with components

level length-2 integer giving the level in {0,1,. . . }, counted from the root (which is 0)
and the parenting level, i.e the longest branch.

count integer vector of length k where k is the number of “letters” in the alphabet.

total equals to sum(* $ count).

child a list (of length k) of child nodes or NULL (i.e. not there).

Author(s)

Martin Maechler

See Also

vlmc.

Examples

data(presidents)
dpres <- cut(presidents, c(0,45,70, 100)) # three values + NA
table(dpres <- factor(dpres, exclude = NULL)) # NA as 4th level

(vlmc.prc1 <- vlmc(dpres, cut = 1, debug = TRUE))
str(vv.prc1 <- vlmctree(vlmc.prc1))

Index

∗ character
alpha2int, 2
alphabet, 3
int2char, 8

∗ datasets
bnrf1, 4
OZrain, 11

∗ data
vlmc.version, 23

∗ graphs
as.dendrogram.vlmc, 3

∗ hplot
RCplot, 15

∗ iplot
as.dendrogram.vlmc, 3

∗ models
deviance.vlmc, 5
draw.vlmc, 6
logLik, 9
predict.vlmc, 12
residuals.vlmc, 17
simulate.vlmc, 18
summary.vlmc, 19
vlmc, 20
vlmctree, 23

∗ ts
deviance.vlmc, 5
draw.vlmc, 6
logLik, 9
predict.vlmc, 12
residuals.vlmc, 17
simulate.vlmc, 18
summary.vlmc, 19
vlmc, 20
vlmctree, 23

∗ utilities
alpha2int, 2
alphabet, 3
id2ctxt, 8

int2char, 8
prt.vvec, 14
RCplot, 15

.Random.seed, 19

.vvec2tree (vlmctree), 23

AIC, 10
alpha2int, 2, 3
alphabet, 2, 3
as.dendrogram, 4
as.dendrogram.vlmc, 3

BIC, 10
bnrf1, 4
bnrf1EB (bnrf1), 4
bnrf1ebv, 5
bnrf1HV (bnrf1), 4

call, 22
char2int, 2
char2int (int2char), 8
character, 2, 3, 19, 22
class, 24

dendrogram, 4
deviance.vlmc, 5, 10, 18
dimnames, 13
draw (draw.vlmc), 6
draw.vlmc, 6, 10, 20, 22

entropy, 6, 22
entropy (logLik), 9
entropy2 (logLik), 9

factor, 5
fitted.vlmc (predict.vlmc), 12
fractions, 13

id2ctxt, 8, 16
int2alpha, 9
int2alpha (alpha2int), 2

25

26 INDEX

int2char, 2, 8
integer, 2, 18, 19
is.vlmc (vlmc), 20

length, 5
list, 23, 24
logLik, 9, 9
logLik.vlmc (logLik), 9

max.col, 13

NA, 13
nchar, 2, 8
NULL, 24

OZrain, 11

par, 16
plot.dendrogram, 4
plot.factor, 16
predict.vlmc, 8, 12, 19
print, 13
print.predict.vlmc (predict.vlmc), 12
print.summary.vlmc (summary.vlmc), 19
print.vlmc (vlmc), 20
prt.vvec, 14, 20

rbinom, 19
RCplot, 15, 18
residuals.vlmc, 6, 13, 17, 21

simulate, 18
simulate.vlmc, 13, 18, 22
str, 24
str.vtree (vlmctree), 23
summary.vlmc, 15, 16, 19

ts, 11

vlmc, 2–4, 6–10, 12–20, 20, 23, 24
vlmc.version, 23
vlmctree, 23

	alpha2int
	alphabet
	as.dendrogram.vlmc
	bnrf1
	deviance.vlmc
	draw.vlmc
	id2ctxt
	int2char
	logLik
	OZrain
	predict.vlmc
	prt.vvec
	RCplot
	residuals.vlmc
	simulate.vlmc
	summary.vlmc
	vlmc
	vlmc.version
	vlmctree
	Index

