Package ‘VIProDesign’

May 2, 2025
Type Package

Title A Comprehensive Tool for Protein Design

Version 0.1.0

Description Provides tools for designing virus protein panels through sequence clustering and pro-
tein sequence analysis. The package includes functionality for filtering sequences, removing re-
dundancy, identifying outliers, clustering sequences, and calculating entropy to evaluate cluster-
ing quality. A publication describing these methods is in prepara-
tion and will be added once available.

License Apache License 2.0

Encoding UTF-8

RoxygenNote 7.3.2

Imports Biostrings, DECIPHER, cluster, pathviewr, dbscan, ape
Suggests optparse

NeedsCompilation no

Author Tatsiana Bylund [aut, cre]

Maintainer Tatsiana Bylund <tatsiana.bylund@nih.gov>
Repository CRAN

Date/Publication 2025-05-02 09:30:09 UTC

Contents
entropy_RR L 2
filter_sequences e e e e e 2
phyl_tree_cluster_dbscan 3
phyl_tree_distance_k 4
run_VIProDesign 5
Index 7

2 filter_sequences

entropy_RR Calculate Entropy for Amino Acid Sequences

Description
This function calculates the entropy of a set of amino acid sequences. It is used to evaluate the
diversity of sequences in a given alignment.

Usage

entropy_RR(alignment)

Arguments

alignment An ‘AAStringSet‘ object containing the aligned amino acid sequences.

Details

The entropy is calculated based on the frequency of amino acids at each position in the alignment.
Higher entropy indicates greater variability at that position.

Value

A numeric vector representing the entropy values for each position in the alignment.

Examples

Example usage:

library(Biostrings)

sequences <- AAStringSet(c("ACDEFGHIK", "ACDEFGHIK", "ACDEFGHIK"))
entropy_values <- entropy_RR(sequences)

print(entropy_values)

filter_sequences Filter Sequences

Description

Filters sequences to remove non-standard amino acids.

Usage

filter_sequences(input_file)

Arguments

input_file Path to the input FASTA file.

phyl_tree_cluster_dbscan 3

Value

A ‘AAStringSet* object containing the filtered sequences.

phyl_tree_cluster_dbscan
Perform DBSCAN Clustering on a Phylogenetic Tree

Description
This function applies the DBSCAN clustering algorithm on a set of protein sequences to identify
clusters and remove outliers based on a distance cutoff.

Usage

phyl_tree_cluster_dbscan(input_obj, cutoff, nmin)

Arguments
input_obj A ‘AAStringSet‘ object containing protein sequences.
cutoff A numeric value specifying the distance cutoff for clustering.
nmin An integer specifying the minimum number of points required to form a cluster
(DBSCAN parameter).
Details

The function uses the DBSCAN algorithm to cluster sequences based on their phylogenetic dis-
tances. Sequences identified as outliers are excluded from the final output.

Value

This function returns a ‘AAStringSet‘ object containing protein sequences with outliers removed.

Examples

Example usage:
library(Biostrings)

Create an AAStringSet object with the sequences
seqs <- AAStringSet(c(

seql = "MKTIIALSYIFCLVFADYKDDDDK",

seq2 = "MKTIIALSYIFCLVFADYKDLLKDDDD",

seq3 = "MKTIIALSYIFCLVFADEELYKDDDD",

seq4 = "MKTIEIALSYIFCLVFADYKDDDD",

seg5 = "MKTIIKLAAASYIFCLVFADYKDDDD",

seq6 = "MKTIIALSKIPFCLVFADYKDDDD",

seq7 = "MKTIIALSYIFiQEERTCLVFADYKDDDD"
)

4 phyl_tree_distance_k

Perform DBSCAN clustering and remove outliers
no_outliers <- phyl_tree_cluster_dbscan(seqgs, cutoff = @.5, nmin = 5)

phyl_tree_distance_k Calculate Phylogenetic Tree Distances

Description

This function calculates the pairwise distances between sequences in a phylogenetic tree and returns
a numeric vector of Sth smallest distances for each leaf in the tree.

Usage

phyl_tree_distance_k(input_obj)

Arguments

input_obj A ‘AAStringSet* object containing sequences.

Details

The function uses the ‘ape‘ package to construct a phylogenetic tree and calculate pairwise distances
between sequences. The results are returned as a numeric vector.

Value

A numeric vector containing the 5th smallest distances (‘Distances_k°) for each leaf in the phylo-
genetic tree.

Examples

Input file

input_file <- system.file("extdata”, "input.fasta”, package = "VIProDesign")
seqs <- Biostrings::readAAStringSet(input_file)

distances_k <- phyl_tree_distance_k(seqs)

run_VIProDesign 5

run_VIProDesign Run VIProDesign Workflow

Description

This function performs the VIProDesign workflow for clustering and analyzing protein sequences.
It includes steps for filtering sequences, removing redundancy, identifying and removing outliers,
and clustering sequences using PAM (Partitioning Around Medoids). This function requires the
‘cd-hit‘ executable to be installed and accessible in the system’s PATH if ‘use_cd_hit = TRUE®. If
‘cd-hit‘ is not available, the workflow will skip redundancy removal and proceed with the filtered
sequences.

Usage

run_VIProDesign(
file,
output_prefix,
max_cluster_number = NULL,
predefined_cluster_number = NULL,
use_cd_hit = TRUE,
cd_hit_path,
cutoff = 0.99,
remove_outliers = TRUE,
verbose = FALSE

Arguments

file A string specifying the path to the input FASTA file containing protein se-
quences.
output_prefix A string specifying the prefix for output files generated by the workflow.
max_cluster_number
An integer specifying the maximum number of clusters to evaluate (optional).
predefined_cluster_number
An integer specifying a predefined number of clusters for PAM clustering (op-
tional).
use_cd_hit A logical value indicating whether to remove redundant sequences using ‘cd-hit*
(default: TRUE).
cd_hit_path A string specifying the path to the ‘cd-hit‘ executable (default: "cd-hit").

cutoff A numeric value specifying the redundancy cutoff for ‘cd-hit* (default: 0.99).
remove_outliers
A logical value indicating whether to identify and remove outliers using DB-
SCAN clustering (default: TRUE).

verbose A logical value indicating whether to print detailed messages during execution
(default: FALSE).

Details

To install ‘cd-hit‘, you can use conda:

run_VIProDesign

3 113

““ conda install -c bioconda cd-hit “‘ Or download it from

the official website: http://weizhong-lab.ucsd.edu/cd-hit/

The workflow includes the following steps: - Filtering sequences. - Removing redundancy using
‘cd-hit‘. - Identifying and removing outliers using DBSCAN clustering. - Performing PAM clus-
tering to identify representative sequences. - Calculating entropy to evaluate clustering quality.

Value

A list containing the following elements:

filtered_file: A file containing the filtered sequences (if redundancy removal was per-
formed).

non_redundant_file: A file containing the non-redundant sequences (if redundancy removal
was performed).

no_outlier_obj: A ‘AAStringSet‘ object containing the sequences with outliers removed (if
outlier removal was performed).

clustering_info: Clustering information generated by PAM clustering.

final_panel: The final representative sequences selected by the workflow.

Examples

Example usage:
temp_dir <- tempdir()
temp_prefix <- file.path(temp_dir, "output”)
input_file <- system.file("extdata”, "input.fasta”, package = "VIProDesign")
run_VIProDesign(
file = input_file,
output_prefix = temp_prefix,
max_cluster_number = 5,
use_cd_hit = TRUE,
cd_hit_path = "/data/kiryst/conda/envs/VIProDesign/bin/cd-hit",
cutoff = 0.99,
remove_outliers = TRUE

)

Clean up
unlink(list.files(temp_dir, full.names = TRUE))

Index

entropy_RR, 2
filter_sequences, 2

phyl_tree_cluster_dbscan, 3
phyl_tree_distance_k, 4

run_VIProDesign, 5

	entropy_RR
	filter_sequences
	phyl_tree_cluster_dbscan
	phyl_tree_distance_k
	run_VIProDesign
	Index

