
Umpire: The Ultimate Microarray Prediction, Inference, and

Reality Engine

Jiexin Zhang and Kevin R. Coombes

14 July 2009

1 Introduction

Version 1.0 of the Ultimate Microarray Prediction, Inference, and Reality Engine (Umpire) is an
R package that allows researchers to simulate complex, realistic microarray data. Statisticians and
bioinformaticians who develop and improve methods to analze microarray data recognize that it is
di�cult to evaluate methods on real data where �ground truth� is unknown, and they frequently turn
to simulations where they can control the true underlying structure. In many instances, however, the
simulations that have been performed are rather simplistic. Often, genes are treated as independent,
in spite of the elaborate correlation structures that give rise to networks and pathways in real biology.
Di�erential epxression is frequently simulated using two homogeneous groups following nearly perfect
normal distributions, with the amount of di�erential expression identical for all genes. The Umpire
package, which is invoked by the command

> library(Umpire)

provides tools that allow users to simulate microarray data from a more realistic model.

2 The gene expression model

2.1 Engines

The fundamental object in Umpire is a �random-vector generator� (RVG), which is represented by
the Engine class. Equivalently, each Engine object represents a speci�c multivariate distribution,
from which random vectors can be generated using the generic rand method. In Version 1.0 of
Umpire, we include three basic building blocks for these kinds of distributions: independent normal,
independent log normal, and multivariate normal. The following example creates an object that
will generate vectors of length 3.

> nGenes <- 3

> means <- rnorm(nGenes, 6, 1)

> sds <- 1/rgamma(nGenes, rate=14, shape=6)

> indn <- IndependentNormal(means, sds)

> summary(indn)

1



Umpire 2

An IndependentNormal object, representing a vector

of length 3 of independent normal random variables.

> indn

An object of class "IndependentNormal"

Slot "mu":

[1] 4.817261 5.168326 4.630687

Slot "sigma":

[1] 3.839131 2.109463 1.206702

Now we generate �ve vectors from this distribution.

> x <- rand(indn, 5)

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 4.508216 11.083197 0.8589291 1.657415 9.542727

[2,] 4.330626 6.984256 5.8524106 4.963475 7.636607

[3,] 4.872833 3.611485 4.2672394 3.785379 1.902016

We use a similar method to create an object that generates independent log normal data.

> nGenes <- 4

> logmu <- rnorm(nGenes, 6, 1)

> logsigma <- 1/rgamma(nGenes, rate=14, shape=6)

> indLN <- IndependentLogNormal(logmu, logsigma)

> indLN

An object of class "IndependentLogNormal"

Slot "logmu":

[1] 4.666941 6.237990 5.137024 6.186839

Slot "logsigma":

[1] 2.144192 1.732211 2.085422 3.246242

In order to create a multivariate normal RVG, we must specify the mean vector and the covari-
ance matrix. Here we start with the correlation matrix for a simple two-dimensional RVG.

> a <- runif(1)

> b <- sqrt(1-a^2)

> X <- matrix(c(a, b, -b, a), 2, 2)

Next, we choose random positive squared-eigenvalues.



Umpire 3

> Lambda2 <- diag(rev(sort(rexp(2))), 2)

We combine these into a covariance matrix.

> Y <- t(X) %*% Lambda2 %*% X

Finally, we use the MVN constructor

> mvn <- MVN(c(0,0), Y)

and use it to generate �ve random vectors.

> x <- rand(mvn, 5)

A general Engine is a list of RVG components, like those just created from the IndependentNormal
or MVN constructors. For example, we can create an RVG Engine with two components using the
command:

> engine <- Engine(list(indn, mvn))

> summary(engine)

An Engine with 2 components.

> data <- rand(engine, 5)

> data

[,1] [,2] [,3] [,4] [,5]

[1,] -2.9760465 -1.4301555 6.6720999 6.846802 6.1459152

[2,] 7.1909455 3.4706992 4.6732073 7.323242 2.2245688

[3,] 3.2033364 4.1869240 3.7385078 5.675392 5.1522911

[4,] 1.1687270 -0.4317227 1.1841320 -1.001320 1.0863994

[5,] -0.2010683 1.4866611 -0.8089795 -1.458363 -0.6368591

3 Additive and Multiplicative Noise

We model the observed signal, Ygi, for gene g in sample i as:

Ygi = Sgi ∗ exp(Hgi) + Egi

where
Sgi = true biological signal

Hgi = multiplicative noise

Egi = additive noise

The noise model represents technical noise that is layered on top of any biological variability
when measuring gene expression in a set of samples. For example, background noise is usually



Umpire 4

additive to the signal, and the variation between the signal pixels, which is independent of the
magnitude of the signal, is the representative multiplicative noise [?]. We modeled both additive
and multiplicative noise as normal distribution:

Egi ∼ Normal(ν, τ)

Hgi ∼ Normal(0, ϕ)

Note that we allow the additive noise to include a bias term (ν) that may represent, for example, a
low level of cross-hybridization provding some level of signal at all genes.

The noise model is represented in the Umpire package by the NoiseModel class. You create a
NoiseModel object by supplying values for ν, τ , and ϕ.

> noise <- NoiseModel(30, 40, 0.10)

> noise

An object of class "NoiseModel"

Slot "additiveOffset":

[1] 30

Slot "additiveScale":

[1] 40

Slot "multiplicativeScale":

[1] 0.1

Use the blur function to add noise to a data matrix. For example,

> ndata <- blur(noise, data)

> summary(data)

V1 V2 V3 V4

Min. :-2.9760 Min. :-1.4302 Min. :-0.809 Min. :-1.458

1st Qu.:-0.2011 1st Qu.:-0.4317 1st Qu.: 1.184 1st Qu.:-1.001

Median : 1.1687 Median : 1.4867 Median : 3.739 Median : 5.675

Mean : 1.6772 Mean : 1.4565 Mean : 3.092 Mean : 3.477

3rd Qu.: 3.2033 3rd Qu.: 3.4707 3rd Qu.: 4.673 3rd Qu.: 6.847

Max. : 7.1909 Max. : 4.1869 Max. : 6.672 Max. : 7.323

V5

Min. :-0.6369

1st Qu.: 1.0864

Median : 2.2246

Mean : 2.7945

3rd Qu.: 5.1523

Max. : 6.1459



Umpire 5

> summary(ndata)

V1 V2 V3 V4 V5

Min. :-14.897 Min. :-17.55 Min. :-4.251 Min. :-19.68 Min. :-34.57

1st Qu.: 6.581 1st Qu.: 13.12 1st Qu.:14.369 1st Qu.: -2.48 1st Qu.: 15.83

Median : 9.120 Median : 19.13 Median :26.457 Median : 19.30 Median : 40.75

Mean : 19.185 Mean : 38.10 Mean :20.011 Mean : 22.52 Mean : 31.45

3rd Qu.: 31.278 3rd Qu.: 78.23 3rd Qu.:30.883 3rd Qu.: 30.70 3rd Qu.: 65.20

Max. : 63.844 Max. : 97.57 Max. :32.597 Max. : 84.77 Max. : 70.07

4 Gene Expression

Let Tgi denote the expression of a transcriptionally active gene g in sample i. For most purposes,
We allow Tgi to follow a log-normal distribution (log(Tg) ∼ Normal(µg, σg). In a class of samples,
the mean expression of gene g on the log scale is denoted by µg and the standard deviation on the
log scale is σg. Both µg and σg are properties of the gene itself and the sample class. Suppose,
for example, in a class of samples, that on average, g1 expresses at a higher level than g2, and the
variance of g1 is smaller than g2. Then, µg1 > µg2 and σg1 < σg2 .

Within a given simulation, we typically place hyperdistributions on the log-normal parameters
µg and σg. We take µg ∼ Normal(µo, sigma0) to have a normal distribution with mean µ0 and
standard deviation σ0. We take the σg to have an inverse gamma distribution with rate and shape
parameters. Reasonable values for the hyperparameters can be estimated from real data. For
instance, µ0 = 6 and σ0 = 1.5 are typical values on the log scale of a microarray experiment using
A�ymetrix HG-U133A chip. The parameters for the inverse gamma distribution are determined
by the method of moments from thwe desired mean and standard deviation; we have found that a
mean of 0.65 and a standard deviation of 0.01 (for which rate= 28.11 and shape= 44.25) produce
reasonable data.

Thus, we can create a simulation engine of this type by

> nGenes <- 4000

> mu0 <- 6

> sigma0 <- 1.5

> rate <- 28.11

> shape <- 44.25

> logmu <- rnorm(nGenes, mu0, sigma0)

> logsigma <- 1/rgamma(nGenes, rate=rate, shape=shape)

> indLN <- IndependentLogNormal(logmu, logsigma)

> engine <- Engine(list(indLN))

4.1 The Multi-hit Model of Cancer

The multiple hit theory of cancer was �rst proposed by Carl Nordling in 1953 [?] and extended
by Alfred Knudson in 1971. The basic idea is that cancer can only result after multiple insults
(mutations; hits) to the DNA of a cell.



Umpire 6

4.2 Active and Inactive Genes

We model the true biological signal Sgi, for gene g in sample i, as a mixture:

Sgi ∼ (1− zg) ∗ δ0 + zg ∗ Tgi

In this model, δ0 is a point mass at zero, zg de�nes the activity state (1 = active, 0 = inactive), and
Tgi is the expression of a transcriptionally active gene.By allowing for some genes to be transcrip-
tionally inactive, this design takes into account that the transcriptional activity of most genes is
conditional on the biological context. For example, tissue-speci�c genes, unlike housekeeping genes,
only express in certain tissue samples. Activity is modeled in Umpire using a binomial distribution,
zg ∼ Binom(p0). To create a simulation engine that inciorproates transcriptional activation, we
write

> p0 <- 0.8

> engine <- EngineWithActivity(p0, list(indLN))

> summary(engine)

An Engine with 1 components.

Fraction of active genes 1

4.3 Correlated blocks of genes

Instead of simulating genes as independent entities, we consider blocks of correlated genes. Bio-
logically, genes are usually interconnected in networks and pathways. Often, clustering methods
are used to group genes into correlated blocks. Thus, it is natural to simulate microarray experi-
ments from the perspective of blocks. Since the size of the blocks and degree of correlations among
genes within a block depend on biological condition of samples, they need to be simulated within
a reasonable range in order to study their e�ect on the microarray data analysis. As shown in
Table 1, we allow the mean block size, bs, to range from 1 to 1000, and the sizes of gene blocks
to vary around the pre-de�ned mean block size. To be more speci�c, the block size follow normal
distribution with mean bs and standard deviation 0.3∗bs. bs = 1 is a special case in which standard
deviation of block size = 0. Thus, when bs = 1, there are no correlated blocks, which means all
genes are independent of each other. On the other extreme, bs = 1000 demonstrates the situation
in which the common theme is large networks involving many genes. We have also simulated blocks
where the standard deviation = 0 for all mean block size, under which circumstance all blocks in
a microarray experiments have the exactly same sizes. Comparing with variable block size, the
setting of constant block size a�ects the variability of the parameters of interest. However, because
we believe that the variable block size is more realistic, we will present in this paper only the results
obtained from variable block size. Comparison between results from constant block size and from
variable block size is shown in supplementary material.

As discussed in previous paragraph, we need to simulate the correlation among genes within
a block. The correlation matrix for a block b, cor.matrixb, has 1 on the diagnal and ρb or -ρb in
o�-diagnal places. We allow ρ to follow a beta distribution with parameters p and w: Beta(pw, (1−



Umpire 7

p)∗w). With the setting of p = 0.6 and w = 5, most blocks are relatively highly correlated (mean of
ρ is around 0.6). The portion of negatively correlated genes within a block is denoted by parameter
p.neg. In the simplest set-up, we have all genes in the same block to have the same correlation ρb.
Because ρb is always positive, this set-up means there is not negatively correlated genes within a
block (p.neg = 0). In more complicated set-up, we allow the portion of negatively correlated genes
within a block (p.neg) to be supported on [0,0.5]. Thus, we have p.neg = 0.5-abs(x-0.5) where x
follow some beta distribution. Three scenarios were considered: (1) x beta(1,1), in which case the
p.neg is uniformly distributed between 0 and 0.5; (2) x beta(5,5), in which case it is more likely
that the p.neg is close to 0.5; (3) x beta(0.5,0.5), in which case it is more likely that the p.neg is
close to 0. Figure ??c shows the histogram of pair-wise correlations within 10000 genes and mean
block size 50 when p.neg is uniformly distributed between 0 and 0.5. The distributions of pair-wise
correlations for all four p.neg scenarios is shown in supplementary materials (�g:pneg)

We allow the log expression values of genes in a block to follow a multi-variate normal (MVN)
distribution. The mean for the MVN object is de�ned by µg, and the covariance matrix is de�ned
as the following:

cov.matrix[i, j] = cor.matrix[i, j] ∗ σgi ∗ σgj
where σgi de�nes the standard deviation of gene i, which follows the inverse gamma distribution as
described in previous section. cor.matrix denotes the correlation matrix as described in previous
paragraph.

In previous section, we mentioned that some genes would be transcriptionally inactive under
certain biological conditions. Instead of simulating this active status for each gene, we simulate the
whole block of genes being transcriptionally active or inactive. This follows the argument that the
whole pathway/network could be turned on or o� under certain bioligical conditions. The active
status of blocks for the microarray experiment follows a binomial distribution with parameter π
which de�nes the portion of transcriptionally inactive blocks. When a block is turned o�, zg, the
status indicator, is set to be 0 for all genes in this block, so that the true biological signals for these
genes are zero.

4.4 Normal vs cancer samples

We simulate normal samples being a homogeneous population with nGenes genes and nSamples

samples. We allow nSamples to vary from 10 to 100 in order to study the e�ect of number of
independent observations on various test statistics. The same number of cancer samples are being
generated with a portion of di�erentially expressed genes. We simulate di�erentially expressed genes
in cancer samples by changing their mean expression values. Instead of changing individual genes,
we perform this mean altering to blocks of genes in order to simulate the a�ect of cancer pathology on
certain pathway/networks. p.di� is used to de�ne the percentage of di�erentially expressed blocks
which are then randomly selected from transcriptionally active blocks. We keep transcriptionally
inactive blocks inactive in both normal and cancer samples in this setting. However, it is possible
that an inactive block of genes in normal samples being turned on in cancer samples, or vise versa,
when certain carcinogens work through pathways that are supposed to be o�, or on, in normal
samples. We will incorporate this level of complication in later implementations. The parameter



Umpire 8

diff.mean denotes the absolute changes of the mean expression values on log scale for a block of
genes. diff.mean follows a gamma distribution with parameter α and β (Figure ??d). The α
and β are both set be 10 so that the absolute fold change on log scale is 1 (thus 2 fold change on
raw scale), and the long tail on the right hand side of the distribution indicates a few genes would
have large fold changes. A gene in the changed block is randomly assigned to be up-regulated or
down-regulated in cancer samples.

Using parameters described above and summarized in Table 1, Figure ??e shows the distribution
of the average of log expression values of 10000 genes from 10 simulated normal samples given the
mean block size being 100. The bimodal pro�le is due to the fact that part of genes are transcrip-
tionally inactive. Similarly, 10 cancer samples were generated with 10% di�erentially expressed
blocks. Figure ??g shows the log mean expression values of these 10000 genes in normal samples
verse those in cancer samples. Red dots represent those genes that di�erentially expressed in cancer
samples.

group parameter value description

log mean of true biological signal µg
µ0 6 mean
σ0 1.5 std

log std of true biological signal σg
sMean 0.65 mean
sVar 0.01 variance

multiplicative noise Hgi ϕ 0.1 std

additive noise Egi
ν 30 mean
τ 40 std

block correlation ρ
p 0.6 beta dist. parameter 1
w 5 beta dist. parameter 2

di�.mean
α 10 gamma dist. parameter 1
β 10 gamma dist. parameter 2

constant

π 0.3 portion of
transcriptionally active blocks

bs 1,5,10,50,100, number of
250,500,1000 genes per block size

nGenes 10000 number of
genes in microarray experiment

nSamples 10,25,50,100 number of
samples in each condition

p.di� 0.1 portion of
di�erentially expressed genes

Table 1: Parameters used in simulation

5 Appendix

This analysis was performed in the following directory:



Umpire 9

> getwd()

[1] "C:/Users/kevin/AppData/Local/Temp/Rtmp0yERLh/Rbuild2b1445d17502/Umpire/vignettes"

This analysis was performed in the following software environment:

> sessionInfo()

R version 4.4.1 (2024-06-14 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 11 x64 (build 26100)

Matrix products: default

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United States.utf8

[3] LC_MONETARY=English_United States.utf8 LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] survival_3.6-4 Umpire_2.0.11

loaded via a namespace (and not attached):

[1] sass_0.4.9 utf8_1.2.4 generics_0.1.3 tidyr_1.3.1

[5] rstatix_0.7.2 lattice_0.22-6 digest_0.6.36 magrittr_2.0.3

[9] evaluate_0.24.0 grid_4.4.1 mvtnorm_1.2-5 fastmap_1.2.0

[13] jsonlite_1.8.8 Matrix_1.7-0 backports_1.5.0 mclust_6.1.1

[17] purrr_1.0.2 fansi_1.0.6 mc2d_0.2.1 BimodalIndex_1.1.9

[21] scales_1.3.0 jquerylib_0.1.4 abind_1.4-5 cli_3.6.3

[25] rlang_1.1.4 munsell_0.5.1 splines_4.4.1 cachem_1.1.0

[29] yaml_2.3.10 tools_4.4.1 ggsignif_0.6.4 dplyr_1.1.4

[33] colorspace_2.1-1 ggplot2_3.5.1 ggpubr_0.6.0 broom_1.0.6

[37] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4 car_3.1-2

[41] oompaBase_3.2.9 cluster_2.1.6 pkgconfig_2.0.3 pillar_1.9.0

[45] bslib_0.8.0 gtable_0.3.5 glue_1.7.0 xfun_0.46

[49] tibble_3.2.1 tidyselect_1.2.1 highr_0.11 knitr_1.48

[53] htmltools_0.5.8.1 rmarkdown_2.27 carData_3.0-5 compiler_4.4.1


	Introduction
	The gene expression model
	Engines

	Additive and Multiplicative Noise
	Gene Expression
	The Multi-hit Model of Cancer
	Active and Inactive Genes
	 Correlated blocks of genes
	 Normal vs cancer samples 

	Appendix

