Package ‘TSstudio’

January 20, 2025
Type Package
Title Functions for Time Series Analysis and Forecasting
Version 0.1.7
Maintainer Rami Krispin <rami.krispin@gmail.com>

Description Provides a set of tools for descriptive and predictive analysis of time series data. That in-
cludes functions for interactive visualization of time series objects and as well utility func-
tions for automation time series forecasting.

License MIT + file LICENSE
Encoding UTF-8

LazyData true

Depends R (>=3.0.2)

Imports data.table(>= 1.11.2), dplyr(>= 0.7.5), forecast (>= 8.2),
forecastHybrid(>= 2.0.10), parallel(>= 4.1.2), lubridate (>=
1.6.0), magrittr (>= 1.5), plotly (>=4.7.1), purrr(>= 0.2.5),
RColorBrewer(>= 1.1-2), reshape2 (>= 1.4.2), scales(>= 1.0.0),
tidyr(>= 0.8.1), tsibble(>= 1.1.3), viridis (>= 0.5.1), xts (>=
0.12-0), zoo (>= 1.8-0)

Suggests devtools, DT, knitr, quantmod, rmarkdown, UKgrid
VignetteBuilder knitr
RoxygenNote 6.1.1

URL https://github.com/RamiKrispin/TSstudio

BugReports https://github.com/RamiKrispin/TSstudio/issues
NeedsCompilation no

Author Rami Krispin [aut, cre]

Repository CRAN

Date/Publication 2023-08-09 04:40:07 UTC

https://github.com/RamiKrispin/TSstudio
https://github.com/RamiKrispin/TSstudio/issues

2 Contents

Contents
arima_diag e e 3
cef plot e e e 4
check_res e 5
Coffee_Prices e e e e e 5
create_model L L e e 6
EURO _Brent e e 8
forecast_SIM e 9
Michigan_CS 10
plot_error 11
plot_forecast 12
plot_grid 13
plot_model e e e 13
reS_hiSt e e e 15
test_forecasto L e 16
train_model e 17
(S_COT . . v v e e e e e e e e e 18
tS_decCOmPOSe e e e e e e 19
ts_grido 20
ts_heatmap 22
tS_INfO . . . L 23
ts_lags . . .o e 24
ES_IMA . o v e 25
tS_plot . . e e 27
tS_polar e e e e e 28
ts_quantile e e 28
ts_reshape e e 30
ts_seasonal L. e e e e e e e 30
tS_SPlit . . . e e e 31
ES_SUM . . . v o e o e 32
tS_Surface s 33
ts_to_prophet 33
USgas . . . o o 34
USUnRate e e e 34
USVSales o o e e e e 35
US_Indicators e e e 36
XES_ O 1S . o o o e e e 36
ZOO_TO_1S o v v o e e e e e e e e e e e e e 37

Index 38

arima_diag 3

arima_diag Diagnostic Plots for ARIMA Models

Description

Diagnostic Plots for ARIMA Models

Usage

arima_diag(ts.obj, method = list(first = list(diff = 1, log = TRUE, title
= "First Difference with Log Transformation”)), cor = TRUE)

Arguments
ts.obj A ts object
method A list, defines the transformation parameters of each plot. Each plot should
be defined by a list, where the name of the list defines the plot ID. The plot
parameters are:
diff - an integer, defines the degree of diffrence log - a boolean, optional, defines
if log transformation should be used title - optional, the plot title
cor A boolean, if TRUE (default), will plot the series ACF and PACF
Details

The arima_diag function provides a set of diagnostic plots for identify the ARIMA model parame-
ters. The ACF and PACEF can assist in identifying the AR and MA process, and the diffrence plotting
hel in idenitfying the degree of differencing that required to make the series stationary

Value

A plot

Examples

data(USgas)
arima_diag(ts.obj = USgas)
Can define more than one differencing plot using the 'method' argument

arima_diag(ts.obj = USgas,

cor = TRUE,

method = list(first = list(diff =1,
log = TRUE,
title = "First Diff with Log Transformation”),

Second = list(diff = c(1,1),

log = TRUE,
title = "Second Diff with Log Transformation”)))

4 ccf_plot

ccf_plot Time Series Cross Correlation Lags Visualization

Description
Visualize the series y against the series x lags (according to the setting of the lags argument) and
return the corresponding cross-correlation value for each lag

Usage

ccf_plot(x, y, lags = ©0:12, margin = 0.02, n_plots = 3,
Xshare = TRUE, Yshare = TRUE, title = NULL)

Arguments
X A univariate time series object of a class "ts"
y A univariate time series object of a class "ts"
lags An integer, set the lags range, by default will plot the two series along with the
first 12 lags
margin Plotly parameter, either a single value or four values (all between 0 and 1). If
four values provided, the first will be used as the left margin, the second will be
used as the right margin, the third will be used as the top margin, and the fourth
will be used as the bottom margin. If a single value provided, it will be used as
all four margins.
n_plots An integer, define the number of plots per row
Xshare Plotly parameter, should the x-axis be shared amongst the subplots?
Yshare Plotly parameter, should the y-axis be shared amongst the subplots?
title A character, optional, set the plot title
Value
Plot
Examples

data(”"USUnRate")
data("USVSales")

ccf_plot(x = USVSales, y = USUnRate)

#Plotting the first 6 lead and lags of the USVSales with the USUnRate
ccf_plot(x = USVSales, y = USUnRate, lags = -6:6)

Setting the plot margin and number of plots in each raw
ccf_plot(x = USVSales, y = USUnRate, lags = c(@, 6, 12, 24),
margin = 0.01, n_plots = 2)

check res 5

check_res Visualization of the Residuals of a Time Series Model

Description

Provides a visualization of the residuals of a time series model. That includes a time series plot of
the residuals, and the plots of the autocorrelation function (acf) and histogram of the residuals

Usage

check_res(ts.model, lag.max = 36)

Arguments
ts.model A time series model (or forecasted) object, support any model from the forecast
package with a residuals output
lag.max The maximum number of lags to display in the residuals’ autocorrelation func-
tion plot
Examples
library(forecast)
data(USgas)

Create a model
fit <- auto.arima(USgas)

Check the residuals of the model
check_res(fit)

Coffee_Prices Coffee Prices: Robusta and Arabica

Description

Coffee Prices: Robusta and Arabica: 1960 - 2018. Units: Dollars per Kg

Usage

Coffee_Prices

Format

Time series data - *mts’ object

6 create_model

Source

WIKI Commodity Prices - Quandle

Examples

ts_plot(Coffee_Prices)

create_model A Functional Approach for Building the train_model Components

Description

Add, edit, or remove the components of the train_model function

Usage

create_model ()

add_input(model.obj, input)
add_methods(model.obj, methods)
remove_methods(model.obj, method_ids)
add_train_method(model.obj, train_method)
add_horizon(model.obj, horizon)
build_model (model.obj)
set_error(model.obj, error)
add_xreg(model.obj, xreg)

add_level(model.obj, level)

Arguments
model.obj The train_model skeleton, created by the create_model function or edited by
add_input, add_methods, remove_methods, add_train_method or add_horizon
input A univariate time series object (ts class)
methods A list, defines the models to use for training and forecasting the series. The list

must include a sub list with the model type, and the model’s arguments (when
applicable) and notes about the model. The sub-list name will be used as the
model ID. Possible models:

arima - model from the stats package

create_model

method_ids

train_method

horizon

error

xreg

level

Examples

Not run:

auto.arima - model from the forecast package

ets - model from the forecast package

HoltWinters - model from the stats package

nnetar - model from the forecast package

tslm - model from the forecast package (note that the tslm’ model must have
the formula argument in the *'method_arg’ argument)

A character, defines the IDs of the model methods to be remove with the re-
move_methods function

A list, defines the train approach, either using a single testing partition (sample
out) or use multiple testing partitions (backtesting). The list should include the
training method argument, (please see "details’ for the structure of the argument)

An integer, defines the forecast horizon

A character, defines the error metrics to be used to sort the models leaderboard.
Possible metric - "MAPE" or "RMSE"

Optional, a list with two vectors (e.g., data.frame or matrix) of external regres-
sors, one vector corresponding to the input series and second to the forecast itself
(e.g., must have the same length as the input and forecast horizon, respectively)

An integer, set the confidence level of the prediction intervals

Building train_model function by adding its different components
Create a skeleton model
md <- create_model()

class(md)

Add input
data(USgas)

md <- add_input(model.obj = md, input = USgas)

Add methods

methods <- list(etsl = list(method = "ets”,

method_arg = list(opt.crit = "1ik"),
notes = "ETS model with opt.crit = 1lik"),

ets2 = list(method = "ets"”,

method_arg = list(opt.crit = "amse"),
notes = "ETS model with opt.crit = amse"),
arimal = list(method = "arima”,

method_arg = list(order = c(1,1,1),
seasonal = list(order = c(1,0,1))),
notes = "SARIMA(1,1,1)(1,0,1)"))

md <- add_methods(model.obj = md, methods = methods)

Add additional methods
methods2 <- list(arima2 = list(method = "arima”,

method_arg = list(order = c(2,1,2),

8 EURO_Brent

seasonal = list(order = c(1,1,1))),
notes = "SARIMA(2,1,2)(1,1,1)"),
hw = list(method = "HoltWinters",
method_arg = NULL,
notes = "HoltWinters Model"”),
tslm = list(method = "tslm"”,
method_arg = list(formula = input ~ trend + season),
notes = "tslm model with trend and seasonal components”))

md <- add_methods(model.obj = md, methods = methods2)

Remove methods
md <- remove_methods(model.obj = md, method_ids = c("ets2"))

Add train method

md <- add_train_method(model.obj = md, train_method = list(partitions = 6,
sample.out = 12,
space = 3))

Set the forecast horizon
md <- add_horizon(model.obj = md, horizon = 12)

Add the forecast prediction intervals confidence level
md <- add_level(model.obj = md, level = c(90, 95))

Alternatively, pipe the function with the magrittr package
library(magrittr)

md <- create_model() %>%
add_input(input = USgas) %>%
add_methods(methods = methods) %>%
add_methods(methods = methods2) %>%
add_train_method(train_method = list(partitions = 4,
sample.out 12,
space = 3)) %>%

add_horizon(horizon = 12) %>%
add_level(level = c(90, 95))

Run the model
fc <- md %>% build_model ()

End(Not run)

EURO_Brent Crude Oil Prices: Brent - Europe

Description

Crude Oil Prices: Brent - Europe: 1987 - 2019. Units: Dollars per Barrel

forecast_sim 9

Usage

EURO_Brent

Format

Time series data - *zoo’ object

Source

U.S. Energy Information Administration, Crude Oil Prices: Brent - Europe [MCOILBRENTEU],
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/seriessMCOILBRENTEU,
January 8, 2018.

Examples

ts_plot(EURO_Brent)
ts_decompose(EURO_Brent, type = "both")

forecast_sim Forecasting simulation

Description

Creating different forecast paths for forecast objects (when applicable), by utilizing the underline
model distribution with the simulate function

Usage
forecast_sim(model, h, n, sim_color = "blue"”, opacity = 0.05,
plot = TRUE)
Arguments
model A forecasting model supporting Arima, auto.arima, ets, and nnetar models
from the **forecast** package
h An integer, defines the forecast horizon
n An integer, set the number of iterations of the simulation
sim_color Set the color of the simulation paths lines
opacity Set the opacity level of the simulation path lines
plot Logical, if TRUE will desplay the output plot
Value

The baseline series, the simulated values and a plot

10 Michigan_CS

Examples

Not run:
library(forecast)
data(USgas)

Create a model
fit <- auto.arima(USgas)

Simulate 100 possible forecast path, with horizon of 60 months
forecast_sim(model = fit, h = 60, n = 100)

End(Not run)

Michigan_CS University of Michigan Consumer Survey, Index of Consumer Senti-
ment

Description

University of Michigan Consumer Survey, Index of Consumer Sentiment: 1980 - 2019. Units:
Index 1966:Q1=100

Usage

Michigan_CS

Format

Time series data - *xts’ object

Source

University of Michigan, University of Michigan: Consumer Sentiment

Examples

ts_plot(Michigan_CS)
ts_heatmap(Michigan_CS)

plot_error 11

plot_error Plot the Models Error Rates on the Testing Partitions

Description

Plot the Models Error Rates on the Testing Partitions

Usage

plot_error(model.obj, error = "MAPE", palette = "Setl1")

Arguments
model.obj A train_model object
error A character, defines the type of error metrics to plot, possible metric - "MAPE"
or "RMSE"
palette A character, defines the color type to used on the plot, use row.names(RColorBrewer::brewer.pal.info)
to view possible color palletes
Details

The plot_model provides a visualization of the models performance on the testing paritions for the
train_model function output

Value

A plot with a summery of the models error rate by testing partition

Examples

Not run:
Defining the models and their arguments
methods <- list(etsl = list(method = "ets”,
method_arg = list(opt.crit = "1lik"),
notes = "ETS model with opt.crit = 1lik"),
ets2 = list(method = "ets"”,

method_arg = list(opt.crit = "amse"),
notes = "ETS model with opt.crit = amse"),
arimal = list(method = "arima”,

method_arg = list(order
notes = "ARIMA(2,1,0)"),
arima2 = list(method = "arima”,
method_arg = list(order = c(2,1,2),
seasonal = list(order = c(1,1,1))),
notes = "SARIMA(2,1,2)(1,1,1)"),
hw = list(method = "HoltWinters",
method_arg = NULL,
notes = "HoltWinters Model”),

c(2,1,0)),

12 plot_forecast

tslm = list(method = "tslm"”,
method_arg = list(formula = input ~ trend + season),
notes = "tslm model with trend and seasonal components”))
Training the models with backtesting
md <- train_model(input = USgas,
methods = methods,
train_method = list(partitions = 6,
sample.out = 12,
space = 3),

horizon = 12,
error = "MAPE")

Plot the models performance on the testing partitions
plot_error(model.obj = md)

End(Not run)

plot_forecast Plotting Forecast Object

Description

Visualization functions for forecast package forecasting objects

Usage
plot_forecast(forecast_obj, title = NULL, Xtitle = NULL,
Ytitle = NULL, color = NULL, width = 2)
Arguments

forecast_obj A forecast object from the forecast, forecastHybrid, or bsts packages

title A character, a plot title, optional

Xtitle Set the X axis title, default set to NULL

Ytitle Set the Y axis title, default set to NULL

color A character, the plot, support both name and expression

width An Integer, define the plot width, default is set to 2
Examples

data(USgas)

library(forecast)

fit <- ets(USgas)
fc<- forecast(fit, h = 60)
plot_forecast(fc)

plot_grid 13

plot_grid Visualizing Grid Search Results

Description

Visualizing Grid Search Results

Usage

plot_grid(grid.obj, top = NULL, highlight = 0.1, type = "parcoords”,
colors = list(showscale = TRUE, reversescale = FALSE, colorscale =

n J’et n))
Arguments
grid.obj A ts_grid output object
top An integer, set the number of hyper-parameters combinations to visualize (or-
dered by accuracy). If set to NULL (default), will plot the top 100 combinations
highlight A proportion between 0 (excluding) and 1, set the number of hyper-parameters
combinations to highlight (by accuracy), if the type argument is set to "parco-
ords"
type The plot type, either "3D" for 3D plot or "parcoords" for parallel coordinates
plot. Note: the 3D plot option is applicable whenever there are three tuning
parameters, otherwise will use a 2D plot for two tuning parameters.
colors A list of plotly arguments for the color scale setting:
showscale - display the color scale if set to TRUE.
reversescale - reverse the color scale if set to TRUE
colorscale set the color scale of the plot, possible palettes are: Greys, YIGnBu,
Greens , YIOrRd, Bluered, RdBu, Reds, Blues, Picnic, Rainbow, Portland, Jet,
Hot, Blackbody, Earth, Electric, Viridis, Cividis
plot_model Plot the Models Performance on the Testing Partitions
Description

Plot the Models Performance on the Testing Partitions

Usage

plot_model(model.obj, model_ids = NULL)

14 plot_model

Arguments
model.obj A train_model object
model_ids A character, defines the trained models to plot, if set to NULL (default), will
plot all the models
Details

The plot_model provides a visualization of the models performance on the testing paritions for the

train_model function output

Value

Animation of models forecast on the testing partitions compared to the actuals

Examples

Not run:
Defining the models and their arguments
methods <- list(etsl = list(method = "ets”,
method_arg = list(opt.crit = "1lik"),
notes = "ETS model with opt.crit = 1lik"),
ets2 = list(method = "ets”,

method_arg = list(opt.crit = "amse"),
notes = "ETS model with opt.crit = amse"),
arimal = list(method = "arima”,

method_arg = list(order = c(2,1,0)),
notes = "ARIMA(2,1,0)"),
arima2 = list(method = "arima”,
method_arg = list(order = c(2,1,2),
seasonal = list(order = c(1,1,1))),
notes = "SARIMA(2,1,2)(1,1,1)"),
hw = list(method = "HoltWinters”,
method_arg = NULL,
notes = "HoltWinters Model”),
tslm = list(method = "tslm",
method_arg = list(formula = input ~ trend + season),
notes = "tslm model with trend and seasonal components”))
Training the models with backtesting
md <- train_model(input = USgas,
methods = methods,
train_method = list(partitions =
sample.out = 12,
space = 3),

I
o))

horizon = 12,

error = "MAPE")
Plot the models performance on the testing partitions
plot_model(model.obj = md)

Plot only the ETS models
plot_model(model.obj = md , model_ids = c("ets1”, "ets2"))

res_hist

End(Not run)

15

res_hist Histogram Plot of the Residuals Values

Description

Histogram plot of the residuals values

Usage

res_hist(forecast.obj)

Arguments

forecast.obj A fitted or forecasted object (of the forecast package) with residuals output

Examples

Not run:
library(forecast)
data(USgas)

Set the horizon of the forecast
h <- 12

split to training/testing partition
split_ts <- ts_split(USgas, sample.out = h)
train <- split_ts$train

test <- split_ts$test

Create forecast object
fc <- forecast(auto.arima(train, lambda = BoxCox.lambda(train)), h = h)

Plot the fitted and forecasted vs the actual values
res_hist(forecast.obj = fc)

End(Not run)

16 test_forecast

test_forecast Visualize of the Fitted and the Forecasted vs the Actual Values

Description

Visualize the fitted values of the training set and the forecast values of the testing set against the
actual values of the series

Usage

test_forecast(actual, forecast.obj, train = NULL, test, Ygrid = FALSE,
Xgrid = FALSE, hover = TRUE)

Arguments

non

actual The full time series object (supports "ts", "zoo" and "xts" formats)

forecast.obj The forecast output of the training set with horizon align to the length of the
testing (support forecasted objects from the “forecast” package)

train Training partition, a subset of the first n observation in the series (not requiredthed)
test The testing (hold-out) partition
Ygrid Logic,show the Y axis grid if set to TRUE
Xgrid Logic,show the X axis grid if set to TRUE
hover If TRUE add tooltip with information about the model accuracy
Examples
Not run:
library(forecast)
data(USgas)

Set the horizon of the forecast
h <-12

split to training/testing partition
split_ts <- ts_split(USgas, sample.out = h)
train <- split_ts$train

test <- split_ts$test

Create forecast object
fc <- forecast(auto.arima(train, lambda = BoxCox.lambda(train)), h = h)

Plot the fitted and forecasted vs the actual values
test_forecast(actual = USgas, forecast.obj = fc, test = test)

End(Not run)

train_model

17

train_model

Train, Test, Evaluate, and Forecast Multiple Time Series Forecasting
Models

Description

Method for train test and compare multiple time series models using either one partition (i.e., sample
out) or multipe partitions (backtesting)

Usage

train_model (input, methods, train_method, horizon, error = "MAPE",
xreg = NULL, level = c(80, 95))

Arguments

input

methods

train_method

horizon

A univariate time series object (ts class)

A list, defines the models to use for training and forecasting the series. The list
must include a sub list with the model type, and the model’s arguments (when
applicable) and notes about the model. The sub-list name will be used as the
model ID. Possible models:

arima - model from the stats package

auto.arima - model from the forecast package

ets - model from the forecast package

HoltWinters - model from the stats package

nnetar - model from the forecast package

tslm - model from the forecast package (note that the *tsim’ model must have
the formula argument in the *'method_arg’ argument)

A list, defines the backtesting parameters:

partitions - an integer, set the number of training and testing partitions to be used
in the backtesting process, where when partition is set to 1 it is a simple holdout
training approach

space - an integer, defines the length of the backtesting window expansion
sample.in - an integer, optional, defines the length of the training partitions,
and therefore the backtesting window structure. By default, it set to NULL
and therefore, the backtesting using expending window. Otherwise, when the
sample.in defined, the window structure is sliding

sample.in - an integer, optional, defines the length of the training partitions, and
therefore the type of the backtesting window. By default, is set to NULL, which
implay that the backtesting is using an expending window. Otherwise, when
defining the size of the training partition, th defines the train approach, either
using a single testing partition (sample out) or use multiple testing partitions
(backtesting). The list should include the training method argument, (please see
"details’ for the structure of the argument)

An integer, defines the forecast horizon

ts_cor

error A character, defines the error metrics to be used to sort the models leaderboard.
Possible metric - "MAPE" or "RMSE"
xreg Optional, a list with two vectors (e.g., data.frame or matrix) of external regres-

sors, one vector corresponding to the input series and second to the forecast itself
(e.g., must have the same length as the input and forecast horizon, respectively)

level An integer, set the confidence level of the prediction intervals

Examples

Not run:
Defining the models and their arguments
methods <- list(etsl = list(method = "ets”,
method_arg = list(opt.crit = "1lik"),
notes = "ETS model with opt.crit = 1lik"),
ets2 = list(method = "ets”,

method_arg = list(opt.crit = "amse"),
notes = "ETS model with opt.crit = amse"),
arimal = list(method = "arima”,

C(271,0))’

method_arg = list(order
notes = "ARIMA(2,1,0)"),
arima2 = list(method = "arima”,
method_arg = list(order = c(2,1,2),
seasonal = list(order = c(1,1,1))),
notes = "SARIMA(2,1,2)(1,1,1)"),
hw = list(method = "HoltWinters”,
method_arg = NULL,
notes = "HoltWinters Model"),
tslm = list(method = "tslm",
method_arg = list(formula = input ~ trend + season),
notes = "tslm model with trend and seasonal components”))
Training the models with backtesting
md <- train_model(input = USgas,
methods = methods,

train_method = list(partitions = 4,
sample.out = 12,
space = 3),

horizon = 12,

error = "MAPE")
View the model performance on the backtesting partitions
md$leaderboard

End(Not run)

ts_cor An Interactive Visualization of the ACF and PACF Functions

Description

An Interactive Visualization of the ACF and PACF Functions

ts_decompose 19

Usage

ts_cor(ts.obj, type = "both”, seasonal = TRUE, ci = 0.95,
lag.max = NULL, seasonal_lags = NULL)

Arguments

ts.obj A univariate time series object class ’ts’

type A character, defines the plot type - "acf” for ACF plot, "pacf’ for PACF plot, and
"both’ (default) for both ACF and PACF plots

seasonal A boolean, when set to TRUE (default) will color the seasonal lags

ci The significant level of the estimation - a numeric value between 0 and 1, default
is set for 0.95

lag.max maximum lag at which to calculate the acf. Default is 10*¥log10(N/m) where N

is the number of observations and m the number of series. Will be automatically
limited to one less than the number of observations in the series

seasonal_lags A vector of integers, highlight specific cyclic lags (besides the main seasonal
lags of the series). This is useful when working with multiseasonal time series
data. For example, for a monthly series (e.g., frequency 12) setting the argument
to 3 will highlight the quarterly lags

Examples

data(USgas)
ts_cor(ts.obj = USgas)

Setting the maximum number of lags to 72
ts_cor(ts.obj = USgas, lag.max = 72)

Plotting only ACF
ts_cor(ts.obj = USgas, lag.max = 72, type = "acf")

ts_decompose Visualization of the Decompose of a Time Series Object

Description

Interactive visualization the trend, seasonal and random components of a time series based on the
decompose function from the stats package.

Usage

ts_decompose(ts.obj, type = "additive"”, showline = TRUE)

20

Arguments

ts.obj
type

showline

Examples

ts_grid

non

a univariate time series object of a class "ts", "zoo" or "xts"

Set the type of the seasonal component, can be set to either "additive", "mul-
tiplicative" or "both" to compare between the first two options (default set to
“additive”)

Logic, add a separation line between each of the plot components (default set to
TRUE)

Defualt decompose plot
ts_decompose(AirPassengers)

Remove the sepration lines between the plot components
ts_decompose(AirPassengers, showline = FALSE)

Plot side by side a decompose of additive and multiplicative series
ts_decompose(AirPassengers, type = "both")

ts_grid

Tuning Time Series Forecasting Models Parameters with Grid Search

Description

Tuning time series models with grid search approach using backtesting method. If set to "auto"
(default), will use all available cores in the system minus 1

Usage

ts_grid(ts.obj, model, optim = "MAPE", periods, window_length = NULL,
window_space, window_test, hyper_params, parallel = TRUE,

n.cores = "auto")
Arguments
ts.obj A univariate time series object of a class "ts"
model A string, defines the model c("HoltWinters"), currently support only Holt-Winters
model
optim A string, set the optimization method - c("MAPE", "RMSE")
periods A string, set the number backtesting periods

window_length

window_space

An integer, defines the length of the backtesting training window. If set to NULL
(default) will use an expending window starting the from the first observation,
otherwise will use a sliding window.

An integer, set the space length between each of the backtesting training parti-
tion

ts_grid 21

window_test An integer, set the length of the backtesting testing partition
hyper_params A list, defines the tuning parameters and their range
parallel Logical, if TRUE use multiple cores in parallel

n.cores Set the number of cores to use if the parallel argument is set to TRUE. If set to
"auto" (default), will use n-1 of the available cores

Value

A list

Examples

Not run:
data(USgas)

Starting with a shallow search (sequence between @ and 1 with jumps of 0.1)
To speed up the process, will set the parallel option to TRUE
to run the search in parallel using 8 cores

hw_grid_shallow <- ts_grid(ts.obj = USgas,

periods = 6,

model = "HoltWinters”,

optim = "MAPE",

window_space = 6,

window_test = 12,

hyper_params = list(alpha = seq(0.01, 1,0.1)
beta = seq(0.01, 1,0.1)
gamma = seq(@.01, 1,0.1)

’

)),

parallel = TRUE,
n.cores = 8)

Use the parameter range of the top 20 models
to set a narrow but more agressive search

a_min <- min(hw_grid_shallow$grid_df$alphal[1:20])
a_max <- max(hw_grid_shallow$grid_df$alpha[1:20])

b_min <- min(hw_grid_shallow$grid_df$betal1:20])
b_max <- max(hw_grid_shallow$grid_df$betal1:20])

g_min <- minChw_grid_shallow$grid_df$gammal[1:20])
g_max <- max(hw_grid_shallow$grid_df$gammal1:20])

hw_grid_second <- ts_grid(ts.obj = USgas,
periods = 6,
model = "HoltWinters”,
optim = "MAPE",
window_space = 6,
window_test = 12,
hyper_params = list(alpha = seq(a_min, a_max,0.05),

22

ts_heatmap

beta = seq(b_min, b_max,0.05),
gamma = seq(g_min, g_max,0.05)),
parallel = TRUE,
n.cores = 8)

md <- HoltWinters(USgas,

alpha = hw_grid_second$alpha,
beta = hw_grid_second$beta,
gamma = hw_grid_second$gamma)

library(forecast)

fc <- forecast(md, h = 60)

plot_forecast(fc)

End(Not run)

ts_heatmap

Heatmap Plot for Time Series

Description

Heatmap plot for time series object by it periodicity (currently support only daily, weekly, monthly
and quarterly frequencies)

Usage

ts_heatmap(ts.obj, last = NULL, wday = TRUE, color = "Blues”,
title = NULL, padding = TRUE)

Arguments

ts.obj

last
wday

color

title
padding

non

A univariate time series object of a class "ts", "zoo", "xts", and the data frame
family (data.frame, data.table, tbl, tibble, etc.) with a Date column and at least
one numeric column. This function support time series objects with a daily,
weekly, monthly and quarterly frequencies

An integer (optional), set a subset using only the last observations in the series

An boolean, provides a weekday veiw for daily data (relevent only for objects
with dates such as xts, zoo, data.frame, etc.)

A character, setting the color palette of the heatmap. Corresponding to any of
the RColorBrewer palette or any other arguments of the col_numeric function.
By default using the "Blues" palette

A character (optional), set the plot title
A boolean, if TRUE will add to the heatmap spaces between the observations

ts_info

Examples

data(USgas)
ts_heatmap(USgas)

Show only the last 4 years
ts_heatmap(USgas, last = 4 *12)

23

ts_info Get the Time Series Information

Description

Returning the time series object main characteristics

Usage

ts_info(ts.obj)

Arguments
n " " "

ts.obj A time series object of a class "ts", "mts", "xts

Value

Text

Examples

ts object
data("USgas")
ts_info(USgas)

mts object
data("Coffee_Prices"”)
ts_info(Coffee_Prices)

xts object
data(”"Michigan_CS")
ts_info(Michigan_CS)

u, or "ZOO”

24 ts_lags

ts_lags Time Series Lag Visualization

Description

Visualization of series with its lags, can be used to identify a correlation between the series and it
lags

Usage

ts_lags(ts.obj, lags = 1:12, margin = 0.02, Xshare = TRUE,
Yshare = TRUE, n_plots = 3)

Arguments
ts.obj A univariate time series object of a class "ts", "zoo" or "xts"
lags An integer, set the lags range, by default will plot the first 12 lags
margin Plotly parameter, either a single value or four values (all between 0 and 1). If
four values provided, the first will be used as the left margin, the second will be
used as the right margin, the third will be used as the top margin, and the fourth
will be used as the bottom margin. If a single value provided, it will be used as
all four margins.
Xshare Plotly parameter, should the x-axis be shared amongst the subplots?
Yshare Plotly parameter, should the y-axis be shared amongst the subplots?
n_plots An integer, define the number of plots per row
Examples
data(USgas)

Plot the first 12 lags (default)
ts_lags(USgas)

Plot the seasonal lags for the first 4 years (hence, lag 12, 24, 36, 48)
ts_lags(USgas, lags = c(12, 24, 36, 48))

Setting the margin between the plot
ts_lags(USgas, lags = c(12, 24, 36, 48), margin = 0.01)

ts_ma 25

ts_ma Moving Average Method for Time Series Data

Description

Calculate the moving average (and double moving average) for time series data

Usage

ts_ma(ts.obj, n = c(3, 6, 9), n_left = NULL, n_right = NULL,
double = NULL, plot = TRUE, show_legend = TRUE, multiple = FALSE,
separate = TRUE, margin = 0.03, title = NULL, Xtitle = NULL,
Ytitle = NULL)

show_legend

Arguments

ts.obj a univariate time series object of a class "ts", "zoo" or "xts" (support only series
with either monthly or quarterly frequency)

n A single or multiple integers (by default using 3, 6, and 9 as inputs), define a
two-sides moving averages by setting the number of past and future to use in
each moving average window along with current observation.

n_left A single integer (optional argument, default set to NULL), can be used, along
with the n_right argument, an unbalanced moving average. The n_left defines
the number of lags to includes in the moving average.

n_right A single integer (optional argument, default set to NULL), can be used, along
with the n_left argument, to set an unbalanced moving average. The n_right
defines the number of negative lags to includes in the moving average.

double A single integer, an optional argument. If not NULL (by default), will apply a
second moving average process on the initial moving average output

plot A boolean, if TRUE will plot the results

A boolean, if TRUE will show the plot legend

multiple A boolean, if TRUE (and n > 1) will create multiple plots, one for each moving
average degree. By default is set to FALSE

separate A boolean, if TRUE will separate the orignal series from the moving average
output

margin A numeric, set the plot margin when using the multiple or/and separate option,
default value is 0.03

title A character, if not NULL (by default), will use the input as the plot title

Xtitle A character, if not NULL (by default), will use the input as the plot x - axis title

Ytitle A character, if not NULL (by default), will use the input as the plot y - axis title

26 ts_ma

Details

A one-side moving averages (also known as simple moving averages) calculation for Y[t] (obser-
vation Y of the series at time t):

MAT[tin] = (Y[t-n] + Y[t-(n-1)] +...+ Y[t]) / (n + 1),

where n defines the number of consecutive observations to be used on each rolling window along
with the current observation

Similarly, a two-sided moving averages with an order of (2*n + 1) for Y[t]:

MA[tIn] = (Y[t-n] + Y[t-(n-1)] +...4+ Y[t] +...4+ Y[t+(n-1)] + Y[t+n]) / 2*n + 1)

Unbalanced moving averages with an order of (k1 + k2 + 1) for observation Y/[t]:

MA[tlkl & k2] = (Y[t-k1] + Y[t-(k1-D] +...+ Y[t] +..+ Y[t+(k2-1)] + Y[t+k2]) / (k1 + k2 + 1)

The unbalanced moving averages is a special case of two-sides moving averages, where k1 and k2
represent the number of past and future periods, respectively to be used in each rolling window, and
k1 !=k2 (otherwise it is a normal two-sided moving averages function)

Value

A list with the original series, the moving averages outputs and the plot

Examples

Not run:
A one-side moving average order of 7
USgas_MA7 <- ts_ma(USgas, n_left = 6, n = NULL)

A two-sided moving average order of 13
USgas_two_side_MA <- ts_ma(USgas, n = 6)

Unbalanced moving average of order 12

USVSales_MA12 <- ts_ma(USVSales, n_left = 6, n_right = 5, n = NULL,
title = "US Monthly Total Vehicle Sales - MA",

Ytitle = "Thousand of Units")

Adding double MA of order 2 to balanced the series:
USVSales_MA12 <- ts_ma(USVSales, n_left = 6, n_right = 5, n = NULL,
double = 2,

title = "US Monthly Total Vehicle Sales - MA",

Ytitle = "Thousand of Units")

Adding several types of two-sided moving averages along with the unblanced
Plot each on a separate plot

USVSales_MA12 <- ts_ma(USVSales, n_left = 6, n_right =5, n = c(3, 6, 9),
double = 2, multiple = TRUE,

title = "US Monthly Total Vehicle Sales - MA",

Ytitle = "Thousand of Units")

End(Not run)

ts_plot 27
ts_plot Plotting Time Series Objects
Description
Visualization functions for time series object
Usage
ts_plot(ts.obj, line.mode = "lines"”, width = 2, dash = NULL,
color = NULL, slider = FALSE, type = "single”, Xtitle = NULL,
Ytitle = NULL, title = NULL, Xgrid = FALSE, Ygrid = FALSE)
Arguments
ts.obj A univariate or multivariate time series object of class "ts", "mts", "zoo", "xts",
or any data frame object with a minimum of one numeric column and either a
Date or POSIXt class column
line.mode A plotly argument, define the plot type, c("lines", "lines+markers", "markers")
width An Integer, define the plot width, default is set to 2
dash A plotly argument, define the line style, c((NULL, "dot", "dash")
color The color of the plot, support both name and expression
slider Logic, add slider to modify the time axis (default set to FALSE)
type A character, optional, if having multiple tims series object, will plot all series
in one plot when set to "single" (default), or plot each series on a separate plot
when set to "multiple”
Xtitle A character, set the X axis title, default set to NULL
Ytitle A character, set the Y axis title, default set to NULL
title A character, set the plot title, default set to NULL
Xgrid Logic,show the X axis grid if set to TRUE
Ygrid Logic,show the Y axis grid if set to TRUE
Examples
data(USVSales)

ts_plot(USVSales)

adding slider
ts_plot(USVSales,

slider = TRUE)

28 ts_quantile

ts_polar Polor Plot for Time Series Object

Description
Polor plot for time series object (ts, zoo, xts), currently support only monthly and quarterly fre-
quency

Usage

ts_polar(ts.obj, title = NULL, width = 600, height = 600,
left = 25, right = 25, top = 25, bottom = 25)

Arguments
ts.obj A univariate time series object of a class "ts", "zoo" or "xts" (support only series
with either monthly or quarterly frequency)
title Add a title for the plot, default set to NULL
width The widht of the plot in pixels, default set to 600
height The height of the plot pixels, default set to 600
left Set the left margin of the plot in pixels, default set to 25
right Set the right margin of the plot in pixels, default set to 25
top Set the top margin of the plot in pixels, default set to 25
bottom Set the bottom margin of the plot in pixels, default set to 25
Examples
data(USgas)
ts_polar(USgas)
ts_quantile Quantile Plot for Time Series

Description
A quantile plot of time series data, allows the user to display a quantile plot of a series by a subset
period

Usage

ts_quantile(ts.obj, upper = 0.75, lower = @.25, period = NULL,
n =1, title = NULL, Xtitle = NULL, Ytitle = NULL)

ts_quantile

Arguments

ts.obj

upper

lower

period

title
Xtitle
Ytitle

Examples

Not run:

29

" "

A univariate time series object of a class "zoo", "xts", or data frame family

("data.frame", "data.table", "tbl")

A numeric value between 0 and 1 (excluding 0, and greater than the "lower"
argument) set the upper bound of the quantile plot (using the "probs" argument
of the quantile function). By default set to 0.75

A numeric value between 0 and 1 (excluding 1, and lower than the "upper"
argument) set the upper bound of the quantile plot (using the "probs" argument
of the quantile function). By default set to 0.25

A character, set the period level of the data for the quantile calculation and plot
representation. Must be one level above the input frequency (e.g., an hourly
data can represent by daily, weekdays, monthly, quarterly and yearly). Possible
options c("daily", "weekdays", "monthly", "quarterly", "yearly")

An integer, set the number of plots rows to display (by setting the nrows argu-
ment in the subplot function), must be an integer between 1 and the frequency
of the period argument.

A character, set the plot title, default set to NULL

A character, set the X axis title, default set to NULL

A character, set the Y axis title, default set to NULL

Loading the UKgrid package to pull a multie seasonality data

require(UKgrid)

UKgrid_half_hour <- extract_grid(type = "xts", aggregate = NULL)

Plotting the quantile of the UKgrid dataset
No period subset
ts_quantile(UKgrid_half_hour,

period = NULL,

title = "The UK National Grid Net Demand for Electricity - Quantile Plot")

Plotting the quantile of the UKgrid dataset
Using a weekday subset
ts_quantile(UKgrid_half_hour,

period = "weekdays",

title = "The UK National Grid Net Demand for Electricity

by Weekdays")

Spacing the plots by setting the

number of rows of the plot to 2

ts_quantile(UKgrid_half_hour,

period = "weekdays",

title = "The UK National Grid Net Demand for Electricity - by Weekdays",

n=2)

End(Not run)

30 ts_seasonal

ts_reshape Transform Time Series Object to Data Frame Format

Description

Transform time series object into data frame format

Usage

ts_reshape(ts.obj, type = "wide", frequency = NULL)

Arguments
ts.obj a univariate time series object of a class "ts", "zoo", "xts", and the data frame
family (data.frame, data.table, tbl, tibble, etc.) with a Date column and at least
one numeric column. This function support time series objects with a daily,
weekly, monthly or quarterly frequencies
type The reshape type -
"wide" set the years as the columns and the cycle units (months or quarter) as
the rows, or
"long" split the time object to year, cycle unit and value
frequency An integer, define the series frequency when more than one option is avaiable
and the input is one of the data frame family. If set to NULL will use the first
option by default when applicable - daily = c(7, 365)
Examples
data(USgas)

USgas_df <- ts_reshape(USgas)

ts_seasonal Seasonality Visualization of Time Series Object

Description

Visualize time series object by it periodicity, currently support time series with daily, monthly and
quarterly frequency

Usage

ts_seasonal(ts.obj, type = "normal”, title = NULL, Ygrid = TRUE,
Xgrid = TRUE, last = NULL, palette = "Set1",
palette_normal = "viridis")

ts_split

Arguments

ts.obj

type

title
Ygrid
Xgrid
last
palette

palette_normal

Examples

data(USgas)

31

non non "

Input object, either a univariate time series object of a class "ts", "zoo", "xts",
or a data frame object of a class "data.frame", "tbl", "data.table" as long as there
is at least one "Date"/"POSIXt" and a "numeric" objects (if there are more then
one, by defualt will use the first of each). Currently support only daily, weekly,
monthly, and quarterly frequencies

The type of the seasonal plot - "normal” to split the series by full cycle units, or
"cycle" to split by cycle units (applicable only for monthly and quarterly data),
or "box" for box-plot by cycle units, or "all" for all the three plots together

Plot title - Character object

Logic,show the Y axis grid if set to TRUE (default)
Logic,show the X axis grid if set to TRUE (defualt)
Subset the data to the last number of observations

A character, the color palette to be used when the "cycle" or "box" plot are being
selected (by setting the type to "cycle", "box", or "all"). All the palettes in the
RColorBrewer and viridis packages are available to be use, the default option is
"Setl" from the RColorBrewer package

A character, the color palette to be used when the "normal" plot is being selected
(by setting the type to "normal" or "all"). All the palettes in the RColorBrewer
and viridis packages are available to be used, the default palette is "viridis" from
the RColorBrewer package

ts_seasonal (USgas)

Seasonal box plot
ts_seasonal (USgas, type = "box")

Plot all the types
ts_seasonal (USgas, type = "all")

ts_split

Split Time Series Object for Training and Testing Partitions

Description

Split a time series object into training and testing partitions

Usage

ts_split(ts.obj, sample.out = NULL)

32 ts_sum

Arguments
ts.obj A univariate time series object of a class "ts" or "tsibble"
sample.out An integer, set the number of periods of the testing or sample out partition,
defualt set for 30 percent of the lenght of the series
Examples

Split the USgas dataset into training and testing partitions
Set the last 12 months as a testing partition

and the rest as a training partition

data(USgas, package = "TSstudio")

split_USgas <- ts_split(ts.obj = USgas, sample.out = 12)

training <- split_USgas$train
testing <- split_USgas$test

length(USgas)

length(training)
length(testing)

ts_sum Summation of Multiple Time Series Objects

Description
A row sum function for multiple time series object ("mts"), return the the summation of the "mts"
object as a "ts" object

Usage

ts_sum(mts.obj)

Arguments

mts.obj A multivariate time series object of a class "mts"

Examples

X <- matrix(c(1:100, 1:100, 1:100), ncol = 3)
mts.obj <- ts(x, start = c(2000, 1), frequency = 12)
ts_total <- ts_sum(mts.obj)

ts_surface 33

ts_surface 3D Surface Plot for Time Series

Description

3D surface plot for time series object by it periodicity (currently support only monthly and quarterly
frequency)

Usage

ts_surface(ts.obj)

Arguments
ts.obj a univariate time series object of a class "ts", "zoo" or "xts" (support only series
with either monthly or quarterly frequency)
Examples

ts_surface(USgas)

ts_to_prophet Transform Time Series Object to Prophet input

Description

Transform a time series object to Prophet data frame input format

Usage

ts_to_prophet(ts.obj, start = NULL)

Arguments
ts.obj A univariate time series object of a class "ts", "zoo", "xts", with a daily, weekly,
monthly , quarterly or yearly frequency
start A date object (optional), if the starting date of the series is known. Otherwise,
the date would be derive from the series index
Value

A data frame object

34 USUnRate

Examples

data(USgas)
ts_to_prophet(ts.obj = USgas)
If known setting the start date of the input object

ts_to_prophet(ts.obj = USgas, start = as.Date("”2000-01-01"))

USgas US monthly natural gas consumption

Description

US monthly natural gas consumption: 2000 - 2019. Units: Billion Cubic Feet

Usage
USgas

Format

Time series data - ’ts’ object

Source

U.S. Bureau of Transportation Statistics, Natural Gas Consumption [NATURALGAS], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/seriessNATURALGAS,
January 7, 2018.

Examples

ts_plot(USgas)
ts_seasonal (USgas, type = "all")

USUnRate US Monthly Civilian Unemployment Rate

Description

US monthly civilian unemployment rate: 1948 - 2019. Units: Percent

Usage

USUnRate

USVSales 35

Format

Time series data - ’ts’ object

Source

U.S. Bureau of Labor Statistics, Civilian Unemployment Rate [UNRATENSA], retrieved from
FRED, Federal Reserve Bank of St. Louis; https:/fred.stlouisfed.org/seriesstUNRATENSA, Jan-
uary 6, 2018.

Examples

ts_plot(USUnRate)
ts_seasonal (USUnRate)

USVSales US Monthly Total Vehicle Sales

Description

US monthly total vehicle sales: 1976 - 2019. Units: Thousands of units

Usage

USVSales

Format

Time series data - ’ts’ object

Source

U.S. Bureau of Economic Analysis, Total Vehicle Sales [TOTALNSA], retrieved from FRED, Fed-
eral Reserve Bank of St. Louis; https://fred.stlouisfed.org/seriessTOTALNSA, January 7, 2018.

Examples

ts_plot(USVSales)
ts_seasonal (USVSales)

36 Xts_to_ts

US_indicators US Key Indicators - data frame format

Description

Monthly total vehicle sales and unemployment rate: 1976 - 2019. Units: Dollars per Kg

Usage

US_indicators

Format

Time series data - ’data.frame’ object

Source

U.S. Bureau of Economic Analysis, Total Vehicle Sales [TOTALNSA], retrieved from FRED, Fed-
eral Reserve Bank of St. Louis; https://fred.stlouisfed.org/seriess/TOTALNSA, January 7, 2018.
U.S. Bureau of Labor Statistics, Civilian Unemployment Rate [UNRATENSA], retrieved from
FRED, Federal Reserve Bank of St. Louis; https:/fred.stlouisfed.org/series/yUNRATENSA, Jan-
uary 6, 2018.

Examples

ts_plot(US_indicators)

xts_to_ts Converting ’xts’ object to ’ts’ object

Description

Converting ’xts’ object to ’ts’ object

Usage

xts_to_ts(xts.obj, frequency = NULL, start = NULL)

Arguments
xts.obj A univariate ’xts’ object
frequency A character, optional, if not NULL (default) set the frequency of the series
start A Date or POSIXct/It object, optional, can be used to set the starting date or

time of the series

Z00_to_ts 37

Examples

data(Michigan_CS)

class(Michigan_CS)

ts_plot(Michigan_CS)

Michigan_CS_ts <- xts_to_ts(Michigan_CS)
ts_plot(Michigan_CS_ts)

Defining the frequency and starting date of the series
Michigan_CS_ts1 <- xts_to_ts(Michigan_CS, start = as.Date("1980-01-01"), frequency = 12)
ts_plot(Michigan_CS_ts1)

zoo_to_ts Converting 'zoo’ object to ’ts’ object

Description

Converting ’zoo’ object to ’ts” object

Usage

zoo_to_ts(zoo.obj)

Arguments

Z00.0bj a univariate *zoo’ object

Examples

data("EURO_Brent"”, package = "TSstudio")
class(EURO_Brent)

ts_plot(EURO_Brent)

EURO_Brent_ts <- zoo_to_ts(EURO_Brent)
class(EURO_Brent_ts)
ts_plot(EURO_Brent_ts)

Index

+ datasets
Coffee_Prices, 5
EURO_Brent, 8
Michigan_CS, 10
US_indicators, 36
USgas, 34
USUnRate, 34
USVSales, 35

add_horizon (create_model), 6
add_input (create_model), 6
add_level (create_model), 6
add_methods (create_model), 6
add_train_method (create_model), 6
add_xreg (create_model), 6
Arima, 9

arima, 6, 17

arima_diag, 3

auto.arima, 7,9, 17

build_model (create_model), 6

ccf_plot, 4
check_res, 5
Coffee_Prices, 5
col_numeric, 22
create_model, 6

ets, 7,9, 17
EURO_Brent, 8

forecast_sim, 9
HoltWinters, 7, 17
Michigan_CS, 10
nnetar, 7,9, 17

plot_error, 11
plot_forecast, 12

38

plot_grid, 13
plot_model, 13

quantile, 29

remove_methods (create_model), 6

res_hist, 15

set_error (create_model), 6

simulate, 9
subplot, 29

test_forecast, 16
train_model, 6, 17
ts_cor, 18
ts_decompose, 19
ts_grid, 20
ts_heatmap, 22
ts_info, 23
ts_lags, 24
ts_ma, 25
ts_plot, 27
ts_polar, 28
ts_quantile, 28
ts_reshape, 30
ts_seasonal, 30
ts_split, 31
ts_sum, 32
ts_surface, 33
ts_to_prophet, 33
tslm, 7, 17

US_indicators, 36
USgas, 34
USUnRate, 34
USVSales, 35
xts_to_ts, 36

zoo_to_ts, 37

	arima_diag
	ccf_plot
	check_res
	Coffee_Prices
	create_model
	EURO_Brent
	forecast_sim
	Michigan_CS
	plot_error
	plot_forecast
	plot_grid
	plot_model
	res_hist
	test_forecast
	train_model
	ts_cor
	ts_decompose
	ts_grid
	ts_heatmap
	ts_info
	ts_lags
	ts_ma
	ts_plot
	ts_polar
	ts_quantile
	ts_reshape
	ts_seasonal
	ts_split
	ts_sum
	ts_surface
	ts_to_prophet
	USgas
	USUnRate
	USVSales
	US_indicators
	xts_to_ts
	zoo_to_ts
	Index

