
Package ‘TDCor’
January 20, 2025

Type Package

Title Gene Network Inference from Time-Series Transcriptomic Data

Version 0.1-2

Date 2015-10-05

Author Julien Lavenus

Maintainer Mikael Lucas <mikael.lucas@ird.fr>

Imports parallel

Depends R (>= 3.1.2), deSolve

Description The Time-Delay Correlation algorithm (TDCor) reconstructs the topology of a gene regu-
latory network (GRN) from time-series transcriptomic data. The algorithm is described in de-
tails in Lavenus et al., Plant Cell, 2015. It was initially developed to infer the topol-
ogy of the GRN controlling lateral root formation in Arabidopsis thaliana. The time-series tran-
scriptomic dataset which was used in this study is included in the package to illus-
trate how to use it.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-10-26 15:58:36

Contents
TDCor-package . 2
CalculateDPI . 4
CalculateTPI . 7
clean.at . 10
draw.profile . 10
estimate.delay . 11
LR_dataset . 13
l_genes . 14
l_names . 15
l_prior . 15
shortest.path . 16

1

2 TDCor-package

TDCOR . 17
TF . 24
times . 25
UpdateDPI . 25
UpdateTPI . 27

Index 29

TDCor-package TDCor algorithm for gene regulatory network inference

Description

TDCor (Time-Delay Correlation) is an algorithm designed to infer the topology of a gene regu-
latory network (GRN) from time-series transcriptomic data. The algorithm is described in details
in Lavenus et al., Plant Cell, 2015. It was initially developped to infer the topology of the GRN
controlling lateral root formation in Arabidopsis thaliana. The time-series transcriptomic dataset
analysed in this study is included in the package.

Details

Package: TDCor
Type: Package
Version: 1.2
Date: 2015-10-05
License: GNU General Public License Version 2

The reconstruction of a gene network using the TDCor package involves six steps.

1. Load the averaged non-log2 time series transcriptomic data into the R workspace.

2. Define the vector times containing the times (in hours) at which the samples were collected.

3. Define the vector containing the gene codes of the genes you want to reconstruct the network
with (e.g. see l_genes), as well as the associated gene names (e.g. see l_names) and the
associated prior (e.g. see l_prior).

4. Build or update the TPI database using the CalculateTPI or UpdateTPI functions.

5. Build or update the DPI database using the CalculateDPI or UpdateDPI functions.

6. Reconstruct the network using the TDCOR main function.

See examples below.

Besides the functions of the TDCor algorithm, the package also contains the lateral root transcrip-
tomic dataset (LR_dataset), the times vector to use with this dataset (times), the vector of AGI
gene codes used to reconstruct the network shown in the original paper (l_genes), the vector of the
gene names (l_names) and the prior (l_prior). The associated TPI and DPI databases (TPI10 and
DPI15) which were used to build the network shown in the original paper are not included. Hence

TDCor-package 3

to reconstruct the lateral root network, these first need to be generated. A database of about 1800
Arabidopsis transcription factors is also included (TF).

Three side functions, estimate.delay, shortest.path and draw.profile are also available to
the user. These can be used to visualize the transcriptomic data, optimize some of the TDCOR
parameters, and analyze the networks.

Author(s)

Author: Julien Lavenus <jl.tdcor@gmail.com>
Maintainer: Mikael Lucas <mikael.lucas@ird.fr>

References

Lavenus et al. (2015), Inference of the Arabidopsis lateral root gene regulatory network sug-
gests a bifurcation mechanism that defines primordia flanking and central zones. The Plant
Cell, in press.

See Also

See also CalculateDPI, CalculateTPI, UpdateDPI, UpdateTPI, TDCOR, estimate.delay.

Examples

Not run:
Load the LR transcriptomic dataset
data(LR_dataset)

Load the vectors of genes codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)

Load the vector of time points for the LR_dataset
data(times)

Generate the TPI database (this may take several hours)

TPI10=CalculateTPI(dataset=LR_dataset,l_genes=l_genes,l_prior=l_prior,
times=times,time_step=1,N=10000,ks_int=c(0.5,3),kd_int=c(0.5,3),
delta_int=c(0.5,3),noise=0.1,delay=3)

Generate the DPI database (this may take several hours)

DPI15=CalculateDPI(dataset=LR_dataset,l_genes=l_genes,l_prior=l_prior,
times=times,time_step=1,N=10000,ks_int=c(0.5,3),kd_int=c(0.5,3),
delta_int=c(0.5,3), noise=0.15, delay=3)

Check/update if necessary the databases

TPI10=UpdateTPI(TPI10,LR_dataset,l_genes,l_prior)
DPI15=UpdateDPI(DPI15,LR_dataset,l_genes,l_prior)

4 CalculateDPI

Choose your parameters

ptime_step=1
ptol=0.13
pdelayspan=12
pthr_cor=c(0.65,0.8)
pdelaymax=c(2.5,3.5)
pdelaymin=0
pdelay=3
pthrpTPI=c(0.55,0.8)
pthrpDPI=c(0.65,0.8)
pthr_overlap=c(0.4,0.6)
pthr_ind1=0.65
pthr_ind2=3.5
pn0=1000
pn1=10
pregmax=5
pthr_isr=c(4,6)
pTPI=TPI10
pDPI=DPI15
pMinTarNumber=5
pMinProp=0.6
poutfile_name="TDCor_output.txt"

Reconstruct the network

tdcor_out= TDCOR(dataset=LR_dataset, l_genes=l_genes,l_names=l_names,n0=pn0,n1=pn1,
l_prior=l_prior, thr_ind1=pthr_ind1,thr_ind2=pthr_ind2,regmax=pregmax,thr_cor=pthr_cor,
delayspan=pdelayspan,delaymax=pdelaymax,delaymin=pdelaymin,delay=pdelay,thrpTPI=pthrpTPI,
thrpDPI=pthrpDPI,TPI=pTPI,DPI=pDPI,thr_isr=pthr_isr,time_step=ptime_step,thr_overlap=pthr_overlap,
tol=ptol,MinProp=pMinProp,MinTarNumber=pMinTarNumber,outfile_name=poutfile_name)

End(Not run)

CalculateDPI Generate the DPI database to be used by the TDCOR main function

Description

CalculateDPI builds a DPI database for the TDCOR main function to prune diamond motifs

Usage

CalculateDPI(dataset,l_genes, l_prior, times, time_step, N, ks_int, kd_int,
delta_int, noise, delay)

CalculateDPI 5

Arguments

dataset Numerical matrix storing the transcriptomic data. The rows of this matrix must
be named by gene codes (like AGI gene codes for Arabidopsis data).

l_genes A character vector containing the gene codes of the genes included in the anal-
ysis (i.e. to be used to build the network)

l_prior A numerical vector containing the prior information on the genes included in
the network recontruction. By defining the l_prior vector, the user defines
which genes should be regarded as positive regulators, which others as negative
regulators and which can only be targets. The prior code is defined as follow: -1
for negative regulator; 0 for non-regulator (target only); 1 for positive regulator;
2 for both positive and negative regulator. The i-th element of the vector is the
prior to associate to the i-th gene in l_genes.

times A numerical vector containing the successive times at which the samples were
collected to generate the time-series transcriptomic dataset.

time_step A positive number corresponding to the time step (in hours) i.e. the temporal
resolution at which the gene profiles are analysed.

N An integer corresponding to the number of iterations that are carried out in order
to estimate the DPI distributions. N should be >5000.

ks_int A numerical vector containing two positive elements in increasing order. The
first (second) element is the lower (upper) boundary of the interval into which
the equation parameters corresponding to the regulation strength of the targets
by their regulators are randomly sampled.

kd_int A numerical vector containing two positive elements in increasing order. The
first (second) element is the lower (upper) boundary of the interval into which
the equation parameters corresponding to the transcripts degradation rates are
randomly sampled.

delta_int A numerical vector containing two positive elements in increasing order and
expressed in hours. The first (second) element is the lower (upper) boundary
of the sampling interval for the equation parameters corresponding to the time
needed for the transcripts of the regulator to mature, to get exported out of the
nucleus, to get translated and for the regulator protein to get imported into the
nucleus and to bind its target promoter.

noise A positive number between 0 and 1 corresponding to the noisiness of the system.
(0 = no noise, 1 = very strong noise). noise should not be too high (for instance
below 0.2).

delay A positive number corresponding to the time shift (in hours) that is expected
between the profile of a regulator and its direct target. This parameter is used to
generate a reference target profile from the profile of the regulator and calculate
the DPI index.

Details

CalculateDPI models two 4-genes networks showing slightly different topologies. Each network
topology is modelled using a specific system of delay differential equations. For all genes listed
in l_genes whose corresponding prior in l_prior is not null (i.e. the genes that are regarded as

6 CalculateDPI

transcriptional regulators), the two systems of differential equations are solved N times with N differ-
ent sets of random parameters. The Diamond Pruning Index (DPI) is calculated for all of these 2N
networks. From these in silico data the conditional probability distribution of the DPI index given
the regulator and the topology can be estimated. The probability distribution of the topology given
DPI and the regulator is next calculated using Bayes’ theorem and returned by the function. These
shall be used when reconstructing the network to prune the "diamond" motifs.

CalculateDPI returns a list object which works as a database. It not only stores the conditional
probability distributions but also all the necessary information for TDCOR to access the data, and the
input parameters. The latter are read by the UpdateDPI function to update the database.

Value

CalculateDPI returns a list object.

prob_DPI_ind A numerical vector whose elements are named by the vector l_genes; The ele-
ment named gene i contains 0 if no probability distribution has been calculated
for this gene (because its prior is 0) or a positive integer if this has been done.
This positive integer then correponds to the number of the element in the list
prob_DPI that stores the spline functions of the calculated conditional probabil-
ity distributions associated with this particular regulator.

prob_DPI A list storing lists of 3 spline functions of probability distributions. Each of
the spline functions corresponds to the probability distribution of one topology
given a regulator and a DPI value. The information about which regulator was
used to generate the distributions stored in the i-th element of prob_DPI is stored
in the prob_DPI_ind vector.

prob_DPI_domain

A list storing vectors of two elements. The first (second) element of element i is
the lowest (greatest) DPI value obtained during the simulation with the regulator
i.

input A list that stores the input parameters used to generate the database.

Note

The computation of the TPI and DPI databases is time-consuming as it requires many systems of
differential equations to be solved. It may take several hours to build a database for a hundred genes.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also UpdateDPI, TDCor-package.

CalculateTPI 7

Examples

Not run:
Load the LR transcriptomic dataset
data(LR_dataset)

Load the vector of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)

Load the vector of time points for the LR_dataset
data(times)

Generate a small DPI database (3 genes)
DPI_example=CalculateDPI(dataset=LR_dataset,l_genes=l_genes[4:6],l_prior=l_prior[4:6],
times=times,time_step=1,N=5000,ks_int=c(0.5,3),kd_int=c(0.5,3),delta_int=c(0.5,3),
noise=0.15,delay=3)

End(Not run)

CalculateTPI Generate the TPI database to be used by the TDCOR main function

Description

CalculateTPI builds a TPI database for the TDCOR main function to prune triangle motifs

Usage

CalculateTPI(dataset,l_genes, l_prior, times, time_step, N, ks_int, kd_int,
delta_int, noise, delay)

Arguments

dataset Numerical matrix storing the transcriptomic data. The rows of this matrix must
be named by gene codes (AGI gene codes for Arabidospis data).

l_genes A character vector containing the gene codes of the genes included in the anal-
ysis (i.e. to be used to build the network)

l_prior A numerical vector containing the prior information on the genes included in
the network recontruction. By defining the l_prior vector, the user defines
which genes should be regarded as positive regulators, which others as negative
regulators and which can only be targets. The prior code is defined as follow: -1
for negative regulator; 0 for non-regulator (target only); 1 for positive regulator;
2 for both positive and negative regulator. The i-th element of the vector is the
prior to associate to the i-th gene in l_genes.

times A numerical vector containing the successive times at which the samples were
collected to generate the time-series transcriptomic dataset.

8 CalculateTPI

time_step A positive number corresponding to the time step (in hours) i.e. the temporal
resolution at which the gene profiles are analysed.

N An integer corresponding to the number of iterations that are carried out in order
to estimate the TPI distributions. N should be >5000.

ks_int A numerical vector containing two positive elements in increasing order. The
first (second) element is the lower (upper) boundary of the interval into which
the equation parameters corresponding to the regulation strength of the targets
by their regulators are randomly sampled.

kd_int A numerical vector containing two positive elements in increasing order. The
first (second) element is the lower (upper) boundary of the interval into which
the equation parameters corresponding to the transcripts degradation rates are
randomly sampled.

delta_int A numerical vector containing two positive elements in increasing order and
expressed in hours. The first (second) element is the lower (upper) boundary
of the sampling interval for the equation parameters corresponding to the time
needed for the transcripts of the regulator to mature, to get exported out of the
nucleus, to get translated and for the regulator protein to get imported into the
nucleus and to bind its target promoter.

noise A positive number between 0 and 1 corresponding to the noisiness of the system.
(0 = no noise, 1 = very strong noise). noise should not be too high (for instance
below 0.2).

delay A positive number corresponding to the time shift (in hours) that is expected
between the profile of a regulator and its direct target. This parameter is used to
generate a reference target profile from the profile of the regulator and calculate
the TPI index.

Details

CalculateTPI models three 3-genes networks showing slightly different topologies. Each network
topology is modelled using a specific system of delay differential equations. For all genes listed
in l_genes whose corresponding prior in l_prior is not null (i.e. the genes that are regarded as
transcriptional regulators), the three systems of differential equations are solved N times with N dif-
ferent sets of random parameters. The Triangle Pruning Index (TPI) is calculated for all of these 3N
networks. From these in silico data the conditional probability distribution of the TPI index given
the regulator and the topology can be estimated. The probability distribution of the topology given
TPI and the regulator is next calculated using Bayes’ theorem and returned by the function. These
shall be used when reconstructing the network to prune the "triangle" motifs.

CalculateTPI returns a list object which works as a database. It not only stores the calculated
probability distributions but also information on how to access the data, and the input parameters.
The latter are read by the UpdateTPI function to update the database.

Value

CalculateTPI returns a list object.

CalculateTPI 9

prob_TPI_ind A numerical vector whose elements are named by the vector l_genes; The ele-
ment named gene i contains 0 if no probability distribution has been calculated
for this gene (because its prior is 0) or a positive integer if this has been done.
This positive integer then correponds to the number of the element in the list
prob_TPI that stores the spline functions of the calculated conditional probabil-
ity distributions associated with this particular regulator.

prob_TPI A list storing lists of 3 spline functions of probability distributions. Each of
the spline functions corresponds to the probability distribution of one topology
given a regulator and a TPI value. The information about which regulator was
used to generate the distributions stored in the i-th element of prob_TPI is stored
in the prob_TPI_ind vector.

prob_TPI_domain

A list storing vectors of two elements. he first (second) element of element i is
the lowest (greatest) TPI value obtained during the simulation with the regulator
i.

input A list that stores the input parameters used to generate the database.

Note

The computation of the TPI and DPI databases is time-consuming as it requires many systems of
differential equations to be solved. It may take several hours to build a database for a hundred genes.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also UpdateTPI, TDCor-package.

Examples

Not run:
Load the lateral root transcriptomic dataset
data(LR_dataset)

Load the vectors of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)

Load the vector of time points for the the lateral root dataset
data(times)

Generate a small TPI database (3 genes)

TPI_example=CalculateTPI(dataset=LR_dataset,l_genes=l_genes[4:6],
l_prior=l_prior[4:6],times=times,time_step=1,N=5000,ks_int=c(0.5,3),
kd_int=c(0.5,3),delta_int=c(0.5,3),noise=0.1,delay=3)

End(Not run)

10 draw.profile

clean.at Elimininate from a vector of gene codes the genes for which no data is
available.

Description

clean.at removes from a vector of gene codes l_genes all the elements for which no data is
present in the matrix dataset.

Usage

clean.at(dataset,l_genes)

Arguments

dataset A matrix containing the time-series transcriptomic data whose rows must be
named by gene codes (like AGI gene codes).

l_genes A character vector which contains gene codes (AGI gene codes in the case of
the lateral root dataset).

Examples

Load lateral root transcriptomic dataset and the l_genes vector
data(LR_dataset)
data(l_genes)

Clean the l_gene vector
clean.at(LR_dataset,l_genes)

draw.profile Plot the expression profile of a gene in dataset

Description

draw.profile plots the expression profile of gene in dataset with respect to times.

Usage

draw.profile(dataset, gene, ...)

estimate.delay 11

Arguments

dataset The matrix storing the time-serie transcriptomic data.

gene The AGI code of the gene of interest.

... Additional arguments to be passed to the function:

• col: String. Color of the curve.
• type: String. Type of curve. "l", lines; "p", points; "b", both etc... For more

information see the help file of the plot R function.
• main: String. Title of the graph.

Author(s)

Julien Lavenus (<jl.tdcor@gmail.com>)

Examples

draw the profile of GATA23 in the LR dataset

data(LR_dataset)
data(times)
draw.profile(LR_dataset,"AT5G26930",col="blue",main="GATA23")

estimate.delay Estimate the time shift between two gene profiles and make a plot

Description

estimate.delay computes the delay/time shift between two gene expression profiles contained in
dataset. It returns a list with one or two estimated time shifts and their associated correlation. By
default the function also returns a plot composed of four panels which show in more details how
these estimate were obtained. This can help the user finding the appropriate parameter values to be
used with the TDCOR main function. For more details see below.

Usage

estimate.delay(dataset, tar, reg, times, time_step, thr_cor, tol,
delaymax, delayspan, ...)

Arguments

dataset Numerical matrix storing the non-log2 transcriptomic data (average of repli-
cates). The rows of this matrix must be named by gene codes (e.g. the AGI gene
code for Arabidopsis datasets). The columns must be organized in chronological
order from the left to the right.

tar The gene code of the gene to be regarded as the target.

reg The gene code of the gene to be regarded as the regulator.

12 estimate.delay

times A numerical vector containing the successive times (in hours) at which the sam-
ples were collected to generate the time-series transcriptomic dataset.

time_step A positive number corresponding to the time step (in hours) i.e. the temporal
resolution at which the gene profiles are analysed.

thr_cor A number between 0 and 1 corresponding to the threshold on Pearson’s corre-
lation. The delay will be computed only if the absolute correlation between the
profiles is higher than this threshold. Otherwise the genes are considered to have
profiles that are too dissimilar, and computing the time shift would not make any
sense.

tol The tolerance threshold for the score. The score is a positive number used to
rank the time shift estimates. The best score possible for a time shift estimate
is 0. If the score is above the tolerance threshold, the time shift estimate will be
ignored.

delaymax The maximum time shift possible for a direct interaction (in hours).

delayspan The maximum time shift (in hours) which will be analysed. It should be high
enough for the time shift estimation process to be successful but relatively small
in comparison to the overall duration of the time series. (e.g. for the LR dataset
which has data spanning over 54 hours, delayspan was set to 12 hours).

... Additional optional arguments.

• make.graph: A boolean. Set to FALSE to prevent the function from gener-
ating a graph.

• tar.name: A string. "Everyday name" of the target. This name will be used
in the plots instead of the default value (gene code).

• reg.name: A string. "Everyday name" of the regulator. This name will be
used in the plots instead of the default value (gene code).

• main: A string. Main title of the plot. By default the title of the plot is
automatically generated from tar.name and reg.name.

Details

Negative time shifts occur when the gene which the user set as being the regulator could actually be
the target. When two time shifts are returned, one is necessarily positive and the other is negative.
When the only time shift estimate is zero, the function does not return any estimate.

The function automatically guess the sign of the potential interaction (stimulatory or inhibitory) and
adapt the analysis based on it. The sign of the potential interaction is indicated in the main title of
the graph by (+) or (-). When both types of interaction are possible, the function generates two
graphs (one for each sign).

The function returns by default a graph composed of four panels. The top panel shows the spline
functions of the two normalised expression profiles with respect to time. The second panel consists
of the plots of the F1 and F2 functions with respect to the time shift (mu). The third one is for the
F3 and F4 functions. All of these four functions aim at estimating the time shift between the two
expression profiles by minimizing a distance-like measurement. But they each do it in a slightly
different manner. F1 and F3 use Pearson’s correlation as a measure of distance while F2 and F4

LR_dataset 13

use the sum of squares. Moreover F1 and F2 measure the distances directly between the spline
functions while F3 and F4 do it between the first derivatives of these functions. The vertical red
and purple lines in the second and third panel indicate the position of the respective maximum or
minimum of the functions. In the fourth and last panel, the final score function is plotted. This
score is computed for each possible time shift analysed by combining the four above-mentionned
functions. The green horizontal line indicate the position of the tolerance threshold (tol) above
which time shift estimates are rejected. The vertical dark grey line(s) represent(s) the position of
the final estimated time shift(s). All these lines necessarily fall into regions where the score function
is below the threshold (painted in light green). Other vertical light grey line(s) may indicate other
time shift estimate(s) that have a score above the tolerance threshold and were therefore rejected.

Value

The function returns a list. The first element (delay) is a numerical vector containing the time-shift
estimate(s). The second element (correlation) is another numerical vector containing the associated
correlation. The function also returns a graph as explained above.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

Examples

Load the data

data(LR_dataset)
data(l_genes)
data(l_names)
data(times)

Estimate the time shift between LBD16 and PUCHI (one time shift estimate returned)

estimate.delay(dataset=LR_dataset, tar=l_genes[which(l_names=="PUCHI")],
reg=l_genes[which(l_names=="LBD16")], times=times, time_step=1, thr_cor=0.7,
tol=0.15, delaymax=3, delayspan=12, reg.name="LBD16",tar.name="PUCHI")

Estimate the time shift between ARF8 and PLT1 (two time shift estimates returned)

estimate.delay(dataset=LR_dataset, tar=l_genes[which(l_names=="PLT1")],
reg=l_genes[which(l_names=="ARF8")], times=times, time_step=1, thr_cor=0.7,
tol=0.15, delaymax=3, delayspan=12, reg.name="ARF8",tar.name="PLT1")

LR_dataset Lateral root transcriptomic dataset

14 l_genes

Description

LR_dataset is a matrix of dimension 15240 lines x 18 columns. It stores a time-series transcriptomic
dataset following the changes occuring in a young Arabidopsis root during the formation of a lateral
root. To generate this dataset, lateral root formation was locally induced by a gravistimulus at t=0
and the stimulated part of the roots was collected every 3 hours from 6 hours to 54 hours. The
transcriptomes were analyzed using the ATH1 affymetrix chip. For time point 0, unstimulated
young primary root was taken as a control. Importantly, the transcript accumulation levels stored in
this dataset are non-log2 values.

Usage

data("LR_dataset")

Details

The experiment spanned 54 hours in order to cover all aspects of lateral root development. Using
this method, lateral root initiation (the first pericycle divisions) occurs synchroneously in all stim-
ulated roots around 12 hours after stimulation and the fully formed lateral root emerges from the
parental root around 45 hours. The dataset contains data for all significantly differentially expressed
genes.

Each column is the average of 4 independent replicates. The columns are organized in the following
order: 0, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51 and 54 hours. Each line of the
matrix is labbelled with an AGI gene code (Arabidopsis Genome Initiative gene code).

Source

Voss et al., Lateral root organ initiation re-phases the circadian clock in Arabidopsis thaliana. Na-
ture communication, in revision.

Examples

Load the dataset
data(LR_dataset)

Have a look at the first rows
head(LR_dataset)

l_genes l_genes

Description

Character vector containing the AGI gene codes of the genes used to reconstruct the network in
Lavenus et al. 2015, Plant Cell.

l_names 15

Usage

data("l_genes")

Examples

Load the vector
data(l_genes)

Have a look at it
l_genes

l_names l_names

Description

Character vector containing the ’everyday names’ of the genes used to reconstruct the network in
Lavenus et al. 2015, Plant Cell.

Usage

data("l_names")

Examples

Load the vector
data(l_names)

Have a look at it
l_names

l_prior l_prior

Description

Vector containing the prior associated with the genes included in the network reconstruction in
Lavenus et al. 2015, Plant Cell.

By defining the l_prior vector, the user defines which genes should be regarded as positive regu-
lators, which others as negative regulators and which can only be targets. The prior code is defined
as follow: -1 for negative regulator; 0 for non-regulator (target only); 1 for positive regulator; 2 for
both positive and negative regulator. The i-th element of the vector is the prior to associate to the
i-th gene in l_genes.

16 shortest.path

Usage

data("l_prior")

Examples

Load the vector
data(l_prior)

Have a look at it
l_prior

shortest.path Calculate the shortest path linking every pairs of nodes in the network

Description

shortest.path computes the shortest influence path (in number of edges) linking every possible
regulator/target pairs in the network.

Usage

shortest.path(bootstrap, BS_thr)

Arguments

bootstrap A square numerical matrix representing a network. The element [i,j] of this
matrix is the signed bootstrap value for the edge ’gene j to gene i’. The sign
of this element indicates the sign of the predicted interation (i.e. whether it is
inhibitory or stimulatory) and the absolute value of the element is the bootstrap.

BS_thr Minimum bootstrap threshold for an edge to be taken into consideration in the
analysis. The edges with bootstrap values below this threshold are ignored.

Details

The paths are signed in order to keep track of the type of influence that the genes have on each
other. If a path leads to the inhibition of a gene by another, shortest.path will return a negative
number for this "pair" (Note that the (i,j) pair is not regarded as being the same than the (j,i) pair).
Because the network is directed, edges can only be followed in one direction: from the regulator to
the target. Hence if the network contains an edge from gene i to gene j, the length of the shortest
path from i to j is 1 edge and therefore the function returns either 1 or -1 (depending on the sign
of the interaction) for the length of i to j path. In absence of feedback loops between i and j, the
network does not contain any path from gene j to gene i. In this case shortest.path shall return 0
for the length of the j to i path. Otherwise it will return the minimum number of edges to follow to
go from j to i.

TDCOR 17

Value

shortest.path returns a list containing two matrices.

SP A square numerical matrix. The element [i,j] stores the signed shortest path
from gene j to gene i. The sign indicates of the type of regulatory influence
(stimulatory or inhitory) that gene j has on gene i through the shortest path.

BS A square numerical matrix. The element [i,j] stores the geometric mean of the
bootstrap values of the edges located on the shortest path from gene j to gene i.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

Examples

Example with a 3-genes network where gene A upregulates B which upregulates A; and C represses B.
the three edges have different bootstrap values (100, 60 and 55)

network=data.frame(matrix(c(0,100,0,0,60,0,0,-55,0),3,3))
names(network)=c("gene A","gene B","gene C")
rownames(network)=c("gene A","gene B","gene C")

shortest.path(as.matrix(network),1)

TDCOR The TDCOR main function

Description

This is the main function to run the TDCOR algorithm and reconstruct the gene network topology.

Usage

TDCOR(dataset,l_genes, TPI, DPI, ...)

Arguments

dataset Numerical matrix storing the non-log2 transcriptomic data (average of repli-
cates). The rows of this matrix must be named by gene codes (e.g. the AGI gene
code for Arabidopsis datasets). The columns must be organized in chronological
order from the left to the right.

l_genes A character vector containing the (AGI) gene codes of the genes one wishes to
build the network with (gene codes -e.g. "AT5G26930"- by opposed to gene
names -e.g."GATA23"- which are provided by the optional l_names argument).

18 TDCOR

TPI A TPI database generated by CalculateTPI which contains some necessary
statistical information for triangle motifs pruning. In particular it must have an
entry for all the regulators included in the network analysis. The TPI database
may also contain data for genes that are not included in l_genes.

DPI A DPI database generated by CalculateDPI which contains some necessary
statistical information for diamond motifs pruning. In particular it must have an
entry for all the regulators included in the network analysis. The DPI database
may also contain data for genes that are not included in l_genes.

... Additional arguments to be passed to the TDCOR function (Some are necessary
if dataset is not the LR dataset):

• l_names: A character vector containing the ’everyday names’ of the genes
included in the analysis (e.g. "LBD16") . These are the names by which
genes will be refered as to in the final network table. Gene names must be
unique; repeats of the same name are not allowed. If no l_names parameter
is given, it is by default equal to l_genes. The i-th element of the vector
l_names contains the ’everyday name’ of the i-th gene in l_genes.

• l_prior: A numerical vector containing the prior information on the genes
included in the analysis. By defining the l_prior, the user defines which
genes are positive regulators, which are negative regulators and which can
only be targets. The prior code is defined as follow: -1 for negative regu-
lator; 0 for non-regulator (target only); 1 for positive regulator; 2 for genes
that can act as both positive and negative regulators. If no l_prior param-
eter is provided, it is by default equal to a vector of 2s, meaning that all
genes are regarded as being both potential activators and repressors. The
i-th element of the vector l_prior contains the prior to associate to the i-th
gene in l_genes.

• times: A numerical vector containing the successive times (in hours) at
which the samples were collected to generate the time-series transcriptomic
dataset.If no times parameter is given, it is by default equal to the times
parameter used for the lateral root transcriptomic dataset.

• n0: An integer corresponding to the number of iterations to be performed
in the external bootstrap loop. At the beginning of every iteration of this
external loop, new random parameter values are sampled in the user-defined
bootstrapping interval. If no n0 parameter is given, it is by default equal to
1000.

• n1 : An integer corresponding to the number of iterations to be performed
in the internal bootstrap loop. In this loop parameter values are kept the
same but the order of node analysis is randomized at each iteration. If no
n1 parameter is provided, it is by default equal to 10.

• time_step: A positive number corresponding to the time step (in hours)
i.e. the temporal resolution at which the gene profiles are analysed. If no
time_step parameter is provided, it is by default equal to 1 hour.

• delayspan: A positive number. It is the maximum time shift (in hours)
which is analysed. It should be high enough for the time shift estimation
process to be successful but argueably relatively small in comparison to the
overall duration of the time series. (e.g. for the LR dataset which has data
spanning over 54 hours, delayspan was set to 12 hours).

TDCOR 19

• tol: A strictly positive number corresponding to the tolerance threshold
on the final score of time shift estimates. The score is a positive number
that measures the "level of disagreement" between the four time shift esti-
mators. A time shift estimate is regarded as meaningful if it scores lower
than the tol threshold. If all four estimators agree on a certain value of
time shift, the estimate obtains the best possible score, which is 0. Increas-
ing tol make the time shift estimation process LESS stringent. For more
information see estimate.delay.

• delaymin: A numerical vector containing one or two positive elements cor-
responding to the boundaries of the boostrapping interval for the minimum
time shift above which putative interactions are regarded as possible. If
no delaymin parameter is provided, it is by default equal to 0 hour. Gene
pairs with time shift lower than or equal to delaymin are regarded as co-
regulation and are therefore not included in the network.

• delaymax: A numerical vector containing one or two positive elements cor-
responding to the boundaries of the boostrapping interval for the maximum
time shift above which putative interactions are regarded as indirect. If no
delaymax parameter is provided, it is by default equal to 3 hours. Puta-
tive indirect interactions are included in the network only when the putative
target is not predicted any direct regulator.

• thr_cor: A numerical vector containing one or two positive elements be-
tween 0 and 1 corresponding to the boundaries of the boostrapping interval
for the threshold of Pearson’s correlation. A gene pair is included in the
preliminary network only if the correlation between the profiles (with the
time shift correction) is higher than or equal to the thr_cor threshold. If
no thr_cor parameter is provided, it is by default equal to [0.7;0.9]. Note
that increasing thr_cor makes the correlation filter MORE stringent.

• delay: A positive number corresponding to the most likely time shift (in
hours) one could expect between the profile of a regulator and the profile
of its direct targets. This parameter enables one to generate the reference
profiles of the ideal regulator when calculating the index of directness (ID).
If no delay parameter is provided, it is by default equal to 3 hours. Note
that similar parameters serving the same purpose are also used to calculate
the triangle pruning index and the diamond pruning index. But TDCOR
reads the value to use for calculating those indices directly from the TPI
and DPI databases (for consistency reasons).

• thr_ind1: A numerical vector containing one or two positive elements
corresponding to the boundaries of the boostrapping interval for the index
of directness (ID) lower threshold. Gene pairs showing an ID below this
threshold will be regarded as co-regulation and therefore eliminated from
the network. If no thr_ind1 parameter is provided, it is by default equal
to 0.5. Reminder: For direct interaction one expects ID values around 1.
For indirect interactions one expect values greater than 1. For co-regulated
genes, ID should be smaller than 1. Note that increasing thr_ind1 makes
the ID-based "anti-coregulation filter" MORE stringent.

• thr_ind2: A numerical vector containing one or two positive elements cor-
responding to the boundaries of the boostrapping interval for the index of
directness (ID) upper threshold. Putative interactions showing an ID above

20 TDCOR

this threshold are regarded as indirect. If no thr_ind2 parameter is pro-
vided, it is by default equal to 4.5. Reminder: For direct interaction one
expects ID values around 1. For indirect interactions one expect values
greater than 1. For co-regulated genes, ID should be smaller than 1. Note
that increasing thr_ind2 makes the ID-based filter against indirect interac-
tions LESS stringent.

• thr_overlap : A numerical vector containing one or two positive elements
smaller than 1. These correspond to the boundaries of the boostrapping
interval for the index of overlap. If no thr_overlap parameter is provided,
it is by default equal to [0.5,0.6]. Note that increasing thr_overlap makes
the overlap filter MORE stringent. This filter aims at removing unlikely
negative interactions where the putative regulator switches on too late to
downregulate the putative target. Keep in mind that the filter is sensitive to
the noise level in the data. It should only be used if the data has a very low
level of noise. To inactivate the filter set the thr_overlap parameter to 0.

• thrpTPI: A numerical vector containing one or two positive numbers smaller
or equal to 1 in increasing order. These correspond to the boundaries of the
boostrapping interval for the probability threshold used in the triangle filter.
If no thrpTPI parameter is provided, it is by default equal to [0.5,0.75].
Note that increasing thrpTPI makes the triangle filter LESS stringent.

• thrpDPI: A numerical vector containing one or two positive numbers smaller
or equal to 1 in increasing order. These correspond to the boundaries of the
boostrapping interval for the probability threshold used in the diamond fil-
ter. If no thrpTPI parameter is provided, it is by default equal to [0.8,0.9].
Note that increasing thrpDPI makes the diamond filter LESS stringent.

• thr_isr: A numerical vector containing one or two positive elements cor-
responding to the boundaries of the boostrapping interval for the threshold
of the index of directness above which the gene is predicted to negatively
self-regulate. Genes will be predicted to positively self-regulate if the index
of directness is smaller than 1/thr_isr. If no thr_isr parameter is pro-
vided, it is by default equal to [3,6]. Note that increasing thr_isr makes
the search for self-regulating genes MORE stringent.

• search.EP: A boolean to control whether Master-Regulator-Signal-Transducer
(MRST) or signal Entry Point (EP) should be looked for or not. (If yes, set
on TRUE which is the default value)

• thr_bool_EP: A number between 0 and 1 used as threshold to convert nor-
malized expression profiles (values between 0 and 1) into boolean expres-
sion profiles (values equal to 0 or 1). If no thr_bool_EP parameter is pro-
vided, it is by default equal to 0.8. The conversion of the continuous profiles
into boolean profiles is part of the process of MRST analysis.

• MinTarNumber: An integer. Minimum number of targets a regulator should
have in order to be regarded as a potential MRST. If no MinTarNumber
parameter is provided, it is by default equal to 5. Note that increasing
MinTarNumber makes the search for MRST genes MORE stringent.

• MinProp: A number between 0 and 1. Minimum proportion of targets
which are not at steady state at t=0 that a regulator should have in order
to be regarded as a potential MRST. If no MinProp parameter is provided, it

TDCOR 21

is by default equal to 0.75. Note that increasing MinProp makes the search
for MRST genes MORE stringent.

• MaxEPNumber: An integer. Maximum number of MRST that can be pre-
dicted at each iteration. If no MaxEPNumber parameter is provided, it is by
default equal to 1.

• regmax: An integer. Maximum number of regulators that a target may have.
If no regmax parameter is provided, it is by default equal to 6.

• outfile_name: A string. Name of the file to print the network table in. By
default it is "TDCor_output.txt".

Details

The default values are certainly not the best values to work with. The TDCOR parameters have to
be optimized by the user based on its own knowledge of the network, the quality of the data etc...
Because TDCOR works by pruning interactions, it is probably easier (as a first go) to optimize the
parameter values following the order of the filters.

Before starting inactivate all the filters using the less stringent parameter values possible or for the
MRST filter by setting search.EP to FALSE. You should as well set the bootstrap parameters to a
relatively low value (e.g. n0=100 and n1=1). Hence the runs will be quick and you will be able to
rapidly assess whether the changes you made in the parameter values were a good thing.

Start by optimizing the parameters involved in time shifts estimation. That is to say, essentially
delayspan, time_step, tol and delaymax. The latter (together with delaymin) is a biological
parameters and the range of possible values is argueably limited. Though they ought to be adapted
to the organism (e.g. in prokaryotes, the delays are extremely short since polysomes couple tran-
scription and translation). Note that the estimate.delay function can be very helpful to optimize
these various parameters thanks to the visual output. Use it with pairs of genes that have been
shown to interact directly or indirectly in your system and for which the relationship in the dataset
in clearly linear. For network reconstruction with TDCor, good time shift estimation is absolutely
crucial. Once this is done, proceed with optimizing the threshold for correlation thr_cor and the
thresholds on the index of directness (thr_ind1, thr_ind2). Then optimize the parameters of the
triangle and diamond pruning filters (thrpTPI and thrpDPI). You may have to try a couple of dif-
ferent TPI and DPI databases (i.e. databases built with different input parameters). In particular
increasing the noise level when generating these database enables one to decrease the stringency
of the triangle and diamond filters, when increasing the thrpTPI and thrpDPI value is not suffi-
cient. Subsequently fine-tune the parameters of the MRST filter (thr_bool_EP, MinTarNumber,
MinProp, MaxEPNumber) if you want it on. Remember to set search.EP back to TRUE first. Next
optimize thr_isr (self-regulation). Finally, restrict the number of maximum regulators if necessary
(regmax).

Value

The TDCOR main function returns a list containing 7 elements

input A list containing the input parameters (as a reminder).

intermediate A list containing three intermediate matrices. mat_cor is the matrix that stores
the correlations, mat_isr stores the indices of self-regulations and mat_overlap
contains the indices of overlap.

22 TDCOR

network A matrix containing the network. The element [i,j] of this matrix contains the
bootstrap value for the edge "gene j to gene i". The sign indicates the sign of the
predicted interaction.

ID A matrix containing the computed indices of directness (ID). The element [i,j]
contains the ID for the edge "gene j to gene i".

delay A matrix containing the computed time shifts. The element [i,j] of this matrix
contains the estimated time shift between the profile of gene j and the profile of
gene i.

EP A vector containing the bootstrap values for the MRST predictions.

predictions The edge predictions in the form of a table. The columns are organized in fol-
lowing order: Regulator name, Type of interaction (+ or-), Target name, Boot-
strap, Index of Directness, Estimated time shift between the target and regulator
profiles.

The table of predictions (without header) and the input parameters are printed at the end of the
run in two separate text files located in the current R working directory (If you are not sure which
directory this is, use the command getwd()).

Note

For a parameter to be involved in the bootstrapping process, one must feed the function a vector
containing two values as input. These two values are respectively the lower and upper boundaries
of the bootstrapping interval. If one chooses not to use a parameter for bootstrapping, one can either
feed the function an input vector containing twice the same value, or only one value.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

References

Lavenus et al., 2015, The Plant Cell

See Also

See also CalculateDPI, CalculateTPI, UpdateDPI, UpdateTPI, TDCor-package.

Examples

Not run:
Load the lateral root transcriptomic dataset
data(LR_dataset)

Load the vectors of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)

Load the vector of time points for the LR_dataset

TDCOR 23

data(times)

Generate the DPI databases

DPI15=CalculateDPI(dataset=LR_dataset,l_genes=l_genes,l_prior=l_prior,
times=times,time_step=1,N=10000,ks_int=c(0.5,3),kd_int=c(0.5,3),delta_int=c(0.5,3),
noise=0.15,delay=3)

Generate the TPI databases

TPI10=CalculateTPI(dataset=LR_dataset,l_genes=l_genes,
l_prior=l_prior,times=times,time_step=1,N=10000,ks_int=c(0.5,3),
kd_int=c(0.5,3),delta_int=c(0.5,3),noise=0.1,delay=3)

Check/update if necessary the databases (Not necessary here though.
This is just to illustrate how it would work.)

TPI10=UpdateTPI(TPI10,LR_dataset,l_genes,l_prior)
DPI15=UpdateDPI(DPI15,LR_dataset,l_genes,l_prior)

Choose your TDCOR parameters

Parameters for time shift estimatation
and filter on time shift value
ptime_step=1
ptol=0.13
pdelayspan=12
pdelaymax=c(2.5,3.5)
pdelaymin=0

Parameter of the correlation filter
pthr_cor=c(0.65,0.8)

Parameters of the ID filter
pdelay=3
pthr_ind1=0.65
pthr_ind2=3.5

Parameter of the overlap filter
pthr_overlap=c(0.4,0.6)

Parameters of the triangle and diamond filters
pthrpTPI=c(0.55,0.8)
pthrpDPI=c(0.65,0.8)
pTPI=TPI10
pDPI=DPI15

Parameter for identification of self-regulations
pthr_isr=c(4,6)

Parameters for MRST identification
pMinTarNumber=5

24 TF

pMinProp=0.6

Max number of regulators
pregmax=5

Bootstrap parameters
pn0=1000
pn1=10

Name of the file to print network in
poutfile_name="TDCor_output.txt"

Reconstruct the network

tdcor_out= TDCOR(dataset=LR_dataset,l_genes=l_genes,l_names=l_names,n0=pn0,n1=pn1,
l_prior=l_prior,thr_ind1=pthr_ind1,thr_ind2=pthr_ind2,regmax=pregmax,thr_cor=pthr_cor,
delayspan=pdelayspan,delaymax=pdelaymax,delaymin=pdelaymin,delay=pdelay,thrpTPI=pthrpTPI,
thrpDPI=pthrpDPI,TPI=pTPI,DPI=pDPI,thr_isr=pthr_isr,time_step=ptime_step,
thr_overlap=pthr_overlap,tol=ptol,MinProp=pMinProp,MinTarNumber=pMinTarNumber,
outfile_name=poutfile_name)

End(Not run)

TF Table of 1834 Arabidopsis Transcription factors

Description

TF is a dataframe with two columns. The first column contains the AGI gene code of 1834 genes
encoding Arabidopsis transcription factors. The second column contains the associated gene names.

Usage

data("TF")

Source

Data published on the Agris database website (http://arabidopsis.med.ohio-state.edu/AtTFDB/).

References

Davuluri et al. (2003), AGRIS: Arabidopsis Gene Regulatory Information Server, an informa-
tion resource of Arabidopsis cis-regulatory elements and transcription factors, BMC Bioinfor-
matics, 4:25

http://arabidopsis.med.ohio-state.edu/AtTFDB/

times 25

Examples

Load the database
data(TF)

Obtain the transcription factors for which data is available in the LR dataset
i.e. present on ATH1 chip and differentially expressed.
data(LR_dataset)
clean.at(LR_dataset,TF[,1])

times The times vector to use with the lateral root dataset

Description

Contains the times (in hours) at which the samples were collected to generate the Lateral Root
transcriptomic dataset (data(LR_dataset))

Usage

data("times")

Examples

Load the vector associated with the LR dataset
data(times)

Have a look at it
times

UpdateDPI Update or check the DPI database

Description

UpdateDPI analyzes the DPI database and add new entries into it if it does not contain all the
necessary data for reconstructing the network with the genes listed in the vector l_genes.

Usage

UpdateDPI(DPI,dataset,l_genes, l_prior)

26 UpdateDPI

Arguments

DPI The DPI database to update or check before reconstructing the network.
dataset Numerical matrix storing the transcriptomic data. The rows of this matrix must

be named by gene codes (like AGI gene codes for Arabidopsis data).
l_genes A character vector containing the gene codes of the genes we want to reconstruct

the network with.
l_prior A numerical vector containing the prior information on the genes included in

the network recontruction. By defining the l_prior vector, the user defines
which genes should be regarded as positive regulators, which others as negative
regulators and which can only be targets. The prior code is defined as follow: -1
for negative regulator; 0 for non-regulator (target only); 1 for positive regulator;
2 for both positive and negative regulator. The i-th element of the vector is the
prior to associate to the i-th gene in l_genes.

Value

UpdateDPI returns an updated DPI database containing data for at least all the genes in l_genes
whose associated prior is not null.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also CalculateDPI.

Examples

Not run:
Load the Lateral root transcriptomic dataset
data(LR_dataset)

Load the vector of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)

Load the vector of time points for the LR_dataset
data(times)

Build a very small DPI database (3 genes)
DPI_example=CalculateDPI(dataset=LR_dataset,l_genes=l_genes[4:6],l_prior=l_prior[4:6],
times=times,time_step=1,N=5000,ks_int=c(0.5,3),kd_int=c(0.5,3),delta_int=c(0.5,3),
noise=0.15,delay=3)

Add one gene in the database
DPI_example=UpdateDPI(DPI_example,dataset=LR_dataset,l_genes[4:7],l_prior[4:7])

End(Not run)

UpdateTPI 27

UpdateTPI Update or check the TPI database

Description

UpdateTPI analyzes the TPI database and add new entries into it if it does not contain all the
necessary data for reconstructing the network with the genes listed in the vector l_genes.

Usage

UpdateTPI(TPI, dataset, l_genes, l_prior)

Arguments

TPI The TPI database to update or check before reconstructing the network.

dataset Numerical matrix storing the transcriptomic data. The rows of this matrix must
be named by gene codes (like AGI gene codes for Arabidopsis data).

l_genes A character vector containing the gene codes of the genes we want to reconstruct
the network with.

l_prior A numerical vector containing the prior information on the genes included in
the network recontruction. By defining the l_prior vector, the user defines
which genes should be regarded as positive regulators, which others as negative
regulators and which can only be targets. The prior code is defined as follow: -1
for negative regulator; 0 for non-regulator (target only); 1 for positive regulator;
2 for both positive and negative regulator. The i-th element of the vector is the
prior to associate to the i-th gene in l_genes.

Value

UpdateTPI returns an updated TPI database containing data for at least all the genes in l_genes
whose associated prior is not null.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also CalculateTPI.

Examples

Not run:
Load the Lateral root transcriptomic dataset
data(LR_dataset)

Load the vector of gene codes, gene names and prior

28 UpdateTPI

data(l_genes)
data(l_names)
data(l_prior)

Load the vector of time points for the LR_dataset
data(times)

Build a very small TPI database (3 genes)
TPI_example=CalculateTPI(dataset=LR_dataset,l_genes=l_genes[4:6],
l_prior=l_prior[4:6],times=times,time_step=1,N=5000,ks_int=c(0.5,3),
kd_int=c(0.5,3),delta_int=c(0.5,3),noise=0.1,delay=3)

Add one gene in the database
TPI_example=UpdateTPI(TPI_example,dataset=LR_dataset,l_genes[4:7],l_prior[4:7])

End(Not run)

Index

∗ Main functions
CalculateDPI, 4
CalculateTPI, 7
TDCOR, 17
UpdateDPI, 25
UpdateTPI, 27

∗ Side functions
clean.at, 10
draw.profile, 10
estimate.delay, 11
shortest.path, 16

∗ datasets
l_genes, 14
l_names, 15
l_prior, 15
LR_dataset, 13
TF, 24
times, 25

CalculateDPI, 2, 3, 4, 18, 22, 26
CalculateTPI, 2, 3, 7, 18, 22, 27
clean.at, 10

draw.profile, 3, 10

estimate.delay, 3, 11, 19, 21

l_genes, 2, 14
l_names, 2, 15
l_prior, 2, 15
LR_dataset, 2, 13

shortest.path, 3, 16

TDCOR, 2, 3, 17
TDCor-package, 2
TF, 3, 24
times, 2, 25

UpdateDPI, 2, 3, 6, 22, 25
UpdateTPI, 2, 3, 9, 22, 27

29

	TDCor-package
	CalculateDPI
	CalculateTPI
	clean.at
	draw.profile
	estimate.delay
	LR_dataset
	l_genes
	l_names
	l_prior
	shortest.path
	TDCOR
	TF
	times
	UpdateDPI
	UpdateTPI
	Index

