
Package vignette for TBFmultinomial

Dynamic cause-specific variable selection for discrete time-to-event
competing risks models

Rachel Heyard
University of Zurich

1 Introduction

This vignette shall serve as an introduction to the R-package TBFmultinomial,
written for the implementation of the methods presented in Heyard et al. [2018].
The package glmBfp does objective Bayesian variable selection using a methodology
based on test-based Bayes factors (TBF) for generalised linear models [Held et al.,
2015] as well as for the Cox model [Held et al., 2016]. However, glmBfp cannot
handle multinomial outcomes. Therefore, the package TBFmultinomial is an exten-
sion that allows for mulitple outcomes as in the multinomial regression model. Most
importantly the package has been developped for discrete time-to-event models with
competing risks. The TBF methodology can easily be extended to these models,
which are simple multinomial regression models with a time-dependent intercept,
see Heyard et al. [2018].

2 Data example

Our data example will be similar to the one presented in Heyard et al. [2018], but
simplified. The goal of the analysis is to find a prediction model for the risk of ac-
quiring a ventilator-associated pneumonia (VAP). However if a patient is extubated
or dies, a VAP cannot be diagnosed anymore. Extubation and death then compose
the competing events/risks for VAP acquisition. The data is stored in the package
as VAP data.

library('TBFmultinomial')

Loading required package: VGAM

Loading required package: stats4

Loading required package: splines

Loading required package: nnet

Loading required package: parallel

Loading required package: stringr

1

Loading required package: plotrix

data("VAP_data")

dim(VAP_data)

[1] 1640 7

head(VAP_data, 10)

ID day gender type SAPSadmission SOFA outcome

1 2 1 0 Medical 50 9 ventilated

2 2 2 0 Medical 50 8 ventilated

3 2 3 0 Medical 50 9 ventilated

4 2 4 0 Medical 50 9 ventilated

5 2 5 0 Medical 50 8 VAP

6 3 1 1 Medical 34 10 ventilated

9 3 4 1 Medical 34 6 ventilated

10 3 5 1 Medical 34 5 ventilated

12 3 7 1 Medical 34 2 ventilated

13 3 8 1 Medical 34 1 ventilated

table(VAP_data$outcome)

##

ventilated dead extubated VAP

1530 20 80 10

Each row in the data set stands for one day of ventilation of a patient as it is
needed for discrete survival models. If the data is in a short format, functions like
discSurv::dataLong(). We have 1640 ventilation days for 90 distinct patients. We
now want to find a prediction model for the variable outcome by selecting among
the baseline variable gender, type (patient type, can be medical or surgical) and
SAPSadmission (the simplified acute physiology score at admission) as well as the
time-dependent variable SOFA (the daily sequential organ failure assessment score).

3 Dynamic Bayesian variable selection

We will now proceed step by step to dynamic Bayesian variable selection in order
to define a prediction model for the time to acquire a VAP taking into account its
competing risks.

3.1 Posterior model probability

The first step will be to fit the candidate models and compute their posterior prob-
abilities using the function PMP(). Our methodology is based on the g-prior so that

2

we need to decide on a way to define g. We can either simply set g equal to the
sample size with method=‘g=n’, or use an empirical Bayes (EB) approach like the
local EB with method=‘LEB’ or the global EB with method=‘GEB’. An other pos-
sibility is a fully Bayes approach with method ∈ {‘ZS’, ‘ZSadapted’, ‘hyperG’,

‘hyperGN’}. We refer to Held et al. [2015] for further detail on the definition of g.
To use the PMP() function we first need to define the full model containing all

the potential predictors with a time-dependent intercept. Here we define natural
spline with 4 degrees on the variable day for the intercept:

full <- outcome ~ ns(day, df = 4) +

gender + type + SAPSadmission + SOFA

class(full)

[1] "formula"

The formula can be defined as a formula-class or as a character. Then we can
apply the function on our data and use the default settings for the other parameters.
By default a LEB approach is used for the estimation of g, a uniform (flat) prior is
used on the candidate model space, the nnet package is used to fit the models with
150 iterations (max). We further need to tell the function that we are considering
a discrete survival model by setting discreteSurv to TRUE, so that the function
knows that ns(day, df = 4) is interpreted as the intercept.

PMP_LEB_flat <- PMP(fullModel = full, data = VAP_data,

discreteSurv = TRUE)

Then, using the generic function as.data.frame(), we can nicely represent an
object of class PMP; the models are ordered by their posterior probability. So the
first element in the data frame is the model with the highest PMP: the maximum a
posteriori (MAP) model is the candidate with only SOFA as predictor.

class(PMP_LEB_flat)

[1] "PMP" "list"

as.data.frame(PMP_LEB_flat)

posterior logPrior gender type SAPSadmission SOFA

5 5.328383e-01 -2.772589 FALSE FALSE FALSE TRUE

10 3.572925e-01 -2.772589 FALSE TRUE FALSE TRUE

15 3.607272e-02 -2.772589 FALSE TRUE TRUE TRUE

11 2.774031e-02 -2.772589 FALSE FALSE TRUE TRUE

13 2.427082e-02 -2.772589 TRUE TRUE FALSE TRUE

8 1.671044e-02 -2.772589 TRUE FALSE FALSE TRUE

16 3.392558e-03 -2.772589 TRUE TRUE TRUE TRUE

3

14 1.682432e-03 -2.772589 TRUE FALSE TRUE TRUE

9 3.331786e-15 -2.772589 FALSE TRUE TRUE FALSE

4 3.038039e-15 -2.772589 FALSE FALSE TRUE FALSE

12 2.025561e-15 -2.772589 TRUE TRUE TRUE FALSE

7 1.566718e-15 -2.772589 TRUE FALSE TRUE FALSE

3 2.615036e-16 -2.772589 FALSE TRUE FALSE FALSE

6 2.593422e-16 -2.772589 TRUE TRUE FALSE FALSE

2 1.677275e-16 -2.772589 TRUE FALSE FALSE FALSE

1 1.590463e-16 -2.772589 FALSE FALSE FALSE FALSE

Instead of defining a full model as an input for the function, we can also fix the
formulas of all the candidate models we want to consider before and store them in
a character vector with the first element being the reference model and the last the
most complex model. Then we set the parameter candidateModels to this vector
and leave fullModel undefined. In this way, we can fix some variables to be included
by default, or simply use and fit only a sample of all possible candidate models if
the model space is big.

3.2 Posterior inclusion probability

Using the PMP-object, the posterior inclusion probabilities (PIPs) can be computed
with the postInclusionProb() function.

postInclusionProb(PMP_LEB_flat)

gender type SAPSadmission SOFA

0.04605625 0.42102855 0.06888802 1.00000000

So a median probability model (MPM) would only include the variable SOFA as
its PIP is higher (or equal) to 0.5.

3.3 Cause-specific variable selection

The PIPs refer to the importance of a variable as a predictor for all outcomes
together. We may want to quantify the relevance of a variable for the prediction of
each outcome individually. Therefore we proceed to cause-specific variable selection
CSVS as described in Heyard et al. [2018]. The function CSVS() can be applied on
one particular model either fitted using multinom() of the package nnet or using
vglm() from VGAM. Note that we need a fixed g, so we cannot use the fully Bayes
methods for CSVS:

we first fit the model:

model_full_nnet <- multinom(formula = full, data = VAP_data,

maxit = 150, trace = FALSE)

retrieve the g estimate of the full model

4

g_est <- tail(PMP_LEB_flat$G, 1)

and then apply the function

test_CSVS_nnet <- CSVS(g = g_est, model = model_full_nnet,

discreteSurv = TRUE, package = 'nnet')

The function plot CSVS then plots the results and prints the coefficients before
and after CSVS:

res <- plot_CSVS(CSVSobject = test_CSVS_nnet,

namesVar = NULL, shrunken = TRUE,

standardized = TRUE, numberIntercepts = 5)

$before

gender1 typeSurgical SAPSadmission SOFA

1 0.7360920 -0.7644011 1.2416076 2.8581988

2 -0.9435592 -2.4763176 -0.7786595 -6.5665457

3 -0.6957668 -0.9161588 -0.7380157 0.5375009

##

$after

gender1 typeSurgical SAPSadmission SOFA

1 0 0.000000 0 3.759587

2 0 -2.288231 0 -6.686574

3 0 0.000000 0 0.000000

The color scale in Figure 1 is defined with white to red corresponding to 0.538
to 6.567 for the upper plot and to 0 to 6.687 for the lower plot. Furthermore, the
outcomes are defined as 1:dead, 2:extubated and 3:VAP.

3.4 Dynamic variable selection using landmarking

In a very last step, we can proceed to dynamic variable selection via landmarking
using the function PIPs by landmarking(). The landmarking technique has been
extensively discussed by van Houwelingen [2007], used in connection with PIPs by
Held et al. [2016] and been extended to the context of discrete time-to-event com-
peting risks model by Heyard et al. [2018]. To do so, we need to set the same
parameters as for PMP(). Further, we need to specify the landmark length in days
(here landmarkLength=4), the last landmark (here lastlandmark=20) and the name
of the variable indication the time (here timeVariableName = ‘day’).

pips_landmark <-

PIPs_by_landmarking(fullModel = full, data = VAP_data,

discreteSurv = TRUE, numberCores = 1,

landmarkLength = 4, lastlandmark = 20,

timeVariableName = 'day')

5

Before CSVS

0.5 6.6

ge
nd

er
1

ty
pe

S
ur

gi
ca

l

S
A

P
S

ad
m

is
si

on

S
O

FA

3

2

1

After CSVS

ge
nd

er
1

ty
pe

S
ur

gi
ca

l

S
A

P
S

ad
m

is
si

on

S
O

FA

3

2

1

Figure 1: Absolute values of the shrunken standardized coefficients before and after
CSVS.

6

pips_matrix <- matrix(unlist(pips_landmark),

nrow = length(pips_landmark),

byrow = TRUE)

colnames(pips_matrix) <- names(pips_landmark[[1]])

par(mfrow = c(2,2), las = 1)

for(i in 1:ncol(pips_matrix)){
plot(seq(0, 20, by = 4), pips_matrix[, i], type = 'b',

xlab = 'Landmark (in days)', pch = 19,

ylab = 'Probability',

main = colnames(pips_matrix)[i],

ylim = c(0, 1))

abline(h = .5, col = 'blue', lty = 2)

}

See Figure 2 for the evolution of the PIPs over time. If again, we only include
the variable with PIP ≥ 0.5 for the MPM, we would use a different set of predictors
depending on the landmark considered or the time already spent at risk.

4 (Simple) multinomial regression

We can as well apply the TBF methodology on multinomial regression models by
setting the parameter discreteSurv to FALSE.

References

L. Held, D. Sabanés Bové, and I. Gravestock. Approximate Bayesian model selec-
tion with the deviance statistic. Statistical Science, 30(2):242–257, 05 2015. doi:
10.1214/14-STS510.

L. Held, I. Gravestock, and D. Sabanés Bové. Objective Bayesian model selec-
tion for Cox regression. Statistics in Medicine, page 5376–5390, 2016. doi:
10.1002/sim.7089. sim.7089.

R. Heyard, J.-F. Timsit, W. I. Essaied, and L. Held. Dynamic clinical prediction
models for discrete time-to-event data with competing risks - a case study on the
outcomerea database. Biometrical Journal, 2018. doi: 10.1002/bimj.201700259.

H. C. van Houwelingen. Dynamic prediction by landmarking in event history anal-
ysis. Scandinavian Journal of Statistics, 34:70–85, 2007.

7

● ● ●

●

●
●

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

gender

Landmark (in days)

P
ro

ba
bi

lit
y

●

●

●

●

● ●

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

type

Landmark (in days)

P
ro

ba
bi

lit
y

● ●
●

●
●

●

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

SAPSadmission

Landmark (in days)

P
ro

ba
bi

lit
y

● ● ● ●

●

●

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

SOFA

Landmark (in days)

P
ro

ba
bi

lit
y

Figure 2: The posterior inclusion probabilities for each landmark.

8

