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create.Learner Factory for learner wrappers

Description
Create custom learners and/or a sequence of learners with hyperparameter combinations defined
over a grid.

Usage

create.Learner(base_learner, params = list(), tune = list(),
env = parent.frame(), name_prefix = base_learner, detailed_names = F,
verbose = F)

Arguments

base_learner Character string of the learner function that will be customized.

params List with parameters to customize.
tune List of hyperparameter settings that will define custom learners.
env Environment in which to create the functions. Defaults to the current environ-

ment (e.g. often the global environment).
name_prefix The prefix string for the name of each function that is generated.
detailed_names Setto T to have the function names include the parameter configurations.

verbose Display extra details.

Value

Returns a list with expanded tuneGrid and the names of the created functions.

Examples

## Not run:

# Create a randomForest learner with ntree set to 1000 rather than the
# default of 500.

create_rf = create.Learner("SL.randomForest”, list(ntree = 1000))

create_rf
sl = SuperLearner(Y =Y, X = X, SL.library = create_rf$names, family = binomial())
sl

# Clean up global environment.
rm(list = create_rf$names)
# Create a randomForest learner that optimizes over mtry
create_rf = create.Learner("SL.randomForest”,
tune = list(mtry = round(c(1, sqrt(ncol(X)), ncol(X)))))
create_rf
sl = SuperLearner(Y =Y, X = X, SL.library = create_rf$names, family = binomial())
sl
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# Clean up global environment.
rm(list = create_rf$names)

# Optimize elastic net over alpha, with a custom environment and detailed names.
learners = new.env()
create_enet = create.Learner("SL.glmnet"”, env = learners, detailed_names =T,
tune = list(alpha = seq(@, 1, length.out=5)))
create_enet
# List the environment to review what functions were created.
1s(learners)
# We can simply list the environment to specify the library.
sl = SuperLearner(Y =Y, X=X, SL.library = 1s(learners), family = binomial(), env = learners)
sl

## End(Not run)

create.SL.xgboost Factory for XGBoost SL wrappers

Description
Create multiple configurations of XGBoost learners based on the desired combinations of hyperpa-
rameters.

Usage

create.SL.xgboost(tune = list(ntrees = c(1000), max_depth = c(4), shrinkage =

c(0.1), minobspernode = c(10)), detailed_names = F, env = .GlobalEnv,
name_prefix = "SL.xgb")
Arguments
tune List of hyperparameter settings to test. If specified, each hyperparameter will

need to be defined.

detailed_names Set to T to have the function names include the parameter configurations.

env Environment in which to create the SL.xgboost functions. Defaults to the global
environment.
name_prefix The prefix string for the name of each function that is generated.
Examples

# Create a new environment to store the learner functions.

# This keeps the global environment organized.

sl_env = new.env()

# Create 2 * 2 x 1 x 3 = 12 combinations of hyperparameters.

tune = list(ntrees = c(100, 500), max_depth = c(1, 2), minobspernode = 10,
shrinkage = c(0.1, 0.01, 0.001))
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# Generate a separate learner for each combination.

xgb_grid = create.SL.xgboost(tune = tune, env = sl_env)

# Review the function configurations.

xgh_grid

# Attach the environment so that the custom learner functions can be accessed.
attach(sl_env)

## Not run:

sl = SuperLearner(Y =Y, X = X, SL.library = xgb_grid$names)

## End(Not run)
detach(sl_env)

CV.SuperLearner Function to get V-fold cross-validated risk estimate for super learner

Description

Function to get V-fold cross-validated risk estimate for super learner. This function simply splits
the data into V folds and then calls SuperLearner. Most of the arguments are passed directly to
SuperLearner.

Usage

CV.SuperLearner(Y, X, V = NULL, family = gaussian(), SL.library,
method = "method.NNLS", id = NULL, verbose = FALSE,
control = list(saveFitLibrary = FALSE), cvControl = list(),
innerCvControl = list(),
obsWeights = NULL, saveAll = TRUE, parallel = "seq"”, env = parent.frame())

Arguments

Y The outcome.

X The covariates.

\% The number of folds for CV. SuperLearner. This argument will be depreciated
and moved into the cvControl. If Both V and cvControl set the number of
cross-validation folds, an error message will appear. The recommendation is to
use cvControl. This is not the number of folds for SuperLearner. The number
of folds for SuperLearner is controlled with innerCvControl.

family Currently allows gaussian or binomial to describe the error distribution. Link
function information will be ignored and should be contained in the method
argument below.

SL.library Either a character vector of prediction algorithms or a list containing character

vectors. See details below for examples on the structure. A list of functions
included in the SuperLearner package can be found with listWrappers().
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method A list (or a function to create a list) containing details on estimating the coeffi-
cients for the super learner and the model to combine the individual algorithms
in the library. See ?method. template for details. Currently, the built in options
are either "method. NNLS" (the default), "method. NNLS2", "method.NNloglik",
"method.CC_LS", "method.CC_nloglik", or "method. AUC". NNLS and NNLS2
are non-negative least squares based on the Lawson-Hanson algorithm and the
dual method of Goldfarb and Idnani, respectively. NNLS and NNLS2 will work
for both gaussian and binomial outcomes. NNloglik is a non-negative binomial
likelihood maximization using the BFGS quasi-Newton optimization method.
NN* methods are normalized so weights sum to one. CC_LS uses Goldfarb and
Idnani’s quadratic programming algorithm to calculate the best convex combi-
nation of weights to minimize the squared error loss. CC_nloglik calculates the
convex combination of weights that minimize the negative binomial log like-
lihood on the logistic scale using the sequential quadratic programming algo-
rithm. AUC, which only works for binary outcomes, uses the Nelder-Mead
method via the optim function to minimize rank loss (equivalent to maximizing
AUC).

id Optional cluster identification variable. For the cross-validation splits, id forces
observations in the same cluster to be in the same validation fold. id is passed
to the prediction and screening algorithms in SL.library, but be sure to check the
individual wrappers as many of them ignore the information.

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging).
control A list of parameters to control the estimation process. Parameters include saveFitLibrary

and trimLogit. See SuperLearner.control for details.

cvControl A list of parameters to control the outer cross-validation process. The outer
cross-validation is the sample spliting for evaluating the SuperLearner. Parame-
ters include V, stratifyCV, shuffle and validRows. See SuperLearner.CV.control
for details.

innerCvControl A list of lists of parameters to control the inner cross-validation process. It
should have V elements in the list, each a valid cvControl list. If only a single
value, then replicated across all folds. The inner cross-validation are the values
passed to each of the V SuperLearner calls. Parameters include V, stratifyCV,
shuffle and validRows. See SuperLearner.CV.control for details.

obsWeights Optional observation weights variable. As with id above, obsWeights is passed
to the prediction and screening algorithms, but many of the built in wrappers
ignore (or can’t use) the information. If you are using observation weights,
make sure the library you specify uses the information.

saveAll Logical; Should the entire SuperlLearner object be saved for each fold?

parallel Options for parallel computation of the V-fold step. Use "seq" (the default) for
sequential computation. parallel = 'multicore’ to use mclapply for the V-
fold step (but note that SuperLearner() will still be sequential). The default
for mclapply is to check the mc.cores option, and if not set to default to 2
cores. Be sure to set options()$mc.cores to the desired number of cores if
you don’t want the default. Or parallel can be the name of a snow cluster and
will use parLapply for the V-fold step. For both multicore and snow, the inner
SuperLearner calls will be sequential.
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env Environment containing the learner functions. Defaults to the calling environ-
ment.

Details

The SuperLearner function builds a estimator, but does not contain an estimate on the performance
of the estimator. Various methods exist for estimator performance evaluation. If you are familiar
with the super learner algorithm, it should be no surprise we recommend using cross-validation to
evaluate the honest performance of the super learner estimator. The function CV.SuperLearner
computes the usual V-fold cross-validated risk estimate for the super learner (and all algorithms in
SL.1library for comparison).

Value

An object of class CV. SuperLearner (a list) with components:

call The matched call.

Al1SL If saveAll = TRUE, a list with output from each call to SuperLearner, otherwise
NULL.

SL.predict The predicted values from the super learner when each particular row was part

of the validation fold.

discreteSL.predict
The traditional cross-validated selector. Picks the algorithm with the smallest
cross-validated risk (in super learner terms, gives that algorithm coefficient 1
and all others 0).

whichDiscreteSL
A list of length V. The elements in the list are the algorithm that had the smallest
cross-validated risk estimate for that fold.

library.predict
A matrix with the predicted values from each algorithm in SL.1library. The
columns are the algorithms in SL. library and the rows represent the predicted
values when that particular row was in the validation fold (i.e. not used to fit
that estimator).

coef A matrix with the coefficients for the super learner on each fold. The columns
are the algorithms in SL.1library the rows are the folds.

folds A list containing the row numbers for each validation fold.
' Number of folds for CV.SuperLearner.

libraryNames A character vector with the names of the algorithms in the library. The format is
"predictionAlgorithm_screeningAlgorithm’ with ’_All’ used to denote the pre-
diction algorithm run on all variables in X.

SL.1library Returns SL.1library in the same format as the argument with the same name
above.
method A list with the method functions.

Y The outcome
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Author(s)

Eric C Polley <polley.eric@mayo.edu>

See Also

SuperlLearner

Examples

## Not run:

set.seed(23432)

## training set

n <- 500

p <- 50

X <- matrix(rnorm(n*p), nrow = n, ncol = p)

colnames(X) <- paste("X", 1:p, sep="")

X <- data.frame(X)

Y <= X[, 11 + sqgrt(abs(X[, 21 * X[, 31)) + X[, 21 - X[, 31 + rnorm(n)

## build Library and run Super Learner
SL.library <- c("SL.glm", "SL.randomForest”, "SL.gam”, "SL.polymars”, "SL.mean")

test <- CV.SuperLearner(Y =Y, X =X, V =10, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS")

test

summary(test)

## Look at the coefficients across folds

coef(test)

# Example with specifying cross-validation options for both
# CV.SuperLearner (cvControl) and the internal SuperLearners (innerCvControl)
test <- CV.SuperLearner(Y =Y, X = X, SL.library = SL.library,

cvControl = list(V = 10, shuffle = FALSE),

innerCvControl = list(list(V = 5)),

verbose = TRUE, method = "method.NNLS")

## examples with snow

library(parallel)

cl <- makeCluster(2, type = "PSOCK") # can use different types here

clusterSetRNGStream(cl, iseed = 2343)

testSNOW <- CV.SuperlLearner(Y =Y, X = X, SL.library = SL.library, method = "method.NNLS",
parallel = cl)

summary (testSNOW)

stopCluster(cl)

## End(Not run)
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CVFolds Generate list of row numbers for each fold in the cross-validation

Description

Generate list of row numbers for each fold in the cross-validation. CVFolds is used in the SuperlLearner
to create the cross-validation splits.

Usage

CVFolds(N, id, Y, cvControl)

Arguments
N Sample size
id Optional cluster id variable. If present, all observations in the same cluster will
always be in the same split.
Y outcome
cvControl Control parameters for the cross-validation step. See SuperLearner.CV.control
for details.
Value
validRows A list of length V where each element in the list is a vector with the row numbers
of the corresponding validation sample.
Author(s)

Eric C Polley <polley.eric@mayo.edu>

listWrappers list all wrapper functions in SuperLearner

Description

List all wrapper functions in SuperLearner package

Usage

listWrappers(what = "both")
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Arguments
what What list to return. Can be both for both prediction algorithms and screening al-
gorithms, SL for the prediction algorithms, screen for the screening algorithms,
method for the estimation method details, or anything else will return a list of all
(exported) functions in the SuperLearner package. Additional wrapper func-
tions are available at https://github.com/ecpolley/SuperlLearnerExtra.
Value

Invisible character vector with all exported functions in the SuperLearner package

Author(s)

Eric C Polley <epolley@uchicago.edu>

See Also

SuperLearner

Examples

listWrappers(what = "SL")
listWrappers(what = "screen”)

plot.CV.SuperLearner  Graphical display of the V-fold CV risk estimates

Description

The function plots the V-fold cross-validated risk estimates for the super learner, the discrete super
learner and each algorithm in the library. By default the estimates will be sorted and include an
asymptotic 95% confidence interval.

Usage
## S3 method for class 'CV.SuperLearner'
plot(x, package = "ggplot2", constant = gqnorm(@.975), sort = TRUE, ...)
Arguments
X The output from CV. SuperLearner.
package Either "ggplot2" or "lattice". The package selected must be available.
constant A numeric value. The confidence interval is defined as p +/- constant * se, where

p is the point estimate and se is the standard error. The default is the quantile of
the standard normal corresponding to a 95% CI.

sort Logical. Should the rows in the plot be sorted from the smallest to the largest
point estimate. If FALSE, then the order is super learner, discrete super learner,
then the estimators in SL.1library.

Additional arguments for summary.CV.SuperlLearner


https://github.com/ecpolley/SuperLearnerExtra

predict.SL.bartMachine

Details

see summary.CV.SuperLearner for details on how the estimates are computed

Value

Returns the plot (either a ggplot2 object (class ggplot) or a lattice object (class trellis))

Author(s)

Eric C Polley <epolley@uchicago.edu>

See Also

summary.CV.SuperLearner and CV.SuperlLearner
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predict.SL.bartMachine
bartMachine prediction

Description

bartMachine prediction

Usage

## S3 method for class 'SL.bartMachine'
predict(object, newdata, family, X = NULL,

Y = NULL, ...)
Arguments
object SuperLearner object
newdata Dataframe to predict the outcome
family "gaussian” for regression, "binomial" for binary classification. (Not used)
X Covariate dataframe (not used)
Y Outcome variable (not used)

Additional arguments (not used)
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predict.SL.biglasso Prediction wrapper for SL.biglasso

Description

Prediction wrapper for SL.biglasso objects.

Usage
## S3 method for class 'SL.biglasso’
predict(object, newdata, ...)
Arguments
object SL.kernlab object
newdata Dataframe to generate predictions

Unused additional arguments

See Also

SL.biglasso biglasso predict.biglasso

predict.SL.glm Prediction for SL.glm

Description

Prediction for SL.glm
Usage

## S3 method for class 'SL.glm'

predict(object, newdata, ...)
Arguments

object SL.glm object

newdata Dataframe to generate predictions

Unused additional arguments

See Also
SL.glm glmpredict.glm SL.speedglm
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predict.SL.glmnet Prediction for an SL.glmnet object

Description

Prediction for the glmnet wrapper.

Usage

## S3 method for class 'SL.glmnet'
predict(object, newdata, remove_extra_cols =T,

add_missing_cols =T, ...)
Arguments
object Result object from SL.glmnet
newdata Dataframe or matrix that will generate predictions.

remove_extra_cols

Remove any extra columns in the new data that were not part of the original

model.
add_missing_cols

Add any columns from original data that do not exist in the new data, and set

values to 0.

Any additional arguments (not used).

See Also

SL.glmnet

predict.SL.kernelKnn  Prediction for SL.kernelKnn

Description

Prediction for SL.kernelKnn

Usage
## S3 method for class 'SL.kernelKnn'
predict(object, newdata, ...)
Arguments
object SL.kernelKnn object
newdata Dataframe to generate predictions

Unused additional arguments
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predict.SL.ksvm Prediction for SL.ksvm

Description

Prediction for SL.ksvm

Usage

## S3 method for class 'SL.ksvm'

predict(object, newdata, family, coupler = "minpair”,
Arguments
object SL.kernlab object
newdata Dataframe to generate predictions
family Gaussian or binomial
coupler Coupling method used in the multiclass case, can be one of minpair or pkpd (see

kernlab package for details). For future usage.

Unused additional arguments

See Also

SL.ksvm ksvm predict.ksvm

predict.SL.1lda Prediction wrapper for SL.lda

Description

Prediction wrapper for SL.1da

Usage

## S3 method for class 'SL.lda'

predict(object, newdata, prior = object$object$prior,

dimen = NULL, method = "plug-in", ...)



predict.SL.Im

Arguments

object
newdata

prior

dimen

method

See Also

15

SL.lda object
Dataframe to generate predictions

The prior probabilities of the classes, by default the proportions in the training
set or what was set in the call to lda.

the dimension of the space to be used. If this is less than min(p, ng-1), only the
first dimen discriminant components are used (except for method="predictive"),
and only those dimensions are returned in x.

This determines how the parameter estimation is handled. With "plug-in" (the
default) the usual unbiased parameter estimates are used and assumed to be cor-
rect. With "debiased" an unbiased estimator of the log posterior probabilities is
used, and with "predictive” the parameter estimates are integrated out using a
vague prior.

Unused additional arguments

SL.1lda lda predict.1lda

predict.SL.1m

Prediction for SL.Im

Description

Prediction for SL.Im

Usage
## S3 method for class 'SL.1m'
predict(object, newdata, ...)
Arguments
object SL.Im object
newdata Dataframe to generate predictions

See Also

Unused additional arguments

SL.1m lmpredict.1lmSL.speedlm
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predict.SL.qda Prediction wrapper for SL.qda

Description

Prediction wrapper for SL.qda

Usage

## S3 method for class 'SL.qda’
predict(object, newdata, prior = object$object$prior,

dimen = NULL, method = "plug-in", ...)
Arguments
object SL.lda object
newdata Dataframe to generate predictions
prior The prior probabilities of the classes, by default the proportions in the training

set or what was set in the call to 1da.

dimen the dimension of the space to be used. If this is less than min(p, ng-1), only the
first dimen discriminant components are used (except for method="predictive"),
and only those dimensions are returned in x.

method This determines how the parameter estimation is handled. With "plug-in" (the
default) the usual unbiased parameter estimates are used and assumed to be cor-
rect. With "debiased" an unbiased estimator of the log posterior probabilities is
used, and with "predictive” the parameter estimates are integrated out using a
vague prior.

Unused additional arguments

See Also
SL.qda qda predict.qda

predict.SL.ranger Prediction wrapper for ranger random forests

Description

Prediction wrapper for SL.ranger objects.

Usage

## S3 method for class 'SL.ranger'
predict(object, newdata, family, num.threads = 1,
verbose = object$verbose, ...)
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Arguments
object
newdata
family
num. threads

verbose

See Also

SL.kernlab object

Dataframe to generate predictions

Gaussian or binomial

Number of threads used for parallelization

If TRUE output additional information during execution.

Unused additional arguments

SL.ranger ranger predict.ranger

predict.SL.speedglm Prediction for SL.speedglm

Description

Prediction for SL.speedglm

Usage
## S3 method for class 'SL.speedglm'
predict(object, newdata, ...)
Arguments
object SL.speedglm object
newdata Dataframe to generate predictions
Unused additional arguments
See Also

SL.speedglm speedglm predict.speedglm
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predict.SL.speedlm Prediction for SL.speedlm

Description

Prediction for SL.speedlm, a fast Im()

Usage
## S3 method for class 'SL.speedlm'
predict(object, newdata, ...)
Arguments
object SL.speedlm object
newdata Dataframe to generate predictions

Unused additional arguments

See Also

SL.speedlm speedlm predict.speedlm SL.speedglm

predict.SL.xgboost XGBoost prediction on new data

Description

XGBoost prediction on new data

Usage
## S3 method for class 'SL.xgboost'
predict(object, newdata, family, ...)
Arguments
object Model fit object from SuperLearner
newdata Dataframe that will be converted to an xgb.DMatrix
family Binomial or gaussian

Any remaining arguments (not supported though).
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predict.SuperLearner  Predict method for SuperLearner object

Description
Obtains predictions on a new data set from a SuperLearner fit. May require the original data if one
of the library algorithms uses the original data in its predict method.

Usage

## S3 method for class 'SuperlLearner'
predict(object, newdata, X = NULL, Y = NULL,

onlySL = FALSE, ...)
Arguments
object Fitted object from SuperLearner
newdata New X values for prediction
X Original data set used to fit object, if needed by fit object.
Y Original outcome used to fit object, if needed by fit object.
onlySL Logical. If TRUE, only compute predictions for algorithms with non-zero coef-

ficients in the super learner object. Default is FALSE (computes predictions for
all algorithms in library).

Additional arguments passed to the predict.SL.* functions

Details

If newdata is omitted the predicted values from object are returned. Each algorithm in the Super
Learner library needs to have a corresponding prediction function with the “predict.” prefixed onto
the algorithm name (e.g. predict.SL.glm for SL.glm).

Value

pred Predicted values from Super Learner fit
library.predict
Predicted values for each algorithm in library

Author(s)

Eric C Polley <epolley@uchicago.edu>

See Also

SuperLearner
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recombineCVSL

Recombine a CV.SuperLearner fit using a new metalearning method

Description

Function to re-compute the V-fold cross-validated risk estimate for super learner using a new met-
alearning method. This function takes as input an existing CV.SuperLearner fit and applies the
recombineSL fit to each of the V Super Learner fits.

Usage

recombineCVSL(object, method = "method.NNloglik"”, verbose = FALSE,
saveAll = TRUE, parallel = "seq")

Arguments

object

method

verbose

saveAll

parallel

Fitted object from CV. SuperLearner.

A list (or a function to create a list) containing details on estimating the coeffi-
cients for the super learner and the model to combine the individual algorithms
in the library. See ?method. template for details. Currently, the built in options
are either "method. NNLS" (the default), "method. NNLS2", "method.NNloglik",
"method.CC_LS", "method.CC_nloglik", or "method. AUC". NNLS and NNLS2
are non-negative least squares based on the Lawson-Hanson algorithm and the
dual method of Goldfarb and Idnani, respectively. NNLS and NNLS2 will work
for both gaussian and binomial outcomes. NNloglik is a non-negative binomial
likelihood maximization using the BFGS quasi-Newton optimization method.
NN* methods are normalized so weights sum to one. CC_LS uses Goldfarb and
Idnani’s quadratic programming algorithm to calculate the best convex combi-
nation of weights to minimize the squared error loss. CC_nloglik calculates the
convex combination of weights that minimize the negative binomial log like-
lihood on the logistic scale using the sequential quadratic programming algo-
rithm. AUC, which only works for binary outcomes, uses the Nelder-Mead
method via the optim function to minimize rank loss (equivalent to maximizing
AUC).

logical; TRUE for printing progress during the computation (helpful for debug-
ging).
Logical; Should the entire SuperlLearner object be saved for each fold?

Options for parallel computation of the V-fold step. Use "seq" (the default) for
sequential computation. parallel = 'multicore’ to use mclapply for the V-
fold step (but note that SuperLearner () will still be sequential). Or parallel
can be the name of a snow cluster and will use parLapply for the V-fold step.
For both multicore and snow, the inner SuperLearner calls will be sequential.
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Details

The function recombineCVSL computes the usual V-fold cross-validated risk estimate for the super
learner (and all algorithms in SL.1library for comparison), using a newly specified metalearning
method. The weights for each algorithm in SL. 1ibrary are re-estimated using the new metalearner,
however the base learner fits are not regenerated, so this function saves a lot of computation time
as opposed to using the CV.SuperLearner function with a new method argument. The output is
identical to the output from the CV.SuperLearner function.

Value

An object of class CV. SuperLearner (a list) with components:

call The matched call.

A11SL If saveAll = TRUE, a list with output from each call to SuperLearner, otherwise
NULL.

SL.predict The predicted values from the super learner when each particular row was part

of the validation fold.

discreteSL.predict
The traditional cross-validated selector. Picks the algorithm with the smallest
cross-validated risk (in super learner terms, gives that algorithm coefficient 1
and all others 0).

whichDiscreteSL
A list of length V. The elements in the list are the algorithm that had the smallest
cross-validated risk estimate for that fold.

library.predict
A matrix with the predicted values from each algorithm in SL.1library. The
columns are the algorithms in SL. library and the rows represent the predicted
values when that particular row was in the validation fold (i.e. not used to fit
that estimator).

coef A matrix with the coefficients for the super learner on each fold. The columns
are the algorithms in SL.1library the rows are the folds.

folds A list containing the row numbers for each validation fold.

\% Number of folds for CV. SuperLearner.

libraryNames A character vector with the names of the algorithms in the library. The format is
"predictionAlgorithm_screeningAlgorithm’ with *_All’ used to denote the pre-
diction algorithm run on all variables in X.

SL.library Returns SL.library in the same format as the argument with the same name
above.
method A list with the method functions.
Y The outcome
Author(s)

Erin LeDell <ledell@berkeley.edu>



22

See Also

recombineSL

Examples

## Not run:

# Binary outcome example adapted from SuperLearner examples

set.seed(1)

N

<- 200

X <= matrix(rnorm(N*10), N, 10)
X <- as.data.frame(X)
Y <= rbinom(N, 1, plogis(.2*xX[, 1] + .1xX[, 2] - .2%X[, 3] +
J1xXE, 31xX[, 41 - .2*xabs(X[, 41)))

SL.library <- c("SL.glmnet"”, "SL.glm",

# least squares loss function
set.seed(1) # for reproducibility

cvfit_nnls <- CV.SuperLearner(Y =Y, X

#
#
#
#
#
#
#
#
#
#
#

verbose

— W O NO U WN =
[SENSESENSENS IS SEGES)

Q.
. 0000000
.0000000
. 0000000
.1743973
.0000000
. 0000000
. 0000000
. 0000000
.3022442

"SL.knn", "SL.gam", "SL.mean")

TRUE, method = "method.NNLS"”, family = binomial())
cvfit_nnls$coef
SL.glmnet_All

0000000

SL.glm_All

0
0
0
0
0.
0
0
0
0
0

. 00000000
. 00000000
. 00000000
.20322642

00000000

. 00000000
. 00000000
.06424676
. 00000000
. 00000000

SL.knn_All SL.

. 000000000
.304802397
.002897533
. 000000000
.032471026
.099881535
.234876082
.113988158
.338030342
.294226204

.4143862
.3047478
.5544075
.1121891
.3580624
.3662309
.2942472
.5600208
.2762604
.1394534

[SENSENSEESEES B IS E SIS

# negative log binomial likelihood loss function

cvfit_nnloglik <- recombineCVSL(cvfit_nnls, method = "method.NNloglik")
cvfit_nnloglik$coef

#
#
#
#
#
#
#
#
#
#
#

#

SL.glmnet_All SL

= O 0O NO U1l WN =
[SEESENSENSENSE SRS ES

Q.
. 0000000
.0000000
. 0000000
.2142254
. 0000000
.0000000
.0000000
.0000000
.3977816

0000000

[SEES IS IS SN NE SR N Y

.glm_All
. 0000000
.0000000
. 0000000
.1644188
.0000000
. 0000000
. 0000000
.0000000
. 0000000
. 0000000

SL.knn_All SL

0
0
0
0
0
Q.
0
0
0
0

. 00000000
.31177345
.01377469
. 00000000
. 00000000
00000000
.47538172
. 00000000
.45384961
.27927906

If we use the same seed as the original

(SIS IS S SRS RN

.gam_All SL

.5974799
.6882266
.8544238
.2387919
.3729426
.5847150
.5080311
. 0000000
.2923480
.1606384

[SEES IS IS SRS R O E S

gam_All SL.mean_All

.5856138
.3904498
.4426950
.6845845
.4350693
.5338876
.4708767
.2617443
.3857093
.2640762

[SENSENSENSEES RS RS ESE SIS

.mean_All
.40252010
.00000000
.13180152
.59678930
.41283197
.41528502
.01658722
.00000000
.25380243
.16230097

cvfit_nnls™, then

recombineCVSL

=X, V=10, SL.library = SL.library,
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# the recombineCVSL and CV.SuperLearner results will be identical

# however,
# it doesn'
set.seed(1)

the recombineCVSL version will be much faster since
t have to re-fit all the base learners, V times each.

cvfit_nnloglik2 <- CV.SuperLearner(Y =Y, X = X, V =10, SL.library = SL.library,

verbose =

TRUE, method = "method.NNloglik”, family = binomial())

cvfit_nnloglik2$coef

# SL.glmnet_All SL.glm_All SL.knn_All SL.gam_All SL.mean_All
#1 0.0000000 ©.0000000 0.00000000 ©.5974799 0.40252010
# 2 0.0000000 ©.0000000 0.31177345 0.6882266 ©0.00000000
# 3 0.0000000 ©.0000000 0.01377469 0.8544238 ©.13180152
# 4 0.0000000 ©.1644188 0.00000000 ©.2387919 ©.59678930
#5 0.2142254 ©.0000000 0.00000000 ©.3729426 ©.41283197
# 6 0.0000000 ©.0000000 0.00000000 ©.5847150 ©.41528502
# 7 0.0000000 ©.0000000 0.47538172 ©.5080311 0.01658722
# 8 0.0000000 ©0.0000000 0.00000000 1.0000000 ©.00000000
#9 0.0000000 ©.0000000 0.45384961 ©.2923480 ©.25380243
# 10 0.3977816 ©.0000000 0.27927906 0.1606384 ©0.16230097
## End(Not run)
recombineSL Recombine a SuperLearner fit using a new metalearning method
Description

The recombineSL function takes an existing SuperLearner fit and a new metalearning method and
returns a new SuperLearner fit with updated base learner weights.

Usage

recombineSL (object, Y, method = "method.NNloglik”, verbose = FALSE)

Arguments

object
Y
method

Fitted object from SuperLearner.
The outcome in the training data set. Must be a numeric vector.

A list (or a function to create a list) containing details on estimating the coeffi-
cients for the super learner and the model to combine the individual algorithms
in the library. See ?method. template for details. Currently, the built in options
are either "method. NNLS" (the default), "method. NNLS2", "method.NNloglik",
"method.CC_LS", "method.CC_nloglik", or "method. AUC". NNLS and NNLS2
are non-negative least squares based on the Lawson-Hanson algorithm and the
dual method of Goldfarb and Idnani, respectively. NNLS and NNLS2 will work
for both gaussian and binomial outcomes. NNloglik is a non-negative binomial
likelihood maximization using the BFGS quasi-Newton optimization method.
NN* methods are normalized so weights sum to one. CC_LS uses Goldfarb and
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Idnani’s quadratic programming algorithm to calculate the best convex combi-
nation of weights to minimize the squared error loss. CC_nloglik calculates the
convex combination of weights that minimize the negative binomial log like-
lihood on the logistic scale using the sequential quadratic programming algo-
rithm. AUC, which only works for binary outcomes, uses the Nelder-Mead
method via the optim function to minimize rank loss (equivalent to maximizing
AUC).

verbose logical; TRUE for printing progress during the computation (helpful for debug-
ging).

Details

recombineSL re-fits the super learner prediction algorithm using a new metalearning method. The
weights for each algorithm in SL. library are re-estimated using the new metalearner, however the
base learner fits are not regenerated, so this function saves a lot of computation time as opposed
to using the SuperLearner function with a new method argument. The output is identical to the
output from the SuperLearner function.

Value

call The matched call.

libraryNames A character vector with the names of the algorithms in the library. The format is
"predictionAlgorithm_screeningAlgorithm’ with *_All’ used to denote the pre-
diction algorithm run on all variables in X.

SL.library Returns SL.library in the same format as the argument with the same name
above.

SL.predict The predicted values from the super learner for the rows in newX.

coef Coefficients for the super learner.

library.predict
A matrix with the predicted values from each algorithm in SL.1library for the
rows in newX.

Z The Z matrix (the cross-validated predicted values for each algorithm in SL. library).

cvRisk A numeric vector with the V-fold cross-validated risk estimate for each algo-
rithm in SL.1library. Note that this does not contain the CV risk estimate for
the SuperLearner, only the individual algorithms in the library.

family Returns the family value from above

fitLibrary A list with the fitted objects for each algorithm in SL.1library on the full train-
ing data set.

varNames A character vector with the names of the variables in X.

validRows A list containing the row numbers for the V-fold cross-validation step.

method A list with the method functions.

whichScreen A logical matrix indicating which variables passed each screening algorithm.

control The control list.

cvControl The cvControl list.
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errorsInCVLibrary
A logical vector indicating if any algorithms experienced an error within the CV
step.

errorsInLibrary
A logical vector indicating if any algorithms experienced an error on the full
data.

Author(s)
Erin LeDell <ledell@berkeley.edu>

References

van der Laan, M. J., Polley, E. C. and Hubbard, A. E. (2008) Super Learner, Statistical Applications
of Genetics and Molecular Biology, 6, article 25.

Examples

## Not run:
# Binary outcome example adapted from SuperLearner examples

set.seed(1)

N <- 200

X <= matrix(rnorm(N*10), N, 10)

X <- as.data.frame(X)

Y <- rbinom(N, 1, plogis(.2*X[, 1] + .1*X[, 2] - .2*X[, 3] +
XL, 31*XL, 41 - .2*abs(XL, 41)))

SL.library <- c("SL.glmnet”, "SL.glm", "SL.knn", "SL.gam"”, "SL.mean")

# least squares loss function

set.seed(1) # for reproducibility

fit_nnls <- SuperLearner(Y =Y, X = X, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS", family = binomial())

fit_nnls

# Risk Coef
# SL.glmnet_All 0.2439433 0.01293059
# SL.glm_All 0.2461245 0.08408060
# SL.knn_All 0.2604000 0.09600353
# SL.gam_All 0.2471651 0.40761918
# SL.mean_All 0.2486049 0.39936611

# negative log binomial likelihood loss function

fit_nnloglik <- recombineSL(fit_nnls, Y =Y, method = "method.NNloglik")
fit_nnloglik

# Risk Coef

# SL.glmnet_All 0.6815911 ©.1577228

# SL.glm_All 0.6918926 0.0000000

# SL.knn_All Inf ©.0000000

# SL.gam_All 0.6935383 0.6292881
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# SL.mean_All  0.6904050 @.2129891

# If we use the same seed as the original “fit_nnls™, then

# the recombineSL and SuperlLearner results will be identical

# however, the recombineSL version will be much faster since

# it doesn't have to re-fit all the base learners.

set.seed(1)

fit_nnloglik2 <- SuperLearner(Y =Y, X = X, SL.library = SL.library,
verbose = TRUE, method = "method.NNloglik”, family = binomial())

fit_nnloglik2

# Risk Coef

# SL.glmnet_All 0.6815911 ©.1577228

# SL.glm_All 0.6918926 0.0000000

# SL.knn_All Inf 0.0000000

# SL.gam_All 0.6935383 0.6292881

# SL.mean_All  0.6904050 0.2129891

## End(Not run)

SampleSplitSuperlLearner
Super Learner Prediction Function

Description

A Prediction Function for the Super Learner. The SuperLearner function takes a training set pair
(X.,Y) and returns the predicted values based on a validation set. SampleSplitSuperLearner uses
sample split validation whereas SuperLearner uses V-fold cross-validation.

Usage

SampleSplitSuperLearner(Y, X, newX = NULL, family = gaussian(), SL.library,
method = "method.NNLS"”, id = NULL, verbose = FALSE,
control = list(), split = 0.8, obsWeights = NULL)

Arguments

Y The outcome in the training data set. Must be a numeric vector.

X The predictor variables in the training data set, usually a data.frame.

newX The predictor variables in the validation data set. The structure should match X.
If missing, uses X for newX.

SL.library Either a character vector of prediction algorithms or a list containing character
vectors. See details below for examples on the structure. A list of functions
included in the SuperLearner package can be found with listWrappers().

verbose logical; TRUE for printing progress during the computation (helpful for debug-

ging).
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family Currently allows gaussian or binomial to describe the error distribution. Link
function information will be ignored and should be contained in the method
argument below.

method A list (or a function to create a list) containing details on estimating the coeffi-

cients for the super learner and the model to combine the individual algorithms

in the library. See ?method. template for details. Currently, the built in options

are either "method. NNLS" (the default), "method.NNLS2", "method.NNloglik",

"method.CC_LS", or "method.CC_nloglik". NNLS and NNLS?2 are non-negative
least squares based on the Lawson-Hanson algorithm and the dual method of
Goldfarb and Idnani, respectively. NNLS and NNLS2 will work for both gaus-

sian and binomial outcomes. NNloglik is a non-negative binomial likelihood

maximization using the BFGS quasi-Newton optimization method. NN* meth-

ods are normalized so weights sum to one. CC_LS uses Goldfarb and Idnani’s

quadratic programming algorithm to calculate the best convex combination of
weights to minimize the squared error loss. CC_nloglik calculates the convex

combination of weights that minimize the negative binomial log likelihood on

the logistic scale using the sequential quadratic programming algorithm.

id Optional cluster identification variable. For the cross-validation splits, id forces
observations in the same cluster to be in the same validation fold. id is passed
to the prediction and screening algorithms in SL.library, but be sure to check the
individual wrappers as many of them ignore the information.

obsWeights Optional observation weights variable. As with id above, obsWeights is passed
to the prediction and screening algorithms, but many of the built in wrappers
ignore (or can’t use) the information. If you are using observation weights,
make sure the library you specify uses the information.

control A list of parameters to control the estimation process. Parameters include saveFitLibrary
and trimLogit. See SuperLearner.control for details.

split Either a single value between 0 and 1 indicating the fraction of the samples for
the training split. A value of 0.8 will randomly assign 80 percent of the samples
to the training split and the other 20 percent to the validation split. Alternatively,
split can be a numeric vector with the row numbers of X corresponding to the
validation split. All other rows not in the vector will be considered in the training
split.

Details

SuperLearner fits the super learner prediction algorithm. The weights for each algorithm in
SL.library is estimated, along with the fit of each algorithm.

The prescreen algorithms. These algorithms first rank the variables in X based on either a univariate
regression p-value of the randomForest variable importance. A subset of the variables in X is
selected based on a pre-defined cut-off. With this subset of the X variables, the algorithms in
SL.library are then fit.

The SuperLearner package contains a few prediction and screening algorithm wrappers. The full
list of wrappers can be viewed with listWrappers(). The design of the SuperLearner package is
such that the user can easily add their own wrappers. We also maintain a website with additional
examples of wrapper functions at https://github.com/ecpolley/SuperLearnerExtra.
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Value

call The matched call.

libraryNames A character vector with the names of the algorithms in the library. The format is
"predictionAlgorithm_screeningAlgorithm’ with *_All’ used to denote the pre-
diction algorithm run on all variables in X.

SL.library Returns SL.1library in the same format as the argument with the same name
above.

SL.predict The predicted values from the super learner for the rows in newX.

coef Coefficients for the super learner.

library.predict
A matrix with the predicted values from each algorithm in SL.1library for the
rows in newX.

YA The Z matrix (the cross-validated predicted values for each algorithmin SL. library).

cvRisk A numeric vector with the V-fold cross-validated risk estimate for each algo-
rithm in SL.1library. Note that this does not contain the CV risk estimate for
the SuperLearner, only the individual algorithms in the library.

family Returns the family value from above

fitLibrary A list with the fitted objects for each algorithm in SL.1ibrary on the full train-
ing data set.

varNames A character vector with the names of the variables in X.

validRows A list containing the row numbers for the V-fold cross-validation step.

method A list with the method functions.

whichScreen A logical matrix indicating which variables passed each screening algorithm.

control The control list.

split The split value.

errorsInCVLibrary
A logical vector indicating if any algorithms experienced an error within the CV
step.

errorslnLibrary
A logical vector indicating if any algorithms experienced an error on the full
data.

Author(s)

Eric C Polley <epolley@uchicago.edu>

References

van der Laan, M. J., Polley, E. C. and Hubbard, A. E. (2008) Super Learner, Statistical Applications
of Genetics and Molecular Biology, 6, article 25.
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Examples

## Not run:

## simulate data

set.seed(23432)

## training set

n <- 500

p <- 50

X <- matrix(rnorm(n*p), nrow = n, ncol = p)

colnames(X) <- paste("X", 1:p, sep="")

X <- data.frame(X)

Y <= X[, 11 + sqrt(abs(X[, 21 * XL, 31)) + X[, 21 - X[, 31 + rnorm(n)

## test set

m <- 1000

newX <- matrix(rnorm(m*p), nrow = m, ncol = p)

colnames(newX) <- paste("X", 1:p, sep="")

newX <- data.frame(newX)

newY <- newX[, 1] + sqgrt(abs(newX[, 2] * newX[, 31)) + newX[, 2] -
newX[, 31 + rnorm(m)

# generate Library and run Super Learner

SL.library <- c("SL.glm", "SL.randomForest”, "SL.gam",
"SL.polymars”, "SL.mean")

test <- SampleSplitSuperLearner(Y =Y, X = X, newX = newX, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS")

test

# library with screening

SL.library <- list(c("”SL.glmnet”, "All"), c("”SL.glm", "screen.randomForest”,
"Al1l", "screen.SIS"), "SL.randomForest”, c("SL.polymars", "All"), "SL.mean")

test <- SuperLearner(Y =Y, X = X, newX = newX, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS")

test

# binary outcome

set.seed(1)

N <- 200

X <- matrix(rnorm(Nx10), N, 10)

X <- as.data.frame(X)

Y <- rbinom(N, 1, plogis(.2*X[, 11 + .1*X[, 2] - .2*X[, 3] +
1xX[, 31*X[, 41 - .2*xabs(X[, 41)))

SL.library <- c("SL.glmnet”, "SL.glm", "SL.knn"”, "SL.gam", "SL.mean")

# least squares loss function

test.NNLS <- SampleSplitSuperLearner(Y =Y, X = X, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS", family = binomial())

test.NNLS

## End(Not run)
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SL.bartMachine Wrapper for bartMachine learner

Description

Support bayesian additive regression trees via the bartMachine package.

Usage

SL.bartMachine(Y, X, newX, family, obsWeights, id, num_trees = 50,
num_burn_in = 250, verbose = F, alpha = 0.95, beta = 2, k = 2,

q=0.9, nu =3, num_iterations_after_burn_in = 1000, ...)
Arguments
Y Outcome variable
X Covariate dataframe
newX Optional dataframe to predict the outcome
family "gaussian" for regression, "binomial" for binary classification
obsWeights Optional observation-level weights (supported but not tested)
id Optional id to group observations from the same unit (not used currently).
num_trees The number of trees to be grown in the sum-of-trees model.
num_burn_in Number of MCMC samples to be discarded as "burn-in".
verbose Prints information about progress of the algorithm to the screen.
alpha Base hyperparameter in tree prior for whether a node is nonterminal or not.
beta Power hyperparameter in tree prior for whether a node is nonterminal or not.
k For regression, k determines the prior probability that E(YIX) is contained in the

interval (y_min, y_max), based on a normal distribution. For example, when
k=2, the prior probability is 95%. For classification, k determines the prior
probability that E(Y1X) is between (-3,3). Note that a larger value of k results in
more shrinkage and a more conservative fit.

q Quantile of the prior on the error variance at which the data-based estimate is
placed. Note that the larger the value of q, the more aggressive the fit as you
are placing more prior weight on values lower than the data-based estimate. Not
used for classification.

nu Degrees of freedom for the inverse chi*2 prior. Not used for classification.

num_iterations_after_burn_in
Number of MCMC samples to draw from the posterior distribution of f(x).

Additional arguments (not used)
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SL.biglasso

SL wrapper for biglasso

Description

SL wrapper for biglasso

Usage

SL.biglasso(Y, X, newX, family, obsWeights, penalty = "lasso"”,
alg.logistic = "Newton”, screen = "SSR", alpha = 1, nlambda = 100,

alg.logistic

screen

alpha

nlambda

eval .metric

ncores

nfolds

eval.metric = "default”, ncores = 1, nfolds =5, ...)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Gaussian or binomial
obsWeights Observation-level weights
penalty The penalty to be applied to the model. Either "lasso" (default), "ridge", or

"enet" (elastic net).

The algorithm used in logistic regression. If "Newton" then the exact hessian
is used (default); if "MM" then a majorization-minimization algorithm is used
to set an upper-bound on the hessian matrix. This can be faster, particularly in
data-larger-than-RAM case.

"SSR" (default) is the sequential strong rule; "SEDPP" is the (sequential) EDPP
rule. "SSR-BEDPP", "SSR-Dome", and "SSR-Slores" are our newly proposed
screening rules which combine the strong rule with a safe rule (BEDPP, Dome
test, or Slores rule). Among the three, the first two are for lasso-penalized linear
regression, and the last one is for lasso-penalized logistic regression. "None" is
to not apply a screening rule.

The elastic-net mixing parameter that controls the relative contribution from the
lasso (11) and the ridge (12) penalty.

The number of lambda values to check. Default is 100.

The evaluation metric for the cross-validated error and for choosing optimal
lambda. "default" for linear regression is MSE (mean squared error), for logistic
regression is misclassification error. "MAPE", for linear regression only, is the
Mean Absolute Percentage Error.

The number of cores to use for parallel execution across a cluster created by the
parallel package.

The number of cross-validation folds. Default is 5.

Any additional arguments, not currently used.
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References

Zeng Y, Breheny P (2017). biglasso: Extending Lasso Model Fitting to Big Data. https://CRAN.R-
project.org/package=biglasso.

See Also

predict.SL.biglasso biglasso cv.biglasso predict.biglasso SL.glmnet

Examples

data(Boston, package = "MASS")

Y = Boston$medv

# Remove outcome from covariate dataframe.
X = Boston[, -14]

set.seed(1)

# Sample rows to speed up example.
row_subset = sample(nrow(X), 30)

# Subset rows and columns & use only 2 folds to speed up example.

sl = SuperLearner(Y[row_subset], X[row_subset, 1:2, drop = FALSE],
family = gaussian(), cvControl = list(V = 2),
SL.library = "SL.biglasso")

sl

pred = predict(sl, X)
summary (pred$pred)

SL.cforest cforest (party)

Description

These defaults emulate cforest_unbiased() but allow customization.

Usage

SL.cforest(Y, X, newX, family, obsWeights, id, ntree = 1000,
mtry = max(floor(ncol(X)/3), 1), mincriterion = @, teststat = "quad”,

testtype = "Univ", replace = F, fraction = 0.632, ...)
Arguments
Y Outcome variable
X Covariate dataframe

newX Optional dataframe to predict the outcome
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family "gaussian" for regression, "binomial" for binary classification
obsWeights Optional observation-level weights (supported but not tested)
id Optional id to group observations from the same unit (not used currently).
ntree Number of trees
mtry Number of randomly selected features per node
mincriterion See ?cforest_control
teststat See ?cforest_control
testtype See ?cforest_control
replace See ?cforest_control
fraction See ?cforest_control
Remaining arguments (unused)
SL.glm Wrapper for glm
Description

Wrapper for generalized linear models via glm().

Note that for outcomes bounded by [0, 1] the binomial family can be used in addition to gaussian.

Usage
SL.glm(Y, X, newX, family, obsWeights, model = TRUE, ...)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Gaussian or binomial
obsWeights Observation-level weights
model Whether to save model.matrix of data in fit object. Set to FALSE to save mem-
ory.
Any remaining arguments, not used.
References

Fox, J. (2015). Applied regression analysis and generalized linear models. Sage Publications.

See Also

predict.SL.glmglmpredict.glm SL.speedglm
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Examples

data(Boston, package = "MASS")

Y = Boston$medv

# Remove outcome from covariate dataframe.
X = Boston[, -14]

set.seed(1)

sl = SuperLearner(Y, X, family = gaussian(),
SL.library = c("SL.mean", "SL.glm"))

print(sl)

SL.glmnet Elastic net regression, including lasso and ridge

Description

Penalized regression using elastic net. Alpha = 0 corresponds to ridge regression and alpha = 1
corresponds to Lasso.

See vignette("glmnet_beta”, package = "glmnet") for a nice tutorial on glmnet.

Usage
SL.glmnet(Y, X, newX, family, obsWeights, id, alpha = 1, nfolds = 10,
nlambda = 100, useMin = TRUE, loss = "deviance”, ...)
Arguments
Y Outcome variable
X Covariate dataframe
newX Dataframe to predict the outcome
family "gaussian" for regression, "binomial" for binary classification. Untested op-

tions: "multinomial" for multiple classification or "mgaussian” for multiple re-
sponse, "poisson” for non-negative outcome with proportional mean and vari-

ance, "cox".
obsWeights Optional observation-level weights
id Optional id to group observations from the same unit (not used currently).
alpha Elastic net mixing parameter, range [0, 1]. O = ridge regression and 1 = lasso.
nfolds Number of folds for internal cross-validation to optimize lambda.
nlambda Number of lambda values to check, recommended to be 100 or more.
useMin If TRUE use lambda that minimizes risk, otherwise use 1 standard-error rule

which chooses a higher penalty with performance within one standard error of
the minimum (see Breiman et al. 1984 on CART for background).



SL.kernelKnn 35

non

loss Loss function, can be "deviance", "mse", or "mae". If family = binomial can
also be "auc" or "class" (misclassification error).

Any additional arguments are passed through to cv.glmnet.

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of statistical software, 33(1), 1.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1), 55-67.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society. Series B (Methodological), 267-288.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

See Also

predict.SL.glmnet cv.glmnet glmnet

Examples

# Load a test dataset.
data(PimaIndiansDiabetes2, package = "mlbench")
data = PimaIndiansDiabetes2

# Omit observations with missing data.
data = na.omit(data)

Y = as.numeric(data$diabetes == "pos")
X = subset(data, select = -diabetes)

set.seed(1, "L'Ecuyer-CMRG")

sl = SuperLearner(Y, X, family = binomial(),
SL.library = c("SL.mean"”, "SL.glm", "SL.glmnet"))
sl

SL.kernelKnn SL wrapper for KernelKNN

Description

Wrapper for a configurable implementation of k-nearest neighbors. Supports both binomial and
gaussian outcome distributions.
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Usage
SL.kernelKnn(Y, X, newX, family, k = 10, method = "euclidean”,
weights_function = NULL, extrema = F, h =1, ...)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Gaussian or binomial
k Number of nearest neighbors to use
method Distance method, can be ’euclidean’ (default), *'manhattan’, ’chebyshev’, ’can-

berra’, ’braycurtis’, pearson_correlation’, ’simple_matching_coefficient’, ’'minkowski’
(by default the order 'p’ of the minkowski parameter equals k), Tlhamming’, *ma-
halanobis’, ’jaccard_coefficient’, ’Rao_coefficient’

weights_function
Weighting method for combining the nearest neighbors. Can be 'uniform’ (de-
fault), ’triangular’, ’epanechnikov’, ’biweight’, *triweight’, ’tricube’, ’gaussian’,
"cosine’, "logistic’, *gaussianSimple’, ’silverman’, ’inverse’, ’exponential’.

extrema if TRUE then the minimum and maximum values from the k-nearest-neighbors
will be removed (can be thought as outlier removal).
h the bandwidth, applicable if the weights_function is not NULL. Defaults to 1.0.

Any additional parameters, not currently passed through.

Value

List with predictions and the original training data & hyperparameters.

Examples

# Load a test dataset.
data(PimaIndiansDiabetes2, package = "mlbench")

data = PimaIndiansDiabetes2

# Omit observations with missing data.
data = na.omit(data)

Y_bin = as.numeric(data$diabetes)
X = subset(data, select = -diabetes)

set.seed(1)
sl = SuperLearner(Y_bin, X, family = binomial(),

SL.library = c(”SL.mean"”, "SL.kernelKnn"))
sl
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SL.ksvm

Wrapper for Kernlab’s SVM algorithm

Description

Wrapper for Kernlab’s support vector machine algorithm.

Usage

SL.ksvm(Y, X, newX, family, type = NULL, kernel = "rbfdot",
kpar = "automatic”, scaled =T, C =1, nu= 0.2, epsilon = 0.1,
cross = @, prob.model = family$family == "binomial”,

class.weights

Arguments

Y

X

newx
family
type

kernel

kpar

scaled

nu

epsilon

Cross

= NULL, cache = 40, tol = 0.001, shrinking

1l
—
~

Outcome variable
Training dataframe
Test dataframe
Gaussian or binomial

ksvm can be used for classification , for regression, or for novelty detection.
Depending on whether y is a factor or not, the default setting for type is C-svc
or eps-svr, respectively, but can be overwritten by setting an explicit value. See
7ksvm for more details.

the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes the inner product in feature space
between two vector arguments. See ?ksvm for more details.

the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. See ?ksvm for more details.

A logical vector indicating the variables to be scaled. If scaled is of length 1,
the value is recycled as many times as needed and all non-binary variables are
scaled. Per default, data are scaled internally (both x and y variables) to zero
mean and unit variance. The center and scale values are returned and used for
later predictions.

cost of constraints violation (default: 1) this is the C’-constant of the regular-
ization term in the Lagrange formulation.

parameter needed for nu-svc, one-svc, and nu-svr. The nu parameter sets the
upper bound on the training error and the lower bound on the fraction of data
points to become Support Vectors (default: 0.2).

epsilon in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm
(default: 0.1)

if a integer value k>0 is specified, a k-fold cross validation on the training data is
performed to assess the quality of the model: the accuracy rate for classification
and the Mean Squared Error for regression
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prob.model if set to TRUE builds a model for calculating class probabilities or in case of
regression, calculates the scaling parameter of the Laplacian distribution fitted
on the residuals. Fitting is done on output data created by performing a 3-fold
cross-validation on the training data. (default: FALSE)

class.weights a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All compo-
nents have to be named.

cache cache memory in MB (default 40)
tol tolerance of termination criterion (default: 0.001)
shrinking option whether to use the shrinking-heuristics (default: TRUE)

Any additional parameters, not currently passed through.

Value

List with predictions and the original training data & hyperparameters.

References

Hsu, C. W, Chang, C. C., & Lin, C. J. (2016). A practical guide to support vector classification.
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond. MIT press.

Vapnik, V. N. (1998). Statistical learning theory (Vol. 1). New York: Wiley.

Zeileis, A., Hornik, K., Smola, A., & Karatzoglou, A. (2004). kernlab-an S4 package for kernel
methods in R. Journal of statistical software, 11(9), 1-20.

See Also

predict.SL.ksvm ksvm predict.ksvm

Examples

data(Boston, package = "MASS")

Y = Boston$medv

# Remove outcome from covariate dataframe.
X = Boston[, -14]

set.seed(1)

sl = SuperLearner(Y, X, family = gaussian(),
SL.library = c(”"SL.mean"”, "SL.ksvm"))

sl

pred = predict(sl, X)
summary (pred$pred)


https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
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SL.1lda SL wrapper for MASS:lda

Description

Linear discriminant analysis, used for classification.

Usage

SL.1lda(Y, X, newX, family, obsWeights = rep(1, nrow(X)), id = NULL,
verbose = F, prior = as.vector(prop.table(table(Y))), method = "mle",

tol = 1e-04, CV = F, nu =5, ...)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Binomial only, cannot be used for regression.
obsWeights Observation-level weights
id Not supported.
verbose If TRUE, display additional output during execution.
prior the prior probabilities of class membership. If unspecified, the class proportions

for the training set are used. If present, the probabilities should be specified in
the order of the factor levels.

method "moment" for standard estimators of the mean and variance, "mle" for MLEs,
"mve" to use cov.mve, or "t" for robust estimates based on a t distribution.

tol tolerance

cv If true, returns results (classes and posterior probabilities) for leave-one-out
cross-validation. Note that if the prior is estimated, the proportions in the whole
dataset are used.

nu degrees of freedom for method = "t".

Any additional arguments, not currently used.

References
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning
(Vol. 6). New York: Springer. Section 4.4.

See Also

predict.SL.1lda lda predict.lda SL.qda
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Examples

data(Boston, package = "MASS")

Y = as.numeric(Boston$medv > 23)

# Remove outcome from covariate dataframe.
X = Boston[, -14]

set.seed(1)

# Use only 2 CV folds to speed up example.

sl = SuperLearner(Y, X, family = binomial(), cvControl = list(V = 2),
SL.library = c("SL.mean", "SL.1lda"))

sl

pred = predict(sl, X)
summary (preds$pred)

SL.1m Wrapper for Im

Description

Wrapper for OLS via Im(), which may be faster than glm().

Usage
SL.Im(Y, X, newX, family, obsWeights, model = TRUE, ...)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Gaussian or binomial
obsWeights Observation-level weights
model Whether to save model.matrix of data in fit object. Set to FALSE to save mem-
ory.
Any remaining arguments, not used.
References

Fox, J. (2015). Applied regression analysis and generalized linear models. Sage Publications.

See Also

predict.SL.1m Impredict.1lmSL.speedlm
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Examples

data(Boston, package = "MASS")

Y = Boston$medv

# Remove outcome from covariate dataframe.
X = Boston[, -14]

set.seed(1)

sl = SuperLearner(Y, X, family = gaussian(),
SL.library = c("SL.mean", "SL.1m"))

print(sl)

SL.qda SL wrapper for MASS:qda

Description

Quadratic discriminant analysis, used for classification.

Usage

SL.qda(Y, X, newX, family, obsWeights = rep(1, nrow(X)), verbose = F,
id = NULL, prior = as.vector(prop.table(table(Y))), method = "mle”,

tol = 1e-04, CV =F, nu =5, ...)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Binomial only, cannot be used for regression.
obsWeights Observation-level weights
verbose If TRUE, display additional output during execution.
id Not supported.
prior the prior probabilities of class membership. If unspecified, the class proportions

for the training set are used. If present, the probabilities should be specified in
the order of the factor levels.

method "moment" for standard estimators of the mean and variance, "mle" for MLEs,
"mve" to use cov.mve, or "t" for robust estimates based on a t distribution.

tol tolerance

cv If true, returns results (classes and posterior probabilities) for leave-one-out

cross-validation. Note that if the prior is estimated, the proportions in the whole
dataset are used.

nu degrees of freedom for method = "t".

Any additional arguments, not currently used.
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References

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning
(Vol. 6). New York: Springer. Section 4.4.

See Also

predict.SL.qda qda predict.qda SL.1da

Examples

data(Boston, package = "MASS")

Y = as.numeric(Boston$medv > 23)

# Remove outcome from covariate dataframe.
X = Boston[, -14]

set.seed(1)

# Use only 2 CV folds to speed up example.

sl = SuperLearner(Y, X, family = binomial(), cvControl = list(V = 2),
SL.library = c("SL.mean", "SL.qda"))

sl

pred = predict(sl, X)
summary (pred$pred)

SL.ranger SL wrapper for ranger

Description

Ranger is a fast implementation of Random Forest (Breiman 2001) or recursive partitioning, partic-
ularly suited for high dimensional data.

Extending code by Eric Polley from the SuperLearnerExtra package.

Usage

SL.ranger(Y, X, newX, family, obsWeights, num.trees = 500,
mtry = floor(sqrt(ncol(X))), write.forest = TRUE,
probability = family$family == "binomial”,
min.node.size = ifelse(family$family == "gaussian”, 5, 1), replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632), num.threads = 1,
verbose = T, ...)
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Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Gaussian or binomial
obsWeights Observation-level weights
num. trees Number of trees.
mtry Number of variables to possibly split at in each node. Default is the (rounded

down) square root of the number variables.

write.forest  Save ranger.forest object, required for prediction. Set to FALSE to reduce mem-
ory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012).

min.node.size Minimal node size. Default 1 for classification, 5 for regression, 3 for survival,
and 10 for probability.

replace Sample with replacement.
sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.632 for sampling without replacement.

num. threads Number of threads to use.
verbose If TRUE, display additional output during execution.

Any additional arguments, not currently used.

References

Breiman, L. (2001). Random forests. Machine learning 45:5-32.

Wright, M. N. & Ziegler, A. (2016). ranger: A Fast Implementation of Random Forests for High Di-
mensional Data in C++ and R. Journal of Statistical Software, in press. http://arxiv.org/abs/1508.04409.

See Also

SL.ranger ranger predict.ranger

Examples

data(Boston, package = "MASS")

Y = Boston$medv

# Remove outcome from covariate dataframe.
X = Boston[, -14]

set.seed(1)

# Use only 2 CV folds to speed up example.

sl = SuperLearner(Y, X, family = gaussian(), cvControl = list(V = 2),
SL.library = c(”"SL.mean"”, "SL.ranger"))

sl
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SL.speedglm

pred = predict(sl, X)
summary (pred$pred)

SL.speedglm

Wrapper for speedglm

Description

Speedglm is a fast version of glm()

Usage
SL.speedglm(Y, X, newX, family, obsWeights, maxit = 25, k = 2, ...)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Gaussian or binomial
obsWeights Observation-level weights
maxit Maximum number of iterations before stopping.
k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.
Any remaining arguments, not used.
References

Enea, M. A. R. C. O. (2013). Fitting linear models and generalized linear models with large data
sets in R. Statistical Methods for the Analysis of Large Datasets: book of short papers, 411-414.

See Also

predict.SL.speedglm speedglm predict.speedglm
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SL.speedlm Wrapper for speedlm

Description

Speedlm is a fast version of Im()

Usage

SL.speedlm(Y, X, newX, family, obsWeights, ...)
Arguments

Y Outcome variable

X Training dataframe

newX Test dataframe

family Gaussian or binomial

obsWeights Observation-level weights

Any remaining arguments, not used.

References

Enea, M. A. R. C. O. (2013). Fitting linear models and generalized linear models with large data
sets in R. Statistical Methods for the Analysis of Large Datasets: book of short papers, 411-414.

See Also

predict.SL.speedlm speedlmpredict.speedlm SL.speedglm

SL.xgboost XGBoost SuperLearner wrapper

Description
Supports the Extreme Gradient Boosting package for SuperLearnering, which is a variant of gradi-
ent boosted machines (GBM).

Usage

SL.xgboost(Y, X, newX, family, obsWeights, id, ntrees = 1000, max_depth = 4,
shrinkage = 0.1, minobspernode = 10, params = list(), nthread = 1,
verbose = @, save_period = NULL, ...)



Arguments

Y
X
newX

family
obsWeights
id

ntrees

max_depth
shrinkage

minobspernode

params

nthread

verbose

save_period

Details

summary.CV.SuperLearner

Outcome variable
Covariate dataframe
Optional dataframe to predict the outcome

"gaussian" for regression, "binomial" for binary classification, "multinomial” for
multiple classification (not yet supported).

Optional observation-level weights (supported but not tested)
Optional id to group observations from the same unit (not used currently).

How many trees to fit. Low numbers may underfit but high numbers may overfit,
depending also on the shrinkage.

How deep each tree can be. 1 means no interactions, aka tree stubs.
How much to shrink the predictions, in order to reduce overfitting.

Minimum observations allowed per tree node, after which no more splitting will
occur.

Many other parameters can be customized. See https://xgboost.readthedocs.
io/en/latest/parameter.html

How many threads (cores) should xgboost use. Generally we want to keep this
to 1 so that XGBoost does not compete with SuperLearner parallelization.

Verbosity of XGB fitting.

How often (in tree iterations) to save current model to disk during processing. If
NULL does not save model, and if 0 saves model at the end.

Any remaining arguments (not supported though).

The performance of XGBoost, like GBM, is sensitive to the configuration settings. Therefore it is
best to create multiple configurations using create.SL.xgboost and allow the SuperLearner to choose
the best weights based on cross-validated performance.

If you run into errors please first try installing the latest version of XGBoost from drat as described
here: https://xgboost.readthedocs.io/en/latest/build.html

summary.CV.SuperLearner

Summary Function for Cross-Validated Super Learner

Description

summary method for the CV. SuperLearner function


https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/build.html
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Usage

## S3 method for class 'CV.SuperLearner'
summary(object, obsWeights = NULL, ...)

## S3 method for class 'summary.CV.SuperlLearner'

print(x, digits, ...)
Arguments
object An object of class "CV.SuperLearner", the result of a call to CV. SuperLearner.
X An object of class "summary.CV.SuperLearner", the result of a call to summary.CV.SuperLearner.
obsWeights Optional vector for observation weights.
digits The number of significant digits to use when printing.

additional arguments ...

Details
Summary method for CV.SuperLearner. Calculates the V-fold cross-validated estimate of either
the mean squared error or the -2*log(L) depending on the loss function used.

Value

summary.CV.SuperLearner returns a list with components

call The function call from CV. SuperLearner

method Describes the loss function used. Currently either least squares of negative log
Likelihood.

\% Number of folds

Risk.SL Risk estimate for the super learner

Risk.dSL Risk estimate for the discrete super learner (the cross-validation selector)

Risk.library A matrix with the risk estimates for each algorithm in the library

Table A table with the mean risk estimate and standard deviation across the folds for
the super learner and all algorithms in the library

Author(s)

Eric C Polley <eric.polley@nih.gov>

See Also

CV.SuperLearner
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SuperlLearner Super Learner Prediction Function

Description

A Prediction Function for the Super Learner. The SuperlLearner function takes a training set pair
(X,Y) and returns the predicted values based on a validation set.

Usage

SuperLearner(Y, X, newX = NULL, family = gaussian(), SL.library,
method = "method.NNLS"”, id = NULL, verbose = FALSE,
control = list(), cvControl = list(), obsWeights = NULL, env = parent.frame())

Arguments

Y The outcome in the training data set. Must be a numeric vector.

X The predictor variables in the training data set, usually a data.frame.

newX The predictor variables in the validation data set. The structure should match X.
If missing, uses X for newX.

SL.library Either a character vector of prediction algorithms or a list containing character
vectors. See details below for examples on the structure. A list of functions
included in the SuperLearner package can be found with 1istWrappers().

verbose logical; TRUE for printing progress during the computation (helpful for debug-
ging).

family Currently allows gaussian or binomial to describe the error distribution. Link
function information will be ignored and should be contained in the method
argument below.

method A list (or a function to create a list) containing details on estimating the coeffi-

cients for the super learner and the model to combine the individual algorithms
in the library. See ?method. template for details. Currently, the built in options
are either "method. NNLS" (the default), "method.NNLS2", "method.NNloglik",
"method.CC_LS", "method.CC_nloglik", or "method. AUC". NNLS and NNLS2
are non-negative least squares based on the Lawson-Hanson algorithm and the
dual method of Goldfarb and Idnani, respectively. NNLS and NNLS2 will work
for both gaussian and binomial outcomes. NNloglik is a non-negative binomial
likelihood maximization using the BFGS quasi-Newton optimization method.
NN* methods are normalized so weights sum to one. CC_LS uses Goldfarb and
Idnani’s quadratic programming algorithm to calculate the best convex combi-
nation of weights to minimize the squared error loss. CC_nloglik calculates the
convex combination of weights that minimize the negative binomial log like-
lihood on the logistic scale using the sequential quadratic programming algo-
rithm. AUC, which only works for binary outcomes, uses the Nelder-Mead
method via the optim function to minimize rank loss (equivalent to maximizing
AUC).
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id Optional cluster identification variable. For the cross-validation splits, id forces
observations in the same cluster to be in the same validation fold. id is passed
to the prediction and screening algorithms in SL.library, but be sure to check the
individual wrappers as many of them ignore the information.

obsWeights Optional observation weights variable. As with id above, obsWeights is passed
to the prediction and screening algorithms, but many of the built in wrappers
ignore (or can’t use) the information. If you are using observation weights,
make sure the library you specify uses the information.

control A list of parameters to control the estimation process. Parameters include saveFitLibrary
and trimLogit. See SuperLearner.control for details.

cvControl A list of parameters to control the cross-validation process. Parameters include
V, stratifyCV, shuffle and validRows. See SuperLearner.CV.control for
details.

env Environment containing the learner functions. Defaults to the calling environ-
ment.

Details

SuperLearner fits the super learner prediction algorithm. The weights for each algorithm in
SL.library is estimated, along with the fit of each algorithm.

The prescreen algorithms. These algorithms first rank the variables in X based on either a univariate
regression p-value of the randomForest variable importance. A subset of the variables in X is
selected based on a pre-defined cut-off. With this subset of the X variables, the algorithms in
SL.library are then fit.

The SuperLearner package contains a few prediction and screening algorithm wrappers. The full
list of wrappers can be viewed with 1istWrappers(). The design of the SuperLearner package is
such that the user can easily add their own wrappers. We also maintain a website with additional
examples of wrapper functions at https://github.com/ecpolley/SuperLearnerExtra.

Value

call The matched call.

libraryNames A character vector with the names of the algorithms in the library. The format is
“predictionAlgorithm_screeningAlgorithm’ with *_All’ used to denote the pre-
diction algorithm run on all variables in X.

SL.library Returns SL.library in the same format as the argument with the same name
above.

SL.predict The predicted values from the super learner for the rows in newX.

coef Coefficients for the super learner.

library.predict
A matrix with the predicted values from each algorithm in SL.library for the
rows in newX.
Z The Z matrix (the cross-validated predicted values for each algorithmin SL. library).
cvRisk A numeric vector with the V-fold cross-validated risk estimate for each algo-

rithm in SL.1library. Note that this does not contain the CV risk estimate for
the SuperLearner, only the individual algorithms in the library.


https://github.com/ecpolley/SuperLearnerExtra

50 SuperLearner

family Returns the family value from above

fitLibrary A list with the fitted objects for each algorithm in SL.library on the full train-
ing data set.

cvFitLibrary A list with fitted objects for each algorithm in SL. 1library on each of V different
training data sets.

varNames A character vector with the names of the variables in X.

validRows A list containing the row numbers for the V-fold cross-validation step.

method A list with the method functions.

whichScreen A logical matrix indicating which variables passed each screening algorithm.

control The control list.

cvControl The cvControl list.

errorsInCVLibrary
A logical vector indicating if any algorithms experienced an error within the CV
step.

errorslnLibrary
A logical vector indicating if any algorithms experienced an error on the full
data.

env Environment passed into function which will be searched to find the learner

functions. Defaults to the calling environment.

times A list that contains the execution time of the SuperLearner, plus separate times
for model fitting and prediction.

Author(s)

Eric C Polley <epolley@uchicago.edu>

References

van der Laan, M. J., Polley, E. C. and Hubbard, A. E. (2008) Super Learner, Statistical Applications
of Genetics and Molecular Biology, 6, article 25.

Examples

## Not run:

## simulate data

set.seed(23432)

## training set

n <- 500

p <- 50

X <- matrix(rnorm(n*p), nrow = n, ncol = p)

colnames(X) <- paste("X", 1:p, sep="")

X <- data.frame(X)

Y <= X[, 11 + sqgrt(abs(X[, 21 * X[, 31)) + X[, 21 - X[, 31 + rnorm(n)

## test set
m <- 1000
newX <- matrix(rnorm(m*p), nrow = m, ncol = p)
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colnames(newX) <- paste("X", 1:p, sep="")

newX <- data.frame(newX)

newY <- newX[, 1] + sqrt(abs(newX[, 2] * newX[, 3]1)) + newX[, 2] -
newX[, 3] + rnorm(m)

# generate Library and run Super Learner

SL.library <- c("”SL.glm", "SL.randomForest"”, "SL.gam",
"SL.polymars”, "SL.mean")

test <- SuperLearner(Y =Y, X = X, newX = newX, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS")

test

# library with screening

SL.library <- list(c("SL.glmnet”, "AIl"), c("SL.glm", "screen.randomForest"”,
"All", "screen.SIS"), "SL.randomForest"”, c("SL.polymars", "All"), "SL.mean")

test <- SuperLearner(Y =Y, X = X, newX = newX, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS")

test

# binary outcome

set.seed(1)

N <- 200

X <= matrix(rnorm(N*10), N, 10)

X <- as.data.frame(X)

Y <- rbinom(N, 1, plogis(.2*X[, 1] + .1xX[, 2] - .2*X[, 3] +
IxXLE, 31*X[, 41 - .2*xabs(X[, 41)))

SL.library <- c("SL.glmnet”, "SL.glm", "SL.knn", "SL.gam"”, "SL.mean")

# least squares loss function

test.NNLS <- SuperLearner(Y =Y, X = X, SL.library = SL.library,
verbose = TRUE, method = "method.NNLS"”, family = binomial())

test.NNLS

# negative log binomial likelihood loss function

test.NNloglik <- SuperLearner(Y =Y, X = X, SL.library = SL.library,
verbose = TRUE, method = "method.NNloglik"”, family = binomial())

test.NNloglik

# 1 - AUC loss function

test.AUC <- SuperLearner(Y =Y, X = X, SL.library = SL.library,
verbose = TRUE, method = "method.AUC"”, family = binomial())

test.AUC

# 2
# adapted from library(SIS)
set.seed(1)

# training

b <- c(2, 2, 2, -3*sqrt(2))
n <- 150

p <- 200

truerho <- 0.5
corrmat <- diag(rep(1-truerho, p)) + matrix(truerho, p, p)
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corrmat[, 4] = sqrt(truerho)

corrmat[4, ] = sqgrt(truerho)

corrmat[4, 4] =1

cholmat <- chol(corrmat)

x <= matrix(rnorm(nxp, mean=0, sd=1), n, p)
X <= X

feta <- x[, 1:4]

fprob <- exp(feta) / (1 + exp(feta))

y <= rbinom(n, 1, fprob)

# test

m <- 10000

newx <- matrix(rnorm(m*p, mean=0, sd=1), m, p)
newx <- newx

newfeta <- newx[, 1:4]

newfprob <- exp(newfeta) / (1 + exp(newfeta))
newy <- rbinom(m, 1, newfprob)

DATA2 <- data.frame(Y =y, X = x)
newDATA2 <- data.frame(Y = newy, X=newx)

create.SL.knn <- function(k = c(20, 30)) {

for(mm in seq(length(k))){

eval (parse(text = paste('SL.knn."', k[mm], '<- function(..., k ="', k[mm],
"y SL.knn(..., k =k)', sep = '")), envir = .GlobalEnv)

}

invisible(TRUE)
}
create.SL.knn(c(20, 30, 40, 50, 60, 70))

# library with screening

SL.library <- list(c("SL.glmnet”, "All"), c("SL.glm", "screen.randomForest"),
"SL.randomForest”, "SL.knn", "SL.knn.20", "SL.knn.30", "SL.knn.40",
"SL.knn.50", "SL.knn.60", "SL.knn.70",
c("SL.polymars"”, "screen.randomForest"))

test <- SuperLearner(Y = DATA2$Y, X = DATA2[, -1], newX = newDATA2[, -11],
SL.library = SL.library, verbose = TRUE, family = binomial())

test

## examples with multicore

set.seed(23432, "L'Ecuyer-CMRG") # use L'Ecuyer for multicore seeds. see ?set.seed for details
## training set

n <- 500

p <- 50

X <= matrix(rnorm(n*p), nrow = n, ncol = p)

colnames(X) <- paste("X", 1:p, sep="")

X <- data.frame(X)

Y <= X[, 1] + sqgrt(abs(X[, 2] * X[, 31)) + X[, 2] - X[, 31 + rnorm(n)

## test set

m <- 1000

newX <- matrix(rnorm(m*p), nrow = m, ncol = p)
colnames(newX) <- paste("X", 1:p, sep="")



SuperLearner 53

newX <- data.frame(newX)
newY <- newX[, 1] + sqrt(abs(newX[, 2] * newX[, 31)) + newX[, 2] - newX[, 31 + rnorm(m)

# generate Library and run Super Learner
SL.library <- c("SL.glm", "SL.randomForest”, "SL.gam",
"SL.polymars”, "SL.mean")

testMC <- mcSuperLearner(Y = Y, X = X, newX = newX, SL.library = SL.library,
method = "method.NNLS")
testMC

## examples with snow

library(parallel)

cl <- makeCluster(2, type = "PSOCK") # can use different types here

clusterSetRNGStream(cl, iseed = 2343)

# make SL functions available on the clusters, use assignment to avoid printing

foo <- clusterEvalQ(cl, library(SuperLearner))

testSNOW <- snowSuperLearner(cluster = cl, Y =Y, X = X, newX = newX,
SL.library = SL.library, method = "method.NNLS")

testSNOW

stopCluster(cl)

## snow example with user-generated wrappers

# If you write your own wrappers and are using snowSuperlLearner()

# These new wrappers need to be added to the SuperLearner namespace and exported to the clusters
# Using a simple example here, but can define any new SuperlLearner wrapper

my.SL.wrapper <- function(...) SL.glm(...)

# assign function into SuperlLearner namespace

environment(my.SL.wrapper) <-asNamespace("”SuperLearner")

cl <- makeCluster(2, type = "PSOCK") # can use different types here

clusterSetRNGStream(cl, iseed = 2343)

# make SL functions available on the clusters, use assignment to avoid printing

foo <- clusterEvalQ(cl, library(SuperLearner))

clusterExport(cl, c("my.SL.wrapper”)) # copy the function to all clusters

testSNOW <- snowSuperLearner(cluster = cl, Y =Y, X = X, newX = newX,
SL.library = c("SL.glm", "SL.mean"”, "my.SL.wrapper"”), method = "method.NNLS")

testSNOW

stopCluster(cl)

## timing
replicate(5, system.time(SuperLearner(Y =Y, X = X, newX = newX,
SL.library = SL.library, method = "method.NNLS")))

replicate(5, system.time(mcSuperLearner(Y =Y, X = X, newX = newX,
SL.library = SL.library, method = "method.NNLS")))

cl <- makeCluster(2, type = 'PSOCK"')

# make SL functions available on the clusters, use assignment to avoid printing

foo <- clusterEvalQ(cl, library(SuperlLearner))

replicate(5, system.time(snowSuperLearner(cl, Y =Y, X = X, newX = newX,
SL.library = SL.library, method = "method.NNLS")))

stopCluster(cl)
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## End(Not run)

SuperLearner.control  Control parameters for the SuperLearner

Description

Control parameters for the SuperLearner

Usage

SuperlLearner.control(saveFitLibrary = TRUE, saveCVFitLibrary = FALSE, trimLogit = 0.001)

Arguments

saveFitLibrary Logical. Should the fit for each algorithm be saved in the output from SuperLearner.
saveCVFitLibrary

Logical. Should cross-validated fits for each algorithm be saved in the output
from SuperLearner.

trimLogit number between 0.0 and 0.5. What level to truncate the logit transformation to
maintain a bounded loss function when using the NNloglik method.

Value

A list containing the control parameters.

SuperlLearner.CV.control
Control parameters for the cross validation steps in SuperLearner

Description

Control parameters for the cross validation steps in SuperLearner

Usage

SuperlLearner.CV.control(V = 10L, stratifyCV = FALSE, shuffle = TRUE,
validRows = NULL)
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Arguments
\% Integer. Number of splits for the V-fold cross-validation step. The default is 10.
In most cases, between 10 and 20 splits works well.
stratifyCVv Logical. Should the data splits be stratified by a binary response? Attempts to
maintain the same ratio in each training and validation sample.
shuffle Logical. Should the rows of X be shuffled before creating the splits.
validRows A List. Use this to pass pre-specified rows for the sample splits. The length of
the list should be V and each entry in the list should contain a vector with the
row numbers of the corresponding validation sample.
Value

A list containing the control parameters

SuperLearnerNews Show the NEWS file for the SuperLearner package

Description

Show the NEWS file of the SuperLearner package. The function is simply a wrapper for the
RShowDoc function

Usage

SuperlLearnerNews(...)

SuperlLearnerDocs(what = 'SuperLearnerR.pdf', ...)
Arguments

additional arguments passed to RShowDoc

what specify what document to open. Currently supports the NEWS file and the PDF
files *SuperLearner.pdf” and ’SuperLearnerR.pdf’.

Value

A invisible character string given the path to the SuperLearner NEWS file
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trimLogit truncated-probabilities logit transformation

Description

computes the logit transformation on the truncated probabilities

Usage

trimLogit(x, trim = 1e-05)

Arguments

X

trim

Value

vector of probabilities.

value to truncate probabilities at. Currently symmetric truncation (trim and 1-
trim).

logit transformed values

Examples

x <- c(0.00000001, 0.0001, 0.001, 0.01, 0.1, 0.3, 0.7, 0.9, 0.99,

0.999,

0.9999, 0.99999999)

trimLogit(x, trim = 0.001)
data.frame(Prob = x, Logit = glogis(x), trimLogit = trimLogit(x, 0.001))

write.method.template Method to estimate the coefficients for the super learner

Description

These functions contain the information on the loss function and the model to combine algorithms

Usage

nn

write.method.template(file = , )

## a few built in options:

method.
method.
method.
method.
method.
method.

NNLS()

NNLS2()

NNloglik ()

CC_LSQ)

CC_nloglik()

AUC(nlopt_method=NULL, optim_method="L-BFGS-B", bounds=c(@, Inf), normalize=TRUE)
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Arguments
file
optim_method

nlopt_method

bounds

normalize

Details

57

A connection, or a character string naming a file to print to. Passed to cat.
Passed to the optim call method. See optim for details.

Either optim_method or nlopt_method must be provided, the other must be
NULL

Bounds for parameter estimates
Logical. Should the parameters be normalized to sum up to 1

Additional arguments passed to cat.

A SuperLearner method must be a list (or a function to create a list) with exactly 3 elements. The
3 elements must be named require, computeCoef and computePred.

Value

A list containing 3 elements:

require

computeCoef

computePred

Author(s)

A character vector listing any required packages. Use NULL if no additional
packages are required

A function. The arguments are: Z, Y, libraryNames, obsWeights, control,
verbose. The value is a list with two items: cvRisk and coef. This function
computes the coefficients of the super learner. As the super learner minimizes
the cross-validated risk, the loss function information is contained in this func-
tion as well as the model to combine the algorithms in SL.library.

A function. The arguments are: predY, coef, control. The value is a numeric
vector with the super learner predicted values.

Eric C Polley <Polley.Eric@mayo.edu>

See Also

SuperlLearner

Examples

write.method. template(file = '")
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write.screen.template screening algorithms for SuperLearner

Description

Screening algorithms for SuperLearner to be used with SL.library.

Usage
write.screen.template(file = "", ...)
Arguments
file A connection, or a character string naming a file to print to. Passed to cat.
Additional arguments passed to cat
Details

Explain structure of a screening algorithm here:

Value

whichVariable A logical vector with the length equal to the number of columns in X. TRUE
indicates the variable (column of X) should be included.

Author(s)

Eric C Polley <polley.eric@mayo.edu>

See Also

SuperlLearner

Examples

write.screen.template(file = '")
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write.SL.template Wrapper functions for prediction algorithms in SuperLearner

Description

Template function for SuperLearner prediction wrappers and built in options.

Usage
write.SL.template(file = "", ...)
Arguments
file A connection, or a character string naming a file to print to. Passed to cat.
Additional arguments passed to cat
Details

Describe SL.* structure here

Value

A list with two elements:

pred The predicted values for the rows in newX.

fit A list. Contains all objects necessary to get predictions for new observations
from specific algorithm.

Author(s)
Eric C Polley <epolley@uchicago.edu>

See Also

SuperLearner

Examples

write.SL.template(file = '")
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