## ----include=FALSE------------------------------------------------------------ library(Spower) set.seed(42) formals(SpowerCurve)$plotly <- FALSE ## ----include=FALSE------------------------------------------------------------ eval <- FALSE # set to FALSE for normal run store <- list() if(!eval) store <- readRDS(system.file("intro.rds", package = 'Spower')) ## ----include=eval------------------------------------------------------------- getwd() ## ----------------------------------------------------------------------------- p_lm.R2(50, k=3, R2=.3) ## ----eval=eval---------------------------------------------------------------- # p_lm.R2(50, k=3, R2=.3) |> Spower() ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$R2ex <- getLastSpower() print(store$R2ex) ## ----------------------------------------------------------------------------- p_single.t <- function(n, mean, mu=0){ g <- rnorm(n, mean=mean) p <- t.test(g, mu=mu)$p.value p } ## ----------------------------------------------------------------------------- # a single experiment p_single.t(n=100, mean=.2) ## ----eval=eval---------------------------------------------------------------- # p_single.t(n=100, mean=.5, mu=.3) |> Spower() -> prospective # prospective ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$prospective <- prospective prospective <- store$prospective print(prospective) ## ----eval=eval---------------------------------------------------------------- # p_single.t(n=100, mean=.5, mu=.3) |> # Spower(beta_alpha=4) -> compromise # compromise ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$compromise <- getLastSpower() compromise <- store$compromise print(compromise) ## ----------------------------------------------------------------------------- # satisfies q = 4 ratio with(compromise, (1 - power) / sig.level) ## ----------------------------------------------------------------------------- # using previous post-hoc/prospective power analysis update(prospective, beta_alpha=4) ## ----eval=eval---------------------------------------------------------------- # p_single.t(n=NA, mean=.5) |> # Spower(power=.8, interval=c(20,200)) ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$apriori <- getLastSpower() print(store$apriori) ## ----eval=eval---------------------------------------------------------------- # p_single.t(n=100, mean=NA) |> # Spower(power=.8, interval=c(.1, 3)) ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$sensitive <- getLastSpower() print(store$sensitive) ## ----eval=eval---------------------------------------------------------------- # p_single.t(n=50, mean=.5) |> # Spower(power=.8, sig.level=NA) ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$criterion <- getLastSpower() print(store$criterion) ## ----eval=eval---------------------------------------------------------------- # p_single.t(mean=.5) |> # SpowerBatch(n=c(30, 60, 90)) -> prospective.batch # prospective.batch ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$prospective.batch <- prospective.batch prospective.batch <- store$prospective.batch print(prospective.batch) ## ----------------------------------------------------------------------------- as.data.frame(prospective.batch) ## ----eval=eval---------------------------------------------------------------- # apriori.batch <- p_single.t(mean=.5, n=NA) |> # SpowerBatch(power=c(.7, .8, .9), interval=c(20, 200)) # apriori.batch ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$apriori.batch <- apriori.batch apriori.batch <- store$apriori.batch print(apriori.batch) ## ----------------------------------------------------------------------------- as.data.frame(apriori.batch) ## ----eval=FALSE--------------------------------------------------------------- # p_single.t(mean=.5) |> # SpowerCurve(n=c(30, 60, 90, 120)) ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$gg1 <- p_single.t(mean=.5) |> SpowerCurve(n=c(30, 60, 90, 120)) print(store$gg1) ## ----eval=FALSE--------------------------------------------------------------- # # pass previous SpowerBatch() object # SpowerCurve(batch=batch) ## ----echo=FALSE--------------------------------------------------------------- if(eval) SpowerCurve(batch=store$prospective.batch) ## ----eval=FALSE--------------------------------------------------------------- # p_single.t() |> # SpowerCurve(n=c(30, 60, 90, 120), mean=c(.2, .5, .8)) ## ----echo=FALSE--------------------------------------------------------------- if(eval) store$gg2 <- p_single.t() |> SpowerCurve(n=c(30, 60, 90, 120), mean=c(.2, .5, .8)) print(store$gg2) ## ----include=FALSE, eval=eval------------------------------------------------- # saveRDS(store, '../inst/intro.rds') # rebuild package when done