Package ‘SpatialKWD’

January 20, 2025
Type Package
Title Spatial KWD for Large Spatial Maps
Version 0.4.1
Date 2022-12-09
Author Stefano Gualandi [aut, cre]
Maintainer Stefano Gualandi <stefano.gualandi@gmail.com>

Description Contains efficient implementations of Discrete Optimal Transport algo-
rithms for the computation of Kantorovich-Wasserstein distances between pairs of large spa-
tial maps (Bassetti, Gualandi, Veneroni (2020), <doi:10.1137/19M1261195>). All the algo-
rithms are based on an ad-hoc implementation of the Network Simplex algorithm. The pack-
age has four main helper functions: compareOneToOne() (to compare two spatial maps), com-
pareOneToMany() (to compare a reference map with a list of other maps), compareAll() (to com-
pute a matrix of distances between a list of maps), and focusArea() (to compute the KWD dis-
tance within a focus area). In non-convex maps, the helper functions first build the convex-
hull of the input bins and pad the weights with zeros.

License EUPL (>=1.2)

Imports methods, Rcpp
SystemRequirements C++11

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-12-09 17:00:02 UTC

Contents
SpatialKWD-package 2
CompareAll-function L 3
CompareOneToMany-function i 5
CompareOneToOne-function it i 7
FocusArea-function 10
Histogram2D-class e 13
Solver-class 14

https://doi.org/10.1137/19M1261195

2 SpatialKWD-package

Index 18

SpatialKWD-package Kantorovich-Wasserstein Distances for Large Spatial Maps

Description

The Spatial-KWD package contains efficient implementations of Discrete Optimal Transport algo-
rithms for the computation of Kantorovich-Wasserstein distances [1], customized for large spatial
maps. All the algorithms are based on an ad-hoc implementation of the Network Simplex algorithm
[2]. Each implemented algorithm builds a different network, exploiting the particular structure of
spatial maps.

Details

This library contains four helper functions and two classes [4].

The four helper functions are compareOneToOne, compareOneToMany, compareAll, and focusArea.
All the functions take in input the data and an options list. Using the options is possible to configure
the Kantorivich-Wasserstein solver, so that it uses different algorithms with different parameters.

The helper functions are built on top of two main classes: Histogram2D and Solver.

Note that in non-convex maps, the algorithm builds the convex-hull of the input bins and pads the
weights with zeros.

In the case of spatial histograms with weights that do not sum up to 1, all the weights can optionally

be rescaled in such a way the overall sum of the weights of every single histogram is equal to

1.0: w; Zwiw This way, the spatial histograms have a natural interpretation as discrete
i=1,...,n Wi

probability measures.

For a detailed introduction on Computational Optimal Transport, we refer the reader to [3].

Author(s)

Stefano Gualandi, stefano.gualandi @ gmail.com.

Maintainer: Stefano Gualandi <stefano.gualandi @ gmail.com>

References

[1] Bassetti, F., Gualandi, S. and Veneroni, M., 2020. "On the Computation of Kantorovich—
Wasserstein Distances Between Two-Dimensional Histograms by Uncapacitated Minimum Cost
Flows". SIAM Journal on Optimization, 30(3), pp.2441-2469.

[2] Cunningham, W.H., 1976. "A Network Simplex method". Mathematical Programming, 11(1),
pp.105-116.

[3] Peyre, G., and Cuturi, M., 2019. "Computational optimal transport: With applications to data
science". Foundations and Trends in Machine Learning, 11(5-6), pp.355-607.

[4] https://github.com/eurostat/Spatial-KWD

https://github.com/eurostat/Spatial-KWD

CompareAll-function 3

See Also

See also compareOneToOne, compareOneToMany, compareAll, focusArea, Histogram2D, and Solver.

Examples

library(SpatialkwD)

Random coordinates

N = 90

Xs <- as.integer(runif(N, @, 31))

Ys <- as.integer(runif(N, @, 31))
coordinates <- matrix(c(Xs, Ys), ncol=2)

Random weights
weights <- matrix(runif(2*N, @, 1), ncol=2)

Compute distance

print("Compare one-to-one with exact algorithm:")

d <- compareOneToOne(coordinates, weights, L=3)
cat("runtime:", d$runtime, " distance:", d$distance, "\n")

CompareAll-function Compare a given set of spatial histograms

Description

This function computes the Kantorovich-Wasserstein among a given set of M spatial histograms. All
the histograms are defined over the same grid map.

The grid map is described by the two lists of N coordinates Xs and Ys, which specify the coordinates
of the centroid of each tile of the map. For each tile i with coordinates Xs[i], Ys[i], we have a
positive weight for each histogram.

The two lists of coordinates are passed to compareOneToMany as a matrix with N rows and two
columns. The weights of the histograms are passed as a single matrix with N rows and M columns.

Usage
compareAll(Coordinates, Weights, L = 3, recode = TRUE,
method = "approx”, algorithm = "colgen”,
model="mincostflow”, verbosity = "silent"”,
timelimit = 14400, opt_tolerance = 1e-06,

unbalanced = FALSE, unbal_cost = 1e+@9, convex = TRUE)

Arguments

Coordinates A Matrix with N rows and two columns:

e Coordinates[,1]: (First Column) Vector of horizontal coordinates of the
centroids of each tile of the map. Data type: vector of positive integers.

Weights

recode
method
algorithm
model
verbosity
timelimit

opt_tolerance

CompareAll-function

e Coordinates[,2]: (Second Column) Vector of vertical coordinates of the
centroids of each tile of the map. Data type: vector of positive integers.

A Matrix of positive weights of the tiles specified by the Coordinates matrix,
one column for each input histogram.

Approximation parameter. Higher values of L give a more accurate solution, but
they require longer running time. Data type: positive integer.

If equal to True, recode the input coordinates as consecutive integers.
Method for computing the KW distances: exact or approx.

Algorithm for computing the KW distances: fullmodel or colgen.
Model for building the underlying network: bipartite or mincostflow.
Level of verbosity of the log: silent, info or debug.

Time limit in second for running the solver.

Numerical tolerance on the negative reduce cost for the optimal solution.

unbalanced If equal to True, solve the problem with unbalanced masses.
unbal_cost Cost for the arcs going from each point to the extra artificial bin.
convex If equal to True, compute the convex hull of the input points.
Details
The function compareAll(Coordinates, Weights, ...) computes the distances among a given

set of spatial histograms. All the histograms are specified by the M columns of matrix Weights,
and where the support points (i.e., centroids of each tile of the map) are defined by the coordinates
given in Xs and Ys in the two columns of matrix Coordinates. The algorithm used to compute
such distance depends on the parameters specified as optional arguments of the function.

The most important is the parameter L, which by default is equal to 3 (see compareOneToOne).

Value

Return an R List with the following named attributes:

* distances: A symmetric matrix of dimension MxM of KW-distances among the input his-

tograms.

* status: Status of the solver used to compute the distances.

* runtime: Overall runtime in seconds to compute all the distances.

* iterations: Overall number of iterations of the Network Simplex algorithm.

* nodes: Number of nodes in the network model used to compute the distances.

* arcs: Number of arcs in the network model used to compute the distances.

See Also

See also compareOneToOne, compareOneToMany, focusArea, Histogram2D, and Solver.

CompareOneToMany-function 5

Examples

Define a simple example
library(SpatialKwD)

Random coordinates

N = 90

Xs <- as.integer(runif(N, @, 31))

Ys <- as.integer(runif(N, @, 31))

coordinates <- matrix(c(Xs, Ys), ncol=2, nrow=N)

Random weights
m<- 3
test3 <- matrix(runif(m*N, @, 1), ncol=m)

Compute distance
print(”"Compare all pairwise distances with an approximate algorithm:")
d <- compareAll(coordinates, Weights=test3, L=3)

cat("L: 3, runtime:", d$runtime, " distances:”, "\n")
m <- matrix(d$distance, ncol=3, nrow=3)
print(m)

CompareOneToMany-function
Compare a reference spatial histogram to other histograms

Description

This function computes the Kantorovich-Wasserstein among a single reference histogram and a
given list of other spatial histograms. All the histograms are defined over the same grid map.

The grid map is described by the two lists of N coordinates Xs and Ys, which specify the coordinates
of the centroid of each tile of the map. For each tile i with coordinates Xs[i], Ys[i], we have a
positive weight for each histogram.

The two lists of coordinates are passed to compareOneToMany as a matrix with N rows and two
columns. The weights of the histograms are passed as a single matrix with N rows and M columns,
where the first column is the reference histogram.

Usage
compareOneToMany (Coordinates, Weights, L = 3, recode = TRUE,
method = "approx”, algorithm = "colgen”,
model="mincostflow”, verbosity = "silent”,
timelimit = 14400, opt_tolerance = 1e-06,

unbalanced = FALSE, unbal_cost = 1e+09, convex = TRUE)

Arguments

Coordinates

Weights

recode

method
algorithm
model
verbosity
timelimit
opt_tolerance
unbalanced

unbal_cost

CompareOneToMany-function

A Matrix with N rows and two columns:

e Coordinates[, 1]: (First Column) Vector of horizontal coordinates of the
centroids of each tile of the map (Xs). Data type: vector of positive integers.

e Coordinates[,2]: (Second Column) Vector of vertical coordinates of the
centroids of each tile of the map (Ys). Data type: vector of positive integers.

A Matrix of positive weights of the tiles specified by Coordinates.

* Weights[,11: (First Column) Weights of the reference spatial histogram,
a weight for each tile located at position Xs[i], Ys[i] for i=1,...N. Data
type: vector of positive doubles.

e Weights[,2:M]: (Remaining Columns) Weights of the spatial histograms
to be compared with the reference histogram. Data type: vector of positive
doubles.

Approximation parameter. Higher values of L give a more accurate solution, but
they require a longer running time. Data type: positive integer.

If equal to True, recode the input coordinates as consecutive integers.
Method for computing the KW distances: exact or approx.

Algorithm for computing the KW distances: fullmodel or colgen.
Model for building the underlying network: bipartite or mincostflow.
Level of verbosity of the log: silent, info, or debug.

Time limit in second for running the solver.

Numerical tolerance on the negative reduced cost for the optimal solution.
If equal to True, solve the problem with unbalanced masses.

Cost for the arcs going from each point to the extra artificial bin.

convex If equal to True, compute the convex hull of the input points.
Details
The function compareOneToMany (Coordinates, Weights, ...) computes the distances among a

reference spatial histogram and a given set of other histograms. All the histograms are specified by
the M columns of matrix Weights, and where the support points (i.e., centroids of each tile of the
map) are defined by the coordinates given in Xs and Ys in the two columns of matrix Coordinates.
The algorithm used to compute such distance depends on the parameters specified as optional argu-
ments of the function.

The most important is the parameter L, which by default is equal to 3 (see compareOneToOne).

Value

Return an R List with the following named attributes:

* distances: An array of M-1 KW-distances among the input histograms.

* status: Status of the solver used to compute the distances.

* runtime: Overall runtime in seconds to compute all the distances.

CompareOneToOne-function 7

e iterations: Overall number of iterations of the Network Simplex algorithm.
* nodes: Number of nodes in the network model used to compute the distances.

* arcs: Number of arcs in the network model used to compute the distances.

See Also

See also compareOneToOne, compareAll, focusArea, Histogram2D, and Solver.

Examples

Define a simple example
library(SpatialkwD)

Random coordinates

N = 90

Xs <- as.integer(runif(N, @, 31))

Ys <- as.integer(runif(N, @, 31))

coordinates <- matrix(c(Xs, Ys), ncol=2, nrow=N)

Random weights
m<- 3
test2 <- matrix(runif((m+1)*N, @, 1), ncol=(m+1))

Compute distance

print(”"Compare one-to-many with approximate algorithm:")

d <- compareOneToMany(coordinates, Weights=test2, L=3, method="approx")
cat("L: 3, runtime:”, d$runtime, " distances:"”, d$distance, "\n")

CompareOneToOne-function
Compare a pair of spatial histograms

Description

This function computes the Kantorovich-Wasserstein between a pair of spatial histograms defined
over the same grid map.

The grid map is described by the two lists of N coordinates Xs and Ys, which specify the coordinates
of the centroid of each tile of the map. For each tile i with coordinates Xs[i], Ys[i], we have the
two lists of weights, one for the first histograms and the other for the second histogram.

The two lists of coordinates are passed to compareOneToOne as a matrix with N rows and two
columns. The two lists of weights are passed as a matrix with N rows and two columns, a column
for each histogram.

CompareOneToOne-function

Usage
compareOneToOne(Coordinates, Weights, L = 3, recode = TRUE,
method = "approx"”, algorithm = "colgen”,
model="mincostflow", verbosity = "silent"”,
timelimit = 14400, opt_tolerance = 1e-06,

unbalanced = FALSE, unbal_cost = 1e+0@9, convex = TRUE)

Arguments

Coordinates

Weights

recode

method
algorithm
model
verbosity
timelimit
opt_tolerance
unbalanced

unbal_cost

A Matrix with N rows and two columns:

e Coordinates[,1]: (First Column) Vector of horizontal coordinates of the
centroids of each tile of the map (Xs). Data type: vector of positive integers.

* Coordinates[,2]: (Second Column) Vector of vertical coordinates of the
centroids of each tile of the map (Ys). Data type: vector of positive integers.

A Matrix of positive weights of the tiles specified by Coordinates.

* Weights[,11: (First Column) Weights of the first spatial histogram, a weight
for each tile located at position Xs[i], Ys[i] for i=1,...N. Data type:
vector of positive doubles.

* Weights[,2]: (Second Column) Weights of the second spatial histogram,
a weight for each tile located at position Xs[i], Ys[i] for i=1,...N. Data
type: vector of positive doubles.

Approximation parameter. Higher values of L give a more accurate solution, but
they require a longer running time. Data type: positive integer.

If equal to True, recode the input coordinates as consecutive integers.
Method for computing the KW distances: exact or approx.

Algorithm for computing the KW distances: fullmodel or colgen.
Model for building the underlying network: bipartite or mincostflow.
Level of verbosity of the log: silent, info, or debug.

Time limit in second for running the solver.

Numerical tolerance on the negative reduced cost for the optimal solution.
If equal to True, solve the problem with unbalanced masses.

Cost for the arcs going from each point to the extra artificial bin.

convex If equal to True, compute the convex hull of the input points.
Details
The function compareOneToOne(Coordinates, Weights, ...) computes the distance between

the two histograms specified by the weights given in the two columns of matrix Weights. The
support points (i.e., centroids of each tile of the map) are defined by the coordinates given in Xs
and Ys in the two columns of matrix Coordinates. The algorithm used to compute such distance
depends on the parameters specified as optional arguments of the function.

The most important is the parameter L, which by default is equal to 3. The following table shows
the worst-case approximation ratio as a function of the value assigned to L. The table also reports

CompareOneToOne-function

the number of arcs in the network flow model as a function of the number of bins n contained in the

convex hull of the support points of the histograms given in input with matrix Coordinates.

15

10

L

2.68% 1.29% 049% 0.12% 0.06%
0(32n) O(80n)

O(16n)

7.61%
0(8n)

Worst-case error
Number of arcs

0(576n)

0(256n)

2and L=3.

The following two figures show the network build on a grid with 8x8 nodes and using L

TN

Value

Return an R List with the following named attributes:

» distance: The value of the KW-distance between the two input histograms.

10 FocusArea-function

* status: Status of the solver used to compute the distances.

* runtime: Overall runtime in seconds to compute all the distances.

* iterations: Overall number of iterations of the Network Simplex algorithm.
* nodes: Number of nodes in the network model used to compute the distances.

* arcs: Number of arcs in the network model used to compute the distances.

See Also

See also compareOneToMany, compareAll, focusArea, Histogram2D, and Solver.

Examples

Define a simple example
library(SpatialkwD)

Random coordinates

N = 90

Xs <- as.integer(runif(N, @, 31))

Ys <- as.integer(runif(N, @, 31))

coordinates <- matrix(c(Xs, Ys), ncol=2, nrow=N)

Random weights
testl <- matrix(runif(2*N, @, 1), ncol=2, nrow=N)

Compute distance
print("”"Compare one-to-one with exact algorithm:")
d <- compareOneToOne(coordinates, Weights=test1, method="exact",
recode=TRUE, verbosity = "info")
cat("runtime:", d$runtime, " distance:", d$distance,
" nodes:", d$nodes, " arcs:"”, d$arcs, "\n")

print("Compare one-to-one with approximate algorithm:")

d <- compareOneToOne(coordinates, Weights=test1, L=2, recode=TRUE)
cat("L: 2, runtime:"”, d$runtime, " distance:”, d$distance,

" nodes:", d$nodes, " arcs:"”, d$arcs, "\n")

d <- compareOneToOne(coordinates, Weights=testl, L=3)

cat("L: 3 runtime:"”, d$runtime, " distance:", d$distance, "\n")

d <- compareOneToOne(coordinates, Weights=testl, L=10)
cat("L: 10, runtime:", d$runtime, " distance:"”, d$distance, "\n")

FocusArea-function Compute the KWD tranport distance within a given focus area

FocusArea-function 11

Description

This function computes the Kantorovich-Wasserstein distance within a given focus area embedded
into a large region described as a grid map. Both the focus and the embedding areas are are described
by spatial histograms, similarly to the input data of the other functions of this package.

The grid map is described by the two lists Xs and Ys of N coordinates, which specify the coordinates
of the centroid of every single tile. For each tile i with coordinates Xs[i], Ys[i], we have an
entry in the two lists of weights W1 and W2, one for the first histograms, and the other for the second
histogram.

The two lists of coordinates Xs and Ys are passed to the focusArea function as a matrix with N rows
and two columns. The two lists of weights W1 and W2 are passed as a matrix with N rows and two
columns, a column for each histogram.

The focus area is specified by three parameters: the coordinates x and y of the center of the focus
area, and the (circular) radius of the focus area. The pair of coordinates (x,y) must correspond to
a pair of coordinates contained in the vectors Xs,Ys. Every tile whose distance is less or equal to
the radius will be included in the focus area.

The focus area by default is circular, that is, the area is based on a L_2 norm. By setting the
parameter area to the value 1linf it is possible to obtain a squared focus area, induced by the norm

L_infinity.

Usage

focusArea(Coordinates, Weights, x, y, radius,
L = 3, recode = TRUE,
method = "approx"”, algorithm = "colgen”,
model="mincostflow", verbosity = "silent"”,
timelimit = 14400, opt_tolerance = 1e-06,
area = "12")

Arguments

Coordinates A Matrix with N rows and two columns:
e Coordinates[, 1]: (First Column) Vector of horizontal coordinates of the
centroids of each tile of the map (Xs). Data type: vector of positive integers.
e Coordinates[,2]: (Second Column) Vector of vertical coordinates of the
centroids of each tile of the map (Ys). Data type: vector of positive integers.
Weights A Matrix of positive weights of the tiles specified by Coordinates.

* Weights[, 1]: (First Column) Weights of the embedding spatial histogram,
a weight for each tile located at position Xs[i], Ys[i] for i=1,...N. Data
type: vector of positive doubles.

* Weights[,2]: (Second Column) Weights of the spatial histogram of the
focus area, a weight for each tile located at position Xs[i], Ys[i] for
i=1,...N. All the weights outside the focus area should be equal to zero.
Data type: vector of positive doubles.

X Horizontal coordinate of the centroid of the focus area.

y Vertical coordinate of the centroid of the focus area.

12 FocusArea-function
radius The radius of the focus area.
L Approximation parameter. Higher values of L give a more accurate solution, but
they require a longer running time. Data type: positive integer.
recode If equal to True, recode the input coordinates as consecutive integers.
method Method for computing the KW distances: exact or approx.
algorithm Algorithm for computing the KW distances: fullmodel or colgen.
model Model for building the underlying network: bipartite or mincostflow.
verbosity Level of verbosity of the log: silent, info, or debug.
timelimit Time limit in second for running the solver.
opt_tolerance Numerical tolerance on the negative reduced cost for the optimal solution.
area Type of norm for delimiting the focus area: 12 denotes a circular area of radius,
linf denotes a squared area.
Details
The function focusArea(Coordinates, Weights, x, y, radius, ...) computes the KW distance

within a focus area by implicitly considering the surrounding larger area. The mass contained within
the focus area is transported to a destination either within or outside the focus area. All the mass
contained outside the focus area could be used to balance the mass within the focus area.

Value

Return an R List with the following named attributes:

» distance: The value of the KW-distance between the two input areas.

* status: Status of the solver used to compute the distances.

* runtime: Overall runtime in seconds to compute all the distances.

* iterations: Overall number of iterations of the Capacitated Network Simplex algorithm.

* nodes: Number of nodes in the network model used to compute the distances.

* arcs: Number of arcs in the network model used to compute the distances.

See Also

See also compareOneToOne, compareOneToMany, compareAll, Histogram2D, and Solver.

Examples

Define a simple example
library(SpatialkwD)

Random coordinates

N = 90

Xs <- as.integer(runif(N, @, 31))
Ys <- as.integer(runif(N, @, 31))
coordinates <- matrix(c(Xs, Ys), ncol=2, nrow=N)

Histogram2D-class 13

Random weights
testl <- matrix(runif(2*N, @, 1), ncol=2, nrow=N)

Compute distance
print("”"Compare one-to-one with exact algorithm:")
d <- focusArea(coordinates, Weights=test1,

x=15, y=15, radius=5,

method="exact"”, recode=TRUE, verbosity = "info")
cat("runtime:", d$runtime, " distance:", d$distance,
" nodes:", d$nodes, " arcs:”, ds$arcs, "\n")
Histogram2D-class Two Dimensional Histogram for Spatial Data

Description

The Histogram2D class represents a single spatial 2-dimensional histograms. The class is mainly
composed of three vectors of the same length n. The first two vectors of integers, called Xs and Ys,
give the coordinates of each bin of the histogram, while the third vector of doubles, called Ws, gives
the weight Ws[1i] of the i-th bin located at position Xs[i] and Ys[i].

A 2D histogram can be also defined by adding (or updating) a single element a the time (see the
second constructor).

Note that the positions of the bins are not required to lay on rectangular (or squared) grid, but they
can lay everywhere in the plane. Before computing the distance between a pair of algorithms, the
solver will compute a convex hull of all non-empty bins.

Arguments
n Number of non-empty bins. Type: positive integer.
Xs Vector of horizontal coordinates the bins. Type: vector of integers.
Ys Vector of vertical coordinates the bins. Type: vector of integers.
Ws Vector of positive weights of the bin at position (x,y). Type: vector of positive
doubles.
X Horizontal coordinate of a bin. Type: integer.
y Vertical coordinate of a bin. Type: integer.
w Weight of the bin at position (x,y). Type: positive double.
u Weight of the bin to be added to the weight at position (x,y). If a bin in position
(x,y) is absent, then it is added with weight equal to u. Type: positive double.
Details

The public methods of the Histogram2D class are described below.

14 Solver-class

Value

The add, update, and normalize does not return any value.
The size method returns the number of non-empty bins in h.

The balance method returns the sum of the weights in h.

Methods

Histogram2D(n, Xs, Ys, Ws): c’tor.

add(x, y, w): it adds a bin located at position (x,y) with weight w.

update(x, y, u): return the total mass balance of this histogram, that is, return the quantity Zi:l,...,n wW;.
size(): return the number of non-empty bins n of this histogram.

normalize(): normalize the weights of all non-empty bins, such that they all sum up to 1. Indeed,
this method implements the operation: w; = i

i=1,...,n Wi

balance(): return the total mass balance of this histogram, that is, return the quantity > ., w;.

See Also

See also compareOneToOne, compareOneToMany, compareAll, focusArea, and Solver.

Examples

library(SpatialkwD)

Define a simple histogram
h <- new(Histogram2D)

Add half unit of mass at positions (1,0) and (0,1)
h$add(1, @, 0.5)
h$add(@, 1, 9.5)

Add at position (5,5) a unit of mass
h$add(5, 5, 1)

Normalize the histogram
h$normalize()

Print the total weight (mass) of the histogram
print(sprintf("Histogram total weight = %f"”, h$balance()))

Solver-class Spatial-KWD Solver

Description

The Solver class is the main wrapper to the core algorithms implemented in the Spatial KWD
package. It has several methods that permit to compare two, or more, objects of type Histogram2D.
If you use the helper functions described at the begging of this document, you can avoid using this
class directly

Solver-class

Arguments

n
H1
H2
L

Xs
Ys
W1

w2

Ws

name

value

Details

15

Number of bins in the histograms Xs, Yw, W1, W2, Ws.
First object of type Histogram?2D.
Second object of type Histogram2D.

Approximation parameter. Higher values of L give a more accurate solution, but
they require a longer running time. Table X gives the guarantee approximation
bound as a function of L. Type: positive integer.

Vector of horizontal coordinates the bins. Type: vector of integers.
Vector of vertical coordinates the bins. Type: vector of integers.

Vector of weights of the bin at the positions specified by Xs and Ys. Type: vector
of doubles.

Vector of weights of the bin at the positions specified by Xs and Ys. Type: vector
of doubles.

Matrix of weights of the bin at the positions specified by Xs and Ys. Type: matrix
of doubles.

Name of the parameter to set and/or get. Type: string.

Value to set the corresponding parameter specified by name. Type: double.

The public methods of this class are:

The Solver class can be controlled by the list of parameters given in the following table, which can
be set with the setParam(name, value) method. A detailed description of each parameter is given

below.
Parameter Name Possible Values Default Value
Method exact, approx approx
Model bipartite, mincostflow mincostflow
Algorithm fullmodel, colgen colgen
Verbosity silent, info, debug info
TimeLimit Any positive integer smaller than INTMAX ~ INTMAX

OptTolerance Any value in [1079,1071] 106

* Method: set which method to use for computing the exact distance between a pair of his-
tograms. The options for this parameter are:

— exact: Compute the exact KW distance. This method is only helpful for small and sparse
spatial maps.

— approx: Compute an approximation KW distance which depends on the parameter L.
This is the default value.

* Model: set which network model to use for computing the exact distance between a pair of
histograms. The options for this parameter are:

— bipartite: Build a complete bipartite graph. This method is only helpful for small and
sparse spatial maps.

16 Solver-class

— mincostflow: Build an uncapacitated network flow. This is, in general, smaller than the
bipartite model, except for very sparse histograms.

e Algorithm: set which algorithm to use to compute an approximate distance between a pair of
histograms, which depends on the parameter L. The options for this parameter are:

— fullmodel: Build a complete network model and solve the corresponding problem.

— colgen: Build the network model incrementally while computing the KW distance. It
is the recommended method for very large dense spatial maps. On medium and small
spatial maps, the fullmodel could be faster.

The default value is set to colgen.

* Verbosity: set the level of verbosity of the logs. Possible values are silent, info, debug.
The last is more verbose than the other two. The default value is set to info.

e TimeLimit: set the time limit for computing the distance between a pair of spatial maps. Min
values: INTMAX. The default value is set to INTMAX.

* OptTolerance: Optimality tolerance on negative reduced cost variables to enter the basis.
Min value: 10~9, max value: 10~1. The default value is set to 10~°.

Methods

compareExact(Xs, Ys, W1, W2): compute the exact distance between the two vector of weights W1
and W2, on the convex hull of the points defined by the two vectors Xs and Ys. The algorithm
used by the solver is controlled by the parameter ExactMethod (see below). This method
returns a single value (double), which is the KW-distance between W1 and W2.

compareExact(Xs, Ys, W1, Ws): compute the exact distances between the vector of weights W1
and each of the vector of weights in Ws, on the convex hull of the points defined by the two vec-
tors Xs and Ys. The algorithm used by the solver is controlled by the parameter ExactMethod
(see below). This method returns a vector of double of the same size of Ws, representing the
distance of W1 to every element of Ws.

compareExact(Xs, Ys, Ws): compute a symmetric matrix of pairwise exact distances between all
the possible pairs of the vector listed in Ws. The algorithm used by the solver is controlled by
the parameter ExactMethod (see below).

compareApprox(Xs, Ys, W1, W2, L): compute the approximate distance between the two vector
of weights W1 and W2, on the convex hull of the points defined by the two vectors Xs and Ys.
The parameter ApproxMethod (see below) controls the algorithm used by the solver. This
method returns a single value (double), which is the KW-distance between W1 and W2.

compareApprox(Xs, Ys, W1, Ws, L): compute the approximate distances between the vector of
weights W1 and each of the vector of weights in Ws, on the convex hull of the points defined by
the two vectors Xs and Ys. The parameter ApproxMethod (see below) controls the algorithm
used by the solver. This method returns a vector of double of the same size of Ws, representing
the distance of W1 to every element of Ws.

compareApprox(Xs, Ys, Ws, L): compute a symmetric matrix of pairwise approximate distances
(which depends on the value of L) between all the possible pairs of the vector listed in Ws. The
parameter ApproxMethod (see below) controls the algorithm used by the solver.

runtime(): return the runtime in seconds to the last call to one of the compare methods. It reports
the runtime of the execution of the Network Simplex algorithm.

Solver-class 17

preprocesstime(): return the preprocessing time in seconds to the last call to one of the compare
methods. It reports the execution time to set up the main data structures and to compute the
convex hull of all the input histograms.

setParam(name, value): set the parameter name to the new value. Every parameter has a default
value. See below for the existing parameters.

getParam(name): return the current value of the parameter name.

See Also

See also compareOneToOne, compareOneToMany, compareAll, focusArea, and Histogram2D.

Index

* classes
Histogram2D-class, 13
Solver-class, 14

+ package
SpatialKWD-package, 2

compareAll, 2, 3,7,10,12, 14,17
compareAll (CompareAll-function), 3
CompareAll-function, 3
compareOneToMany, 2—4, 10, 12, 14, 17
compareOneToMany
(CompareOneToMany-function), 5
CompareOneToMany-function, 5
compareOneToOne, 24,6, 7, 12, 14, 17
compareOneToOne
(CompareOneToOne-function), 7
CompareOneToOne-function, 7

focusArea, 2,4, 7,10, 14, 17
focusArea (FocusArea-function), 10
FocusArea-function, 10

Histogram2D, 24, 7, 10, 12, 17
Histogram2D (Histogram2D-class), 13
Histogram2D-class, 13

Rcpp_Histogram2D (Histogram2D-class), 13

Rcpp_Histogram2D-class
(Histogram2D-class), 13

Rcpp_Solver-class (Solver-class), 14

Solver,2-4,7,10, 12, 14

Solver (Solver-class), 14
Solver-class, 14

SpatialKWD (SpatialKWD-package), 2
SpatialKWD-package, 2

18

	SpatialKWD-package
	CompareAll-function
	CompareOneToMany-function
	CompareOneToOne-function
	FocusArea-function
	Histogram2D-class
	Solver-class
	Index

