SlimR: Adaptive Machine Learning-Powered, Context-Matching Tool for Single-Cell and Spatial Transcriptomics Annotation

Annotates single-cell and spatial-transcriptomic (ST) data using context-matching marker datasets. It creates a unified marker list (‘Markers_list') from multiple sources: built-in curated databases (’Cellmarker2', 'PanglaoDB', 'scIBD', 'TCellSI', 'PCTIT', 'PCTAM'), Seurat objects with cell labels, or user-provided Excel tables. SlimR first uses adaptive machine learning for parameter optimization, and then offers two automated annotation approaches: 'cluster-based' and 'per-cell'. Cluster-based annotation assigns one label per cluster, expression-based probability calculation, and AUC validation. Per-cell annotation assigns labels to individual cells using three scoring methods with adaptive thresholds and ratio-based confidence filtering, plus optional UMAP spatial smoothing, making it ideal for heterogeneous clusters and rare cell types. The package also supports semi-automated workflows with heatmaps, feature plots, and combined visualizations for manual annotation. For more details, see Kabacoff (2020, ISBN:9787115420572).

Version: 1.1.1
Depends: R (≥ 3.5)
Imports: cowplot, dplyr, ggplot2, patchwork, pheatmap, readxl, scales, Seurat, tidyr, tools, tibble
Suggests: crayon, RANN, testthat (≥ 3.0.0)
Published: 2026-02-05
DOI: 10.32614/CRAN.package.SlimR
Author: Zhaoqing Wang ORCID iD [aut, cre]
Maintainer: Zhaoqing Wang <zhaoqingwang at mail.sdu.edu.cn>
BugReports: https://github.com/zhaoqing-wang/SlimR/issues
License: MIT + file LICENSE
URL: https://github.com/zhaoqing-wang/SlimR
NeedsCompilation: no
Materials: README, NEWS
CRAN checks: SlimR results

Documentation:

Reference manual: SlimR.html , SlimR.pdf

Downloads:

Package source: SlimR_1.1.1.tar.gz
Windows binaries: r-devel: SlimR_1.1.0.zip, r-release: SlimR_1.1.1.zip, r-oldrel: SlimR_1.1.1.zip
macOS binaries: r-release (arm64): SlimR_1.1.0.tgz, r-oldrel (arm64): SlimR_1.1.0.tgz, r-release (x86_64): SlimR_1.1.1.tgz, r-oldrel (x86_64): SlimR_1.1.1.tgz
Old sources: SlimR archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SlimR to link to this page.