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1 Introduction

The study of animal movement behaviour, recently reframed in the 'Movement Ecology’ paradigm
(Nathan 2008), is key to a variety of fields including landscape ecology, species distribution
modeling, and population size estimation among others (Turchin 1998; Nathan 2008; Royle et al
2014). A common feature in the modeling of animal movement data (Sims et al 2008; Humphries
et al 2010; Viswanathan et al 2010; reviews in Patterson et al 2008, Schick et al 2008, Smouse
et al 2010, and Hooten et al 2017), used also in fields as varied as anthropology (Raichlen et
al 2014), paleontology (Sims et al 2014), cell biology (Dickinson & Tranquillo 1993), tumour
angiogenesis (Plank & Sleeman 2003), and molecular ecology (Hoban 2014), is the comparison
between real and simulated, spatially-explicit, individual trajectories. Despite the increasing



availability of (GPS) telemetry data and of powerful statistical and modeling approaches for the
study of movement, lack of suitable analytical software and computational power still constrains
our comprehension of animal movement patterns (Morales et al 2010; Calabrese et al 2016;
Michelot et al 2016; Hooten et al 2017).

In particular, we note that while software for simulating individual trajectories of species
that move without restrictions in the landscape (species moving in a bi-dimensional homoge-
neous space) is available (e.g., Calenge et al 2009; Beyer 2012012, used e.g. in Fortin et al
2005; Humphries et al. 2013; Michelot et al 2016), we are aware of no appropriate software
for simulating spatially-explicit, individual movement trajectories of species inhabiting (or in-
tensively using) linear or dendritic landscapes (e.g., trouts or otters in rivers, humans along
roads) or somehow conditioned by landscape heterogeneity (e.g., species moving along corridors
or avoiding certain habitat features). This lack of software may at least partly explain why,
while a number of studies focused on marine environments (e.g., Sims et al 2008; Humphries
et al 2010; Viswanathan 2010; Reynolds 2014; Hussey et al 2015), movement ecology has been
poorly investigated in freshwater linear landscapes (e.g., river networks), also called dendritic
(DENSs - Peterson et al 2013) - or highly structured (Sutherland et al 2014) - ecological networks.
Knowledge on the movement ecology of freshwater aquatic and semiaquatic species is in fact
particularly scant.

SiMRiv was specifically conceived to allow simulating individual-based, spatially-explicit
movements in river networks and heterogeneous landscapes, thus filling the above-highlighted
gap of software simulating movements in DENs. More importantly, the software was thought
and developed to be highly flexible, allowing to simulate trajectories of any species living in
any landscape, irrespective of its complexity (including totally homogeneous landscapes), with
precisely the same algorithm. It thus allows to develop realistic mechanistic movement models
within the multistate markov modeling framework (e.g., Morales et al 2004; McClintock et al
2012; Michelot et al 2016), while taking into account environmental complexity.

In this document, we: (i) introduce how to prepare the data for the simulations; (ii) report
the main functionalities of the software; (iii) introduce some examples of use of the software;
and (iv) provide an overview on main software’s features we would like to improve or develop.
We assume that you are somehow familiar with the basic concepts of Movement Ecology (see
reviews on this, as well as on the use of random walk models in Ecology, in Nathan 2008, Codling
et al 2008, Patterson et al 2008, Schick et al 2008, Smouse et al 2010), as well as with the R
language and environment. In case you need help for the ’raster’ package, you may want to
refer to its vignette. This is a work in progress, report of any bug or suggestion is warmly
welcomed.

2 Conducting basic simulations

In the simplest form, conducting simulations is straightforward. Using the default parameters
setting, individuals will be simulated in an homogeneous environment, will start at coordinates
(0, 0), and have a unit step length for all states. You only have to provide the movement type
of each state. This is done by defining a species. Let’s first look at the simplest case, a simple
Random Walk (cf. Turchin 1998):

# define a species with a single-state movement type

# characterized by a random walk

rand.walker <- species(state.RW())

# simulate one individual of this species, 10000 simulation steps
sim.rw <- simulate(rand.walker, 10000)
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http://cran.r-project.org/web/packages/raster/vignettes/Raster.pdf

> # plot trajectory
> plot(sim.rw, type = "1", asp = 1, main = "Random walk")

sim.rw[,2]
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state.RW is a shortcut function for defining a totally random movement state, with unit
step length. Now let’s try with a more interesting movement type, a simple Correlated Random
Walk (cf. Turchin 1998), where the direction taken in one step is correlated with the direction
of the previous step. For this you have the shortcut function state.CRW, to which you must
provide the amount of correlation, more precisely, the turning angle concentration parameter
of the wrapped normal distribution (below we use 0.98). This parameter varies between [0, 1],
being 0 no correlation (yielding a random walk state) and 1, full correlation (step direction does
not change, it’s always the same as the previous step). Obviously, state.RW() is a shortcut for

state.CRW(0).
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# define a species with a single-state movement type characterized
# by a correlated random walk with concentration=0.98
c.rand.walker <- species(state.CRW(0.98))

# simulate one individual of this species

# 10000 simulation steps

sim.crw <- simulate(c.rand.walker, 10000)

plot(sim.crw, type = "1", asp = 1, main = "Correlated Random walk")



Correlated Random walk
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Additionally, you have a third shortcut state.Resting(), which corresponds to a state
where the individual is stopped. These three shortcut functions are the bricks with which you
construct any complex multistate movement. You can combine them with + to define a multistate
movement, see next topic.

All simulations above were conducted with the step length = 1, which is the default. You
may set the desired step length for any state simply by adding a number to the state definition,
or you may set the same step length for all states by adding a number to the species itself.

define a species with a correlated random walk
and step length = 15

.rand.walker.15 <- species(state.CRW(0.98) + 15)
which, in single-state species, is the same as:
.rand.walker.15 <- species(state.CRW(0.98)) + 15
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3 Multi-state movement simulations

Multi-state movements require specifying the probabilities of transition between the movement
states (cf. Morales et al 2004). This transition matrix, which is a parameter you specify when
defining the species, has an overwhelming importance in the final movement pattern. Formally,
it is just a square matrix with all values in the range [0, 1|, and whose rows must sum to one
(but not columns). It should be read row-wise, that is, the cell at row 2 column 3 defines the
probability of the individual changing from state #2 to state #3.



As an example, let’s simulate a two-state movement, a Lévy-like walker, i.e. a walker who
alternates between random walks and correlated random walks. We can define the multi-state
movement by combining the two states like state .RW() + state.CRW(0.98). Then, we have to
provide the probabilities of changing from state #1 to state #2 and from state #2 to state #1.
A convenience function, transitionMatrix, is provided to build such matrix. In the example
below, we define the probabilities: #1 -> #2: 0.005; #2 -> #1: 0.01 We also set the step length
for both states to 25.

# a Lévy walker can be approximated by a two-state walker
# composed of a random walk state and a correlated
# random walk state.
levy.walker <- species(state.RW() + state.CRW(0.98)
, trans = transitionMatrix(0.005, 0.01)) + 25
sim.lw <- simulate(levy.walker, 10000)
plot(sim.1w, type = "1", asp = 1, main = "Lévy-like walker")
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The same logic applies to any number of states, but obviously, the transition matrix quickly
gets large. See help(transitionMatrix) for details.

4 Parameterizing the simulation

SiMRiv provides a method (function adjustModel) for parameterizing the simulation model from
real trajectory data, using an heuristic optimization algorithm, which allows parameterizing



high-frequency simulation models to low frequency real data. It works by numerically finding
combinations of input parameters that minimize the differences between the real trajectory and
simulated trajectories - at a higher frequency - after downsampled to match real frequency. More
on this later; meanwhile see the working example in help(adjustModel).

5 Simulating in heterogeneous environments

SiMRiv can be used to simulate movements in an homogeneous environment, in which case
you don’t need to import data. However, if you want to conduct simulations in heterogeneous
environments (which includes riverscapes), a resistance raster must be given as input to the
simulation procedure. This raster defines, for all pixels in space, the propensity of the individuals
to move within/into each pixel (see details and discussion in help(simulate)). Any object of
class RasterLayer (from the raster package) with values in the range [0, 1] can be used, where 0
means a pixel with no resistance and 1 a pixel with ’infinite’ resistance (i.e. where the individual
cannot move).

5.1 Data import

SiMRiv provides a helper function resistanceFromShape to aid the conversion from vector data
(line and polygon shapefiles) to a resistance raster, optionally combining multiple rasters into one
(e.g., a physical resistance raster and a resource distribution raster). It is basically a wrapper for
the functionality provided by the raster package, combining multiple features in one function:

1. Rasterize polygon or line shapefiles with a user-given pixel resolution

2. Assign resistance values to a categorical field in the shapefile or directly read values from
a numerical field

3. Assign a background value for areas not covered by the polygons or lines
4. Create a buffer around lines (or polygons), optionally variable in size

5. Stack multiple shapefiles into one combined raster

Its use is exemplified below.

5.1.1 Importing shapefiles to use as resistance raster

The following example is the simplest case, it creates a binary resistance raster with 100m reso-
lution, assigning resistance 0 to areas covered by polygons in the given shapefile and resistance
1 to areas not covered. You can change these values with the parameters field (defaults to 0)
and background (defaults to 1). The same works for line shapefiles.

> resistance <- resistanceFromShape(
+ system.file('"doc/landcover.shp", package="SiMRiv")
+ , res = 100)

Reading layer “landcover' from data source
*/tmp/RtmpLRkyas/Rinst11fd2db6Bed64/SiMRiv/doc/landcover.shp'
using driver “ESRI Shapefile'

Simple feature collection with 8 features and 1 field

Geometry type: POLYGON



Dimension: XY

Bounding box: =xmin: 684645.8 ymin: 4618784 xmax: 697081.3 ymax: 4639516
Projected CRS: 32629

> plot(resistance, axes = F, col=map.pal("reds"))

The following example creates a resistance raster with 100m resolution by importing a poly-
gon shapefile while assigning different resistance values to each land cover class (given by the
mapvalues parameter) provided in the shapefile field coverclass. All pixels not covered by a
polygon are assigned a resistance of 0.9. Note that you can add a margin around the extent of the
shapes (here, we used a 3000 m margin), to minimize the boundary effect in simulations: during
simulations, all area outside the extent of the resistance raster is given resistance 1, which makes
the simulated individuals never move out of this rectangle, thus creating a boundary effect.

> resistance <- resistanceFromShape(

+ system.file('"doc/landcover.shp", package="SiMRiv")
+ , res = 100, field = "coverclass", mapvalues = c(
+ "forest'" = 0.5, "urban'" = 1, "dam" = 0

+ "shrubland" = 0.75)

+ , background = 0.9, margin = 3000)

Reading layer “landcover' from data source
*/tmp/RtmpLRkyas/Rinst11fd2db6ed64/SiMRiv/doc/landcover. shp'



using driver “ESRI Shapefile'
Simple feature collection with 8 features and 1 field
Geometry type: POLYGON
Dimension: XY
Bounding box: =xmin: 684645.8 ymin: 4618784 xmax: 697081.3 ymax: 4639516
Projected CRS: 32629

> plot(resistance, axes = F, col=map.pal('"reds"))
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The same applies for line shapefiles. In this case, it is useful to make a buffer around lines,
otherwise the rasterized version may be too thin for the simulation to adequately proceed. Note
that, by default, if no buffer is used, the rasterization of lines 'projects’ the lines into all cells
that are touched by the line (see help(rasterize) of the raster package), which results in
1-pixel wide features. This should be avoided; always make sure that the thinnest line elements
are at least 3 pixel wide in the resistance raster. In this example with a river (using a buffer of
150m), resistance is manually assigned according to the river order field 'Order’ of the shapefile
(higher resistance values for lower stream order sectors - i.e., the species is assumed to use main
river sectors more than tributaries):

> resistance <- resistanceFromShape (

+ system.file("doc/river-sample.shp", package="SiMRiv")
+ , res = 100, field = "Order", mapvalues = c("2" = 0
+ II3H = 0'2, !I4II = 0.4, l15ll = 0‘6’ H6H = 0'8)

+ , buffer = 150, background = 0.95, margin = 3000)



Reading layer “river-sample' from data source
" /tmp/RtmpLRkyas/Rinst11fd2db6e464/SiMRiv/doc/river-sample.shp'
using driver “ESRI Shapefile'’
Simple feature collection with 220 features and 1 field
Geometry type: LINESTRING
Dimension: Xy
Bounding box: =xmin: 678213.6 ymin: 4606303 xmax: 698782.2 ymax: 4649171
Projected CRS: 32629

> plot(resistance, axes = F, col=map.pal("reds"))

EEOOOO

A better, and possibly more realistic, option for rivers, instead of varying the resistance,
would be to use a buffer proportional to the river order (alternatively, both solutions may be
applied). In that case, we're better off loading the shape separately:

> # load shapefile
> river.shape <- sf::st_read(system.file("doc/river-sample.shp", package="SiMRiv"))

Reading layer “river-sample' from data source
" /tmp/RtmpLRkyas/Rinst11fd2db6e464/SiMRiv/doc/river-sample.shp'
using driver “ESRI Shapefile'’

Simple feature collection with 220 features and 1 field

Geometry type: LINESTRING



Dimension: XY
Bounding box: =xmin: 678213.6 ymin: 4606303 xmax: 698782.2 ymax: 4649171
Projected CRS: 32629

# below you can provide the shapefile filename, or the
# R shapefile object itself
resistance <- resistanceFromShape(river.shape, res = 100
, buffer = (9 - river.shape$Order) ~ 3
, background = 0.95, margin = 3000)
# buffer here is just some magical function to convert river
# order into a meaningful value in the [0, 1] range!

V V.V V + + VvV VvV

plot(resistance, axes = F, col=map.pal("reds"))

5.1.2 Combining multiple shapefiles or rasters in one resistance raster

Often one needs to combine data from different shapefiles into a combined resistance raster.
The following example places the river on top of the land cover shape, using the parame-
ter baseRaster. The extent is automatically adjusted to fit all provided shapefiles’ extents
(plus the optional margin). Note also that, if we want a constant resistance value for all
lines/polygons in a shape, we may specify the value with the parameter field (as is done
below in river.landcover), instead of giving a field name (as is done below in landcover).
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> landcover <- resistanceFromShape (

+ system.file('"doc/landcover.shp", package="SiMRiv")
+ , res = 50, field = "coverclass", mapvalues = c(
+ "forest'" = 0.5, "urban'" = 1, "dam" = 0

+ , "shrubland" = 0.75), background = 0.95)

Reading layer “landcover' from data source
" /tmp/RtmpLRkyas/Rinst11fd2db6e464/SiMRiv/doc/landcover.shp'
using driver “ESRI Shapefile'’
Simple feature collection with 8 features and 1 field
Geometry type: POLYGON
Dimension: XY
Bounding box: =xmin: 684645.8 ymin: 4618784 xmax: 697081.3 ymax: 4639516
Projected CRS: 32629

> river.landcover <- resistanceFromShape(

+ system.file("doc/river-sample.shp", package="SiMRiv")
+ , baseRaster = landcover, buffer = 100, field = 0

+ , background = 0.95, margin = 3000)

Reading layer “river-sample' from data source
" /tmp/RtmpLRkyas/Rinst11fd2db6e464/SiMRiv/doc/river-sample.shp'
using driver “ESRI Shapefile'
Simple feature collection with 220 features and 1 field
Geometry type: LINESTRING
Dimension: XY
Bounding box: =xmin: 678213.6 ymin: 4606303 xmax: 698782.2 ymax: 4649171
Projected CRS: 32629

> plot(river.landcover, axes = F, col=map.pal("reds"))

11
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5.2 Conducting simulations on a resistance raster

When simulating in heterogeneous environments, one further parameter must be taken into
account, which is how the species perceives the environment to make its movement decisions.
This is implemented as the concept of perceptual range: the area around the individual’s
current position, which it takes into account for making decisions (Lima & Zollner 1996). As
of version 1.0.7, this is implemented as a circle centered on the individual’s position, with a
user-specified radius.

During simulations, at each step, the turning angles of the individuals will be biased towards
lower resistance areas, and this is evaluated only within the radius of the perceptual range. This
parameter also has an overwhelming importance in the resulting movement patterns. A species
with a wider perceptual range will be attracted to lower resistance areas, even if it has to cross
high resistance areas, because it 'sees’ farther. Conversely, a species with a small perceptual
range will not ’see’ those lower resistance areas, so it will be detained by high resistance areas.
This can have important consequences, for example, when simulating semiaquatic species in a
river: the size of the perceptual range will determine how likely the individuals will take overland
shortcuts between river segments.

In order to allow more flexibility, the perceptual range is an attribute of each state (not of
the species). For ease of use, the size of the perceptual range of a state can be set simply by
multiplying the state by a number, for example state .RW() * 1000 will define a random walk
state with a perceptual range of 1000 m. If you want to set the same value for all the states of
a species, you can directly multiply the species by a number, e.g. levy.walker * 1500 will set
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the perceptual range of both states of the Lévy-like walker to 1500 m.

In the next example, we simulate a Lévy-like walker in a riverscape, assuming a semiaquatic
species, i.e. that moves mainly in water but may also walk overland if needed (e.g., an otter or
a Pyrenean desman). This example also demonstrates how to set the starting coordinates to a
random pixel with given resistance value(s).

# this is just for ensuring the same results - don't use it in your code
set.seed(6)
# set starting coordinates anywhere within the river
init <- terra::xyFromCell (river.landcover, sample(which(values(river.landcover) == 0), 1))
# adding a number to a species 1s a shortcut for setting
# the step lengths of all states
# multiplying is a shortcut for setting the perceptual range radius
levy.walker <- (levy.walker + 15) * 1000
# simulate
sim.lw.river <- simulate(levy.walker, 40000
, resist = river.landcover, coords = init)
# plot resistance
plot(river.landcover, axes = F, col=map.pal("reds")
, ylim = range(sim.lw.river[, 2]), xlim = range(sim.lw.river[, 1]))
# plot trajectory on top of resistance
lines(sim.lw.river)

VVV +VV+ YV VVVVVVVYV.YV
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6 Advices for conducting bias-free simulations

6.1 Step lengths and resolution

When using resistance rasters, it is important to adequately choose the step length. You should
consider the size of the raster features when choosing an appropriate step length: if the step
length is larger than the smaller features (say, the width of a river), the individuals will jump
over those features, and the simulation will not be correct. Step length should always be small,
close to the real steps of the simulated species, and much smaller than the smallest landscape
features. This is because the SiMRiv simulation algorithm was developed in the logic of conduct-
ing infinitesimal simulations. If you want to have simulated data which is comparable to real
tracking data, you must downsample the simulation results with the function sampleMovement.
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8 To do list and opportunities for collaborations

1. spatial bias (although it is possible to condition movements based on resistance, the soft-
ware in its current version does not allow a more standard formulation of the spatial bias,
e.g. Turchin 1998; McClintock et al. 2012 - i.e. to simulate a biased random, or correlated
random, walk);

2. separation between physical resistance and habitat suitability, which should have different
effects on movement;
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3. simulations of multiple interacting individuals;

4. improving current method for input parameter estimation (adjustModel) or assessing the
applicability of other methods (cf. Hartig et al 2011)

5. other distributions for turning angles and steplength (currently, we use wrapped normal
for the former and a fixed value for the latter);

We highly encourage interested programmers to join our project on GitHub and
contribute by improving and further extending the package.
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