Package ‘ShortForm’

January 20, 2025
Type Package

Title Automatic Short Form Creation
Version 0.5.6
Date 2024-11-26

Description Performs automatic creation of short forms of scales with an
ant colony optimization algorithm and a Tabu search. As implemented in the
package, the ant colony algorithm randomly selects items to build a model of
a specified length, then updates the probability of item selection according
to the fit of the best model within each set of searches. The algorithm
continues until the same items are selected by multiple ants a given number
of times in a row. On the other hand, the Tabu search changes one parameter at
a time to be either free, constrained, or fixed while keeping track of the
changes made and putting changes that result in worse fit in a * " tabu" list
so that the algorithm does not revisit them for some number of searches.
See Leite, Huang, & Marcoulides (2008) <doi:10.1080/00273170802285743> for
an applied example of the ant colony algorithm, and Marcoulides & Falk (2018)
<doi:10.1080/10705511.2017.1409074> for an applied example of the Tabu search.

License LGPL (>=2.0, < 3) | Mozilla Public License
LazyData TRUE

RoxygenNote 7.3.1

Suggests knitr, MplusAutomation (>= 0.7), rmarkdown, testthat

Imports lavaan (>= 0.5-22), ggplot2, ggrepel, tidyr, stringr, methods,
doSNOW, parallel, foreach

Depends R (>=3.5.0)
URL https://github.com/AnthonyRaborn/ShortForm

BugReports https://github.com/AnthonyRaborn/ShortForm/issues
Encoding UTF-8
NeedsCompilation no

Author Anthony Raborn [aut, cre] (<https://orcid.org/0000-0002-8083-4739>),
Walter Leite [aut]

https://doi.org/10.1080/00273170802285743
https://doi.org/10.1080/10705511.2017.1409074
https://github.com/AnthonyRaborn/ShortForm
https://github.com/AnthonyRaborn/ShortForm/issues
https://orcid.org/0000-0002-8083-4739

2 .onAttach

Maintainer Anthony Raborn <anthony.w.raborn@gmail.com>

Repository CRAN

Date/Publication 2024-11-27 06:40:01 UTC

Contents
OnAttach . . L L L e 2
ACO-Class e e e e 3
addparam L. e e e e e 4
antcolonylavaan. L. 5
antcolony.mplus oL e e e 10
exampleAntModel 15
modelCheck-class e 16
plot, ACO,ANY-method e 16
plot,SA,ANY-method L 17
plot, TS, ANY-method o 0 L o L 17
refitmodel L 18
SA-Class e e e 18
search.prep L e 19
shortExampleAntModel L 20
ShortForm e 21
ShortFormStartup e e e 21
show,ACO-method e 21
show,SA-method e 22
show,TS-method 22
simulatedAnnealing L 23
simulated_test_data e 26
summary,ACO-method 26
summary,SA-method o 27
summary,TS-method 27
tabu.sem L L e 28
tabuShortForm e 29
TS-class e e e e 32

Index 33

.onAttach Package Attach Hook Function
Description

Hook triggered when package attached.

Usage

.onAttach(lib, pkg)

ACO-class 3

Arguments
lib a character string giving the library directory where the package defining the
namespace was found
pkg a character string giving the name of the package
Details

Idea taken from https://github.com/ntguardian/MCHT/blob/master/R/StartupMessage.R

Examples

ShortForm:::.onAttach(.libPaths()[1], "ShortForm")

ACO-class An 84 class for the Ant Colony Optimization Algorithm

Description

An S4 class for the Ant Colony Optimization Algorithm

Value

An S4 object of class ‘ACO".

Slots

function_call The original function call.
summary A summary ‘data.frame‘ indicating the algorithm results for each iteration.

final_solution A ‘matrix‘ with the final solution information, including fit indices, selected
items, and pheromone level.

best_model A ‘lavaan‘ object of the final solution.
best_syntax A ‘character® vector of the final solution model syntax.

runtime A ‘difftime* object of the total run time of the function.

4 add.param

add.param Adds a parameter to the given search table. Checks whether parameter
is involved in any (in)equality constraints in a fitted lavaan model

Description

Adds a parameter to the given search table. Checks whether parameter is involved in any (in)equality
constraints in a fitted lavaan model

Usage
add. param(
fitted.model,
ptab,
syntax,
nullval = NULL,
free = NULL,
block = NULL
)
Arguments

fitted.model fitted lavaan model

ptab search table

syntax model.syntax specifying the parameter to add to the current table

nullval optional numeric value specifying what the parameter should be fixed to (when
fixed)

free optional logical value specifying whether the parameter should initially be set
free (or not)

block optional numeric value specifying the group number to which the parameter
corresponds

Value

A data. frame with lavaan-formatted parameter values.

Author(s)
Carl F. Falk

References

doi:10.1080/10705511.2017.1409074

See Also
Other Tabu Search: refit.model(), search.prep()

https://doi.org/10.1080/10705511.2017.1409074

antcolony.lavaan 5

Examples

Not run:

load simulation data and select columns used in this example
data(simulated_test_data)

tabuData <- simulated_test_datal, c(1:10)]

specify an improper model (improper because data is unidimensional)
tabuModel <- "

Ability =~ Iteml + Item2 + Item3 + Item4

FakeAbility =~ Item5 + Item6 + Item7 + Item8

Ability ~ Outcome

FakeAbility ~ @*Qutcome”

run the initial misspecified model for Tabu

init.model <- lavaan::lavaan(

model = tabuModel, data = tabuData,

auto.var = TRUE, auto.fix.first = FALSE, std.lv = TRUE, auto.cov.lv.x = TRUE
)

Use search.prep to prepare for the Tabu search
ptab <- search.prep(fitted.model = init.model, loadings = TRUE, fcov = TRUE, errors = FALSE)

add an additional (mispecified) parameter
additional.param <- "Iteml ~~ @.5xItem3”

ptab <- add.param(fitted.model = init.model, ptab = ptab, syntax = additional.param)

Perform Tabu Search
trial <- tabu.sem(init.model = init.model, ptab = ptab, obj = AIC, niter = 2, tabu.size = 5)

End(Not run)

antcolony.lavaan A function to implement the ant colony optimization algorithm for
short form specification searches with the package lavaan.

Description

The Ant Colony Optimization (ACO) algorithm (Dorigo & Stutzle, 2004) can produce short forms
of scales that are optimized with respect to characteristics selected by the developer, such as model
fit and predictive relationships with other variables. The algorithm is based on the foraging behavior
of a group of ants, which start searching for food in a variety of directions and then eventually all
ants converge to the shortest distance to the food source. This behavior occurs because ants leave a
pheronome trail behind as they search for food and ants in shorter paths leave stronger pheronome
trails, which are detected by other ants and that will lead them to follow the shortest trail.

6 antcolony.lavaan

Usage

antcolony. lavaan(
data = NULL,
sample.cov = NULL,
sample.nobs = NULL,

ants = 20,
evaporation = 0.9,
antModel,
list.items = NULL,
full = NULL,

i.per.f = NULL,

factors = NULL,

bifactor = NULL,

steps = 50,

lavaan.model.specs = list(model.type = "cfa”, auto.var =T, estimator = "default”,
ordered = NULL, int.ov.free = TRUE, int.lv.free = FALSE, auto.fix.first = TRUE,
auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE, auto.th = TRUE,
auto.delta = TRUE, auto.cov.y = TRUE, std.lv = F, group = NULL, group.label = NULL,

group.equal = "loadings"”, group.partial = NULL, group.w.free = FALSE),

pheromone.calculation = "gamma”,

fit.indices = c("cfi”, "tli", "rmsea”),

fit.statistics.test = "(cfi > 0.95)&(tli > 0.95)&(rmsea < 0.06)",

summaryfile = NULL,

feedbackfile = NULL,

max.run = 1000,

parallel = T
)
Arguments

data The data being used in data frame format. Default value is null. Only one of
data or sample. cov should be used.

sample.cov The sample covariance matrix. See lavaan for the specific format needed. De-
fault value is null. Only one of data or sample. cov should be used.

sample.nobs A numeric value indicating the number of observations in the sample covariance
matrix. If sample. cov is used, this must be filled in. Default value is null.

ants A numeric value indicating the number of ants to send (e.g., number of short
forms to evaluate) per iteration. Default value is 20.

evaporation A numeric value which sets the percentage of the pheromone that is retained

after evaporation between steps of the algorithm. Default value is 0.9, indicating
10 (0,1), exclusive.

antModel The lavaan formatted model. See lavaan for more details. Defaults to the default
lavaan values. NOTE: Each factor and/or regression needs to be specified on a
single line. Newline breaks and carriage returns WILL break the function.

list.items A list containing one or more character vectors of item names for each factor,
where each factor is a separate element of the list. The items should be input in
the order in which the factors are input in i.per.f and factors.

antcolony.lavaan

full

i.per.f

factors

bifactor

steps

A numeric value indicating the total number of unique items in the test or scale.

Vector with number of items per factor (e.g. target number), in the same order
of list.items and factors.

Character vector with names of factors in the same order of list.items and
i.per.f.

Either the name of the factor that all of the chosen items will load on (as char-
acter), or ‘NULL if the model is not a bifactor model.

A numeric value that sets the stopping rule, which is the number of ants in a row
for which the model does not change.

lavaan.model. specs

A list which contains the specifications for the lavaan model. The default values
are the defaults for lavaan to perform a CFA. These are automatically set inter-
nally, then updated by the user-provided values. Note that this drastically affects
the algorithm, and care must be taken to ensure that the algorithm can fit valid
models as it searches for the best model. See the default arguments for exam-
ples of what you can change and lavaan for more details on what arguments are
available to change.

pheromone.calculation

fit.indices

fit.statistics.

summaryfile

feedbackfile

max.run

A character string specifying the method for calculating the pheromone strength.
Must be one of "gamma" (standardized latent regression coefficients), "beta"
(standardized observed regression coefficients), "regression" (both latent and
observed regression coefficients, if they exist) or "variance" (proportion of
variance explained by model). You must specify the entire string. Default is
gamma.

The fit indices (in lavaan format) extracted for model optimization. See lavaan
for more details.

test

A character vector of the logical test being used for model optimization. The
default is " (cfi > 0.95)&(tli > 0.95)&(rmsea<0.06)". The format for the
logical test should match 1) the names of the indices being used in lavaan and
2) the default provided above. At least one fit index must be included.

The name of the summary file generated. A .txt file is suggested. Default is
"summary.txt" and writes into the current working directory. This file writes a
line for each ant within each step and includes (a) a vector of a 0/1 value for each
item indicating whether the item was selected by that ant, (b) the run number,
(c) the count number, (d) the ant number, and (e) the current pheromone level.

The name of the feedback file generated. An .html file is suggested. Default
is "iteration.html" and writes into the current working directory. This file saves
the result of each run, which includes (a) the run number, (b) the count num-
ber, (c) the ant number, (d) the step number (if the current run is successful)
or "Failure" (if the current run is unsuccessful), and for successful runs (f) the
chosen fit statistics (from fit.indices), the average of the gammas and betas
(standardized regression coefficients), and the overall variance explained of the
current run.

The maximum number of ants to run before the algorithm stops. This includes
failed iterations as well. Default is 1000.

8 antcolony.lavaan

parallel An option for using parallel processing. If TRUE, the function will utilize all
available cores (up to the number of ants). Default is TRUE.

Details

This function sends a specified number of ants per iteration, which randomly select items to build
a model, then evaluates the model based on pheromone levels. The pheromone levels are updated
after each iteration according to the best-fitting model of that iteration. The algorithm’s stopping
rule is to end the search when a certain solution is the same for a given number of ants in a row.

PREPARATORY STEPS: For the ACO algorithm implementation for short for selection, the fol-
lowing decisions are needed:

1. Determine the target size for the short form.
2. Determine which characteristics should be optimized.

3. Define how the pheronome level will be computed: This is a function of the characteristics of the
short form that will be optimized. In Leite, Huang and Marcoulides (2008), the pheromone level
was zero if model fit indices did not meet Hu and Bentler’s (1999) suggested thresholds, and equal
to the sum of path coefficients of a predictor variable if model fit indices met thresholds. Currently,
the package only implements pheromone calculation based on regression coefficients or variance
explained, with user-selected model fit index thresholds.

4. Define how many short forms should be evaluated before the best-so-far pheronome level is
examined. Leite, Huang and Marcoulides (2008) used 10 short forms.

5. Define the percentage of pheronome evaporation, if any. Leite, Huang and Marcoulides (2008)
used 5%.

6. Define convergence criterion. Leite, Huang and Marcoulides (2008) set the algorithm to converge
if the short form did not improve in 100 x number of short forms in step 4.

IMPLEMENTATION: Once these decisions are made, the ACO algorithm selects short forms with
the following steps:

Step 1. All items are assigned an initial weight of 1.

Step 2. A set of n short forms is selected by sampling with probability proportional to the item
weights.

Step 3. Fit the latent variable model to the n short forms.

Step 4. Calculate the pheromone levels for the n short forms. Define the best-so-far pheronome
level (if iteration 1) or compare the current best pheronome from the set of n short forms to the
best-so-far pheronome.

Step 5. If the pheromone level of the best short form from step 4 exceeds the best-so-far pheronome
level, update the best-so-far pheromone level and add it to the current weight of the items of the
best short form.

Step 6. Return to step 2 until convergence criterion is reached.

Value

A list with four elements: the first containing a named matrix with final model’s best fit indices, the
final pheromone level (either the mean of the standardized regression coefficients (gammas, betas,
or both), or the mean variance explained), and a series of 0/1 values indicating the items selected in

antcolony.lavaan 9

the final solution, the second element containing tbe summary matrix of the best fit statistic value(s)
for each run, the items chosen for said best fit, the mean gamma, beta, and variance explained for
the best fit, and the item pheromone levels after each run, the third containing the best-fitting lavaan
model object, and the fourth containing the best-fitting model syntax.

Author(s)

Anthony W Raborn, <anthony.w.raborn@gmail. com>

See Also

antcolony.mplus

Other Ant Colony Algorithms: antcolony.mplus()

Examples

a 3-factor example using the HolzingerSwineford1939 data from ~lavaan

some changes to the default values
notice that in this example we are recreating the original model
abilityShortForm <- antcolony.lavaan(

data = lavaan::HolzingerSwineford1939,

ants = 2, evaporation = 0.7,

antModel = " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 ",
list.items = list(c(
"x1",
"x2", "x3"
), c("x4", "x5", "x6"), c("x7", "x8", "x9")), full =9, i.per.f =
c(3, 3, 3), factors = c("visual”, "textual”, "speed"), steps = 2, fit.indices =

c("cfi"), fit.statistics.test = "(cfi > 0.6)", summaryfile =
NULL, feedbackfile = NULL, max.run = 2, parallel = FALSE
)
Not run:
using simulated test data and the default values for lavaan.model.specs
first, read in the original or "full” model
data(exampleAntModel) # a character vector for a lavaan model

then, create the list of the items by the factors

in this case, all items load onto the general 'Ability' factor

list.items <- list(c(
"Item1”, "Item2", "Item3”, "Item4"”, "Item5",
"Item6"”, "Item7", "Item8", "Item9"”, "Item10Q",
"Item11”, "Item12", "Item13”, "Item14"”, "Iteml15",
"Item16”, "Item17", "Item18", "Item19"”, "Item20",
"Ttem21", "Item22", "Item23"”, "Item24", "Item25",
"Item26”, "Item27", "Item28", "Item29"”, "Item30",
"Item31"”, "Item32", "Item33"”, "Item34", "Item35",
"Item36"”, "Item37", "Item38", "Item39"”, "Item40",
"Ttemd1”, "Itemd2”, "Item43”, "Itemdd”, "Itemd5",
"Item46"”, "Itemd47", "Item48", "Itemd49"”, "Item50",

10 antcolony.mplus

"Item51"”, "Item52", "Item53"”, "Item54", "Item55", "Item56"
)

load the data
data(simulated_test_data)

finally, call the function with some minor changes to the default values.
abilityShortForm <- antcolony.lavaan(

data = simulated_test_data,

ants = 5, evaporation = 0.7, antModel = exampleAntModel,

list.items = list.items, full = 56, i.per.f = 20,

factors = "Ability", steps = 3, fit.indices = c("cfi”, "rmsea"),
fit.statistics.test = "(cfi > 0.95)&(rmsea < 0.05)",
summaryfile = "summary.txt",

feedbackfile = "iteration.html”,
max.run = 500

)

abilityShortForm # print the results of the final short form

End(Not run)

antcolony.mplus A function to implement the ant colony optimization algorithm
for short form specification searches, either using MPlus directly
via system calls or using Mplus indirectly with the package
MplusAutomation.

Description

The Ant Colony Optimization (ACO) algorithm (Dorigo & Stutzle, 2004) can produce short forms
of scales that are optimized with respect to characteristics selected by the developer, such as model
fit and predictive relationships with other variables. The algorithm is based on the foraging behavior
of a group of ants, which start searching for food in a variety of directions and then eventually all
ants converge to the shortest distance to the food source. This behavior occurs because ants leave a
pheromone trail behind as they search for food and ants in shorter paths leave stronger pheromone
trails, which are detected by other ants and that will lead them to follow the shortest trail.

Usage

antcolony.mplus(
ants = 20,
evaporation = 0.95,
mplus = NULL,
list.items = NULL,
full = NULL,
i.per.f = NULL,
factors = NULL,
steps = 50,

antcolony.mplus

max.run = 1000,

resultfile = NULL,
summaryfile = "summary.txt"”,
min.CFI = 0.95,

min.TLI = 0.95,

max.RMSEA = 0.06,
feedbackfile = "iteration.html”,
loc.gammas,

loc.variances,

predictors,

var.predictors,
Mplus.Automation = FALSE,
dataOut = "tempModel.dat",
modelOut = "tempModel.inp”

11

)
Arguments

ants A numeric value indicating the number of ants to send send (short forms to
evaluate) per iteration. Default value is 20.

evaporation A numeric value which sets the percentage of the pheremone that is retained
after evaporation between steps of the algorithm. Default value is 0.9, indicating
10 (0,1), exclusive.

mplus When Mplus.Automation=FALSE, this is a character value indicating the name
of the MPlus input file without the file extension ".inp". If not in the current
working directory, include the full file path where it is located. This file will be
changed during the ant colony search, so it’s suggested to make a backup of the
original file before running the function. When Mplus.Automation=TRUE, this
is an object of class mplusObject created by MplusAutomation and containing
the initial model.

list.items A list containing one or more character vectors of item names for each factor,
where each factor is a separate element of the list. The items should be input in
the order in which the factors are input in i.per.f and factors.

full A numeric value indicating the total number of unique items in the test or scale.

i.per.f A vector with number of items per factor (e.g. target number), in the same order
of list.items and factors.

factors A character vector with the names of the factors in the same order of 1ist.items
and i.per.f.

steps A numeric value that sets the stopping rule, which is the number of ants in a row
for which the model does not change.

max.run The maximum number of ants to run before the algorithm stops. This includes
failed iterations as well. Default is 1000.

resultfile A character vector containing the file path where the MPlus results for the cur-

rent ant model is saved. If the file is not in the current working directery, the full
path must be specified. Not used when Mplus.Automation=FALSE.

12

summaryfile

min.CFI

min.TLI

max . RMSEA

feedbackfile

loc.gammas

loc.variances

predictors

var.predictors

antcolony.mplus

A character vector containing the name of the summary file generated. A .txt
file is suggested. Default is "summary.txt" and writes into the current working
directory. This file writes a line for each ant within each step and includes (a) a
vector of a 0/1 value for each item indicating whether the item was selected by
that ant, (b) the run number, (c) the count number, (d) the ant number, and (e)
the current pheromone level.

A numeric value indicating the minimum CFI for "acceptable" model fit. Models
with CFI less than this value are automatically rejected. Default is 0.95.

A numeric value indicating the minimum TLI for "acceptable" model fit. Models
with TLI less than this value are automatically rejected. Default is 0.95.

A numeric value indicating the maximum RMSEA for "acceptable" model fit.
Models with RMSEA greater than this value are automatically rejected. Default
is 0.06

A character vector containing the name of the feedback file generated. An .html
file is suggested. Default is "iteration.html" and writes into the current work-
ing directory. This file saves the result of each run, which includes (a) the run
number, (b) the count number, (c) the ant number, (d) the step number (if the cur-
rent run is successful) or "Failure" (if the current run is unsuccessful), and for
successful runs (f) the value of CFI, TLI, and RMSEA fit indices, the average
of the gammas (standardized regression coefficients), and the overall variance
explained of the current run.

A numeric vector with the line numbers where the regression coefficients of the
MIMIC model start and end (locations). Not used with Mplus.Automation=TRUE

A numeric vector with the line numbers of the residual variances of the latent
factors. Not used with Mplus.Automation=TRUE

Character vector with names of predictor variables, if any.

A numeric vector with variances of the predictor(s), if any. Not used with
Mplus.Automation=TRUE

Mplus.Automation

dataOut

modelOut

Logical. If TRUE, uses the MplusAutomation package to modify the model as
the algorithm procedes. The "mplus" option will then be used as Defaults to
FALSE as it is in the process of being built.

A character vector specifying the location and name of the data file generated
by MplusAutomation for each iteration of the algorithm. Default is "temp-
Data.dat" and saves to the current working directory. When specifying the name,
be sure to use a data format that Mplus can read. You must change the work-
ing directory to the location in which this file will be saved. Only used when
Mplus.Automation=TRUE.

A character vector specifying the location and name of the Mplus model file
generated by MplusAutomation for each iteration of the algorithm. Default is
"tempModel.inp" and saves to the current working directory. When specifying
the name of the model file, it must be a ".inp" extension. You must change the
working directory to the location in which this file will be saved. Only used
when Mplus.Automation=TRUE.

antcolony.mplus 13

Details

This function sends a specified number of ants per iteration, which randomly select items to build
a model, then evaluates the model based on pheromone levels. The pheromone levels are updated
after each iteration according to the best-fitting model of that iteration. The algorithm’s stopping
rule is to end the search when a certain solution is the same for a given number of ants in a row.
When constructing the mplus dataset and when Mplus.Automation=FALSE, make sure that items
in ’categorical are’ and ’usevariables’ are specifications that take the same number of lines per short
form.

PREPARATORY STEPS: For the ACO algorithm implementation for short for selection, the fol-
lowing decisions are needed:

1. Determine the target size for the short form.
2. Determine which characteristics should be optimized.

3. Define how the pheromone level will be computed: This is a function of the characteristics of the
short form that will be optimized. In Leite, Huang and Marcoulides (2008), the pheromone level
was zero if model fit indices did not meet Hu and Bentler’s (1999) suggested thresholds, and equal
to the sum of path coefficients of a predictor variable if model fit indices met thresholds. Currently,
the package only implements pheromone calculation based on regression coefficients or variance
explained, with user-selected model fit index thresholds.

4. Define how many short forms should be evaluated before the best-so-far pheromone level is
examined. Leite, Huang and Marcoulides (2008) used 10 short forms.

5. Define the percentage of pheromone evaporation, if any. Leite, Huang and Marcoulides (2008)
used 5%.

6. Define convergence criterion. Leite, Huang and Marcoulides (2008) set the algorithm to converge
if the short form did not improve in 100 x number of short forms in step 4.

IMPLEMENTATION: Once these decisions are made, the ACO algorithm selects short forms with
the following steps:

Step 1. All items are assigned an initial weight of 1.

Step 2. A set of n short forms is selected by sampling with probability proportional to the items’
weights.

Step 3. Fit latent variable model to the n short forms.

Step 4. Calculate the pheromone levels for the n short forms. Define the best-so-far pheromone
level (if iteration 1) or compare the current best pheromone from the set of n short forms to the
best-so-far pheromone.

Step 5. If the pheromone level of the best short form from step 4 exceeds the best-so-far pheromone
level, update the best-so-far pheromone level and add it to the current weight of the items of the
best short form.

Step 6. Return to step 2 until convergence criterion is reached.

Value

A named matrix containing final model’s best RMSEA, CFI, and TLI values, the final pheromone
level (the mean of the standardized regression coefficients (gammas)), and a series of 0/1 values
indicating the items selected in the final solution.

14 antcolony.mplus

Author(s)

Walter Leite; Anthony W Raborn, <anthony.w.raborn@gmail.com>

References

doi:10.1080/00273170802285743

See Also

antcolony.lavaan

Other Ant Colony Algorithms: antcolony.lavaan()

Examples

Not run:
use MplusAutomation to find a 15-item short form of a simulated 56-item unidimensional test
first, create the list of the items by the factors
in this case, all items load onto the general 'Ability' factor
list.items <- list(c(
"Item1"”, "Item2", "Item3", "Item4"”, "Item5",
"Item6"”, "Item7"”, "Item8", "Item9", "Item1Q",
"Item11”, "Item12", "Item13”, "Item14"”, "Iteml15",
"Item16”, "Iteml17", "Item18", "Item19"”, "Item20",
"Item21", "Item22", "Item23", "Item24", "Item25",
"Item26”, "Item27", "Item28", "Item29"”, "Item30",
"Item31"”, "Item32", "Item33"”, "Item34", "Item35",
"Item36”, "Item37", "Item38", "Item39"”, "Item40",
"Item41”, "Item42", "Item43”, "Itemd4"”, "Item45",
"Item46", "Item47", "Item48"”, "Item49"”, "Item50",
"Item51", "Item52", "Item53", "Item54", "Item55",
"Item56"
)
then, load the data
data(simulated_test_data)

Create the mplusObject with MplusAutomation
notice the explicit call of each item, instead of the shorthand "Iteml1-Item56"
initial.MplusAutomation.model <- MplusAutomation::mplusObject(
TITLE = "Trial ACO MpluAutomation with FERA 2016 Data;",
MODEL = "Ability BY Item1 Item2 Item3 Item4 Item5
Item6 Item7 Item8 Item9 Iteml1@ Itemll Iteml2
Item13 Item14 Item15 Iteml16 Item17 Item18
Item19 Item20 Item21 Item22 Item23 Item24
Item25 Item26 Item27 Item28 Item29 Item30
Item31 Item32 Item33 Item34 Item35 Item36
Item37 Item38 Item39 Item40@ Item41 Item42
Item43 Item44 Itemd45 Itemd46 Itemd7 Item4d8
Item49 Item50 Item51 Item52 Item53 Item54
Item55 Item56;",
ANALYSIS = "ESTIMATOR = WLSMV;",
VARIABLE = "CATEGORICAL = Iteml Item2 Item3 Item4 Item5

https://doi.org/10.1080/00273170802285743

exampleAntModel

)

#

Item6 Item7 Item8 Item9 Iteml1@ Iteml11 Item12
Item13 Item14 Item15 Iteml16 Item17 Item18
Item19 Item20 Item21 Item22 Item23 Item24
Item25 Item26 Item27 Item28 Item29 Item30
Item31 Item32 Item33 Item34 Item35 Item36
Item37 Item38 Item39 Item4@ Item41 Item42
Item43 Item44 Itemd45 Itemd46 Itemd7 Item4d8
Item49 Item50 Item51 Item52 Item53 Item54
Item55 Item56;",

OUTPUT = "stdyx;",

rdata = simulated_test_data

finally, call the function with some minor changes to the default values.

abilityShortForm <- antcolony.mplus(

)

ants = 3, evaporation = 0.7,

mplus = initial.MplusAutomation.model, list.items = list.items, full = 56,
i.per.f = 15, factors = "Ability"”, steps = 3, max.run = 50, resultfile = NULL,
summaryfile = "C:/Users/lordmaxwell/Desktop/summary.txt”,

min.CFI = 0.95, min.TLI = 0.95, max.RMSEA = 0.06,

feedbackfile = "C:/Users/lordmaxwell/Desktop/iteration.html”, Mplus.Automation
dataOut = "exampleModel.dat"”,

modelOut = "exampleModel.inp”

End(Not run)

15

= TRUE,

exampleAntModel

Model syntax for the example in the antcolony.lavaan function.

Description

A character vector containing the model syntax used for the one factor, 56-item example in the
antcolony.lavaan.

Usage

exampleAntModel

Format

A

character vector.

16 plot, ACO,ANY-method

modelCheck-class An S84 class for the modelCheck object

Description

An S4 class for the modelCheck object

Value

An S4 object of class ‘ACO".

Slots

model.output A ‘lavaan‘ object.
warnings A ‘character® vector of any warnings.
errors A ‘character® vector of any errors.

model.syntax A ‘character* vector of the modelCheck model syntax.

plot,ACO,ANY-method Plot method for class ‘ACO*

Description

Plot method for class ‘ACO°¢

Usage
S4 method for signature 'ACO,ANY'
plot(x, y, type = "all", ...)
Arguments
X,y An S4 object of class ‘ACO*
type A ‘character’ value specifying the plot type. One of ’all’* (for all plots), “’pheromone’*,

“gamma’‘, “’beta’, or “’variance’ ‘.

Not used.

plot,SA,ANY-method

17

plot,SA,ANY-method Plot method for class ‘SA*

Description

Plot method for class ‘SA*

Usage

S4 method for signature 'SA,ANY'
plot(x, vy, ...)

Arguments

X,y An S4 object of class ‘SA*.

Not used.

plot,TS,ANY-method Plot method for class ‘TS*

Description

Plot method for class ‘TS*

Usage

S4 method for signature 'TS,ANY'
plot(x, vy, ...)

Arguments

X,y An S4 object of class ‘“TS*.

Not used.

18 SA-class

refit.model Given a fitted lavaan model and a search table, refits the model using
the search table as specifying what changes should be done (parame-
ters fixed/freed).
Description

This is not meant to be called explicitly as tabu.sem uses this internally for model refitting.

Usage

refit.model(fitted.model, ptab)

Arguments

fitted.model fitted model of class lavaan

ptab search table

Value

An object of class lavaan if the new model fits, or an object of class try-error if the model update
fails.

Author(s)
Carl F. Falk

References

doi:10.1080/10705511.2017.1409074

See Also

Other Tabu Search: add.param(), search.prep()

SA-class An S84 class for the Simulated Annealing Algorithm

Description

An S4 class for the Simulated Annealing Algorithm

Value

An S4 object of class ‘SA°.

https://doi.org/10.1080/10705511.2017.1409074

search.prep 19

Slots

function_call The original function call.

chains The number of chains used.

chain_results A ‘matrix‘ (for multiple chains) or a ‘list® (for a single chain) of the chain results.
all_fit A summary ‘vector® indicating the model fit results for each iteration.

best_fit The best model fit result using the selected ‘fitStatistic*.

best_model A ‘modelCheck® object of the final solution.

best_syntax A ‘character® vector of the final solution model syntax.

runtime A ‘difftime‘ object of the total run time of the function.

search.prep Given a fitted lavaan model (e.g., CFA), prepares a table that contains
parameters that can be fixed/freed as part of a model specification
search.
Description

Given a fitted lavaan model (e.g., CFA), prepares a table that contains parameters that can be
fixed/freed as part of a model specification search.

Usage

search.prep(fitted.model, loadings = TRUE, fcov = TRUE, errors = FALSE)

Arguments
fitted.model - an object of class "lavaan" that contains the initially fitted model for the search
loadings - a logical value that indicates whether cross-loadings will be part of the search
fcov - a logical value indicating whether factor covariances will be part of the search
errors - a logical value indicating whether error covariances will be part of the search
Value

A data. frame with lavaan-formatted parameter values.

Author(s)
Carl F. Falk

References

doi:10.1080/10705511.2017.1409074

https://doi.org/10.1080/10705511.2017.1409074

20 shortExampleAntModel

See Also

Other Tabu Search: add.param(), refit.model()

Examples

Not run:

load simulation data and select columns used in this example
data(simulated_test_data)

tabuData <- simulated_test_datal[, c(1:10)]

specify an improper model (improper because data is unidimensional)
tabuModel <- "

Ability =~ Iteml + Item2 + Item3 + Item4

FakeAbility =~ Item5 + Item6 + Item7 + Item8

Ability ~ Outcome

FakeAbility ~ @*Qutcome”

run the initial misspecified model for Tabu

init.model <- lavaan::lavaan(

model = tabuModel, data = tabuData,

auto.var = TRUE, auto.fix.first = FALSE, std.lv = TRUE, auto.cov.lv.x = TRUE
)

Use search.prep to prepare for the Tabu search
ptab <- search.prep(fitted.model = init.model, loadings = TRUE, fcov = TRUE, errors = FALSE)

add an additional (mispecified) parameter
additional.param <- "Iteml ~~ @.5%Item3”

ptab <- add.param(fitted.model = init.model, ptab = ptab, syntax = additional.param)

Perform Tabu Search
trial <- tabu.sem(init.model = init.model, ptab = ptab, obj = AIC, niter = 2, tabu.size = 5)

End(Not run)

shortExampleAntModel Model syntax for the short example in the antcolony.lavaan func-
tion.

Description
A character vector containing the model syntax used for the one factor, 15-item, example in the
antcolony.lavaan.

Usage

shortExampleAntModel

ShortForm

Format

A character vector.

21

ShortForm ShortForm package

Description

Automated Item Selection Algorithms for Short Forms

Details
See the README on GitHub for more information.

ShortFormStartup Create Package Startup Message

Description

Makes package startup message.

Usage
ShortFormStartup()

Details

Idea taken from https://github.com/ntguardian/MCHT/blob/master/R/StartupMessage.R

Examples

ShortForm: : : ShortFormStartup()

show, ACO-method Print method for class ‘ACO*

Description

Print method for class ‘ACO*

Usage
S4 method for signature 'ACO'
show(object)

Arguments

object An S4 object of class ‘ACO*

https://github.com/AnthonyRaborn/ShortForm#readme

22 show, TS-method

show, SA-method Print method for class ‘SA°

Description

Print method for class ‘SA*

Usage

S4 method for signature 'SA'
show(object)

Arguments

object An S4 object of class ‘SA°.

show, TS-method Print method for class ‘TS*

Description

Print method for class ‘TS*

Usage

S4 method for signature 'TS'
show(object)

Arguments

object An S4 object of class ‘“TS‘.

simulatedAnnealing 23

simulatedAnnealing An adaptation of the simulated annealing algorithm for psychometric
models.

Description

Simulated annealing mimics the physical process of annealing metals together. Kirkpatrick et
al. (1983) introduces this analogy and demonstrates its use; the implementation here follows this
demonstration closely, with some modifications to make it better suited for psychometric models.

Usage
simulatedAnnealing(
initialModel,
originalData,
maxSteps,
fitStatistic = "cfi”,
temperature = "linear”,

maximize = TRUE,

Kirkpatrick = TRUE,

randomNeighbor = TRUE,

lavaan.model.specs = list(model. type = "cfa”, auto.var = TRUE, estimator = "default”,
ordered = NULL, int.ov.free = TRUE, int.lv.free = FALSE, std.lv = TRUE,

auto.fix.first = FALSE, auto.fix.single = TRUE, auto.cov.lv.x = TRUE, auto.th = TRUE,
auto.delta = TRUE, auto.cov.y = TRUE),

maxChanges = 5,

restartCriteria = "consecutive”,

maximumConsecutive = 25,

maxItems = NULL,

items = NULL,

bifactor = FALSE,

setChains = 1,

shortForm = T,

Arguments

initialModel The initial model as a character vector with lavaan model.syntax.
originalData The original data. frame with variable names.
maxSteps The number of iterations for which the algorithm will run.

fitStatistic Either a single model fit statistic produced by lavaan, or a user-defined fit statistic
function.

temperature Either an acceptable character value, or a user-defined temperature function.

non

The acceptable values are "linear", "quadratic", or "logistic".

https://www.science.org/doi/10.1126/science.220.4598.671
https://www.science.org/doi/10.1126/science.220.4598.671

24 simulatedAnnealing

maximize Logical indicating if the goal is to maximize (TRUE) the fitStatistic for model
selection.

Kirkpatrick Either TRUE to use Kirkpatrick et al. (1983) acceptance probability, or a user-
defined function for accepting proposed models.

randomNeighbor Either TRUE to use the included function for randomNeighbor selection, or a
user-defined function for creating random models.

lavaan.model. specs
A list which contains the specifications for the lavaan model. The default
values are the defaults for lavaan to perform a CFA. See lavaan for more details.

maxChanges An integer value greater than 1 setting the maximum number of parameters
to change within randomNeighbor. When creating a short form, should be no
greater than the smallest reduction in items loading on one factor; e.g., when
reducing a 2-factor scale from 10 items on each factor to 8 items on the first and
6 items on the second, maxChanges should be no greater than 2.

restartCriteria
Either "consecutive" to restart after maxConsecutiveSelection times with the
same model chosen in a row, or a user-defined function.

maximumConsecutive
A positive integer value used with restartCriteria.

maxItems When creating a short form, a vector of the number of items per factor you
want the short form to contain. Defaults to NULL.

items A character vector of item names. Defaults to NULL. Ignored if maxItems==FALSE.

bifactor Logical. Indicates if the latent model is a bifactor model. If TRUE, assumes

that the last latent variable in the provided model syntax is the bifactor (i.e., all
of the retained items will be set to load on the last latent variable). Ignored if
maxItems==FALSE.

setChains Numeric. Sets the number of parallel chains to run. Default to 1, which also sets
the algorithm to run serially (e.g., on a single processor). Values greater than 1
result in the chains running on parallel processes using the doSNOW and foreach
packages.

shortForm Logical. Are you creating a short form (TRUE) or not (FALSE)? Default is TRUE.

Further arguments to be passed to other functions. Not implemented for any of
the included functions.

Details
Outline of the Pieces of the Simulated Annealing Algorithm

* initialModel — the initial, full form

* currentModel — the model of the current step

* maxSteps — the maximum number of steps (iterations)
e currentStep — the current step

* currentTemp — the current temperature. A function of the number of steps (such that temp =
0 at maxSteps), and values that control the shape of the overall temperature. A part of the
function that determines the acceptance probability of newly — generated models

simulatedAnnealing 25

Value

* randomNeighbor — a function that determines how the form is changed at each step. Should
be able to change one or more parameters, and should have a way to control how many are
changed.

* goal — a function that determines the "goodness" of the currentModel. Typically in SA good-
ness is defined as minimization! Sometimes called an energy function

* selectionFunction — a function that determines if a randomNeighbor change is accepted. Uses
the goal function that determines the "goodness" of the currentModel and the "goodness" of
the randomNeighbor, and the currentTemp to generate a probability of acceptance, then com-
pares this probability to a Uniform(0,1) variable to determine if accepted or not. A standard

—wmb—wd”)

gxp e g oaly > goals
P(maodels|goal,, goaly, currentTemp) = {{ P urrentTemp (g g)

(goal, < goals)
version of this is: (Kirk-
patrick et al., 1983)

* bestModel — the model with the best value of the goal function achieved so far
* bestGoal — the best value of the goal function achieved so far

* restartCriteria — if utilized, this would "restart" the SA process by changing currentModel
to bestModel and continuing the process. Could be based on (1) the currentStep value, (2)
the difference between goal(currentModel) and goal(bestModel), (3) randomness (i.e., could
randomly restart, could randomly restart based on some values, etc), (4) other criteria.

A named list: the "bestModel’ found, the ’bestFit’, and ’allFit’ values found by the algorithm.

Examples

Not run:
data(exampleAntModel)
data(simulated_test_data)

triall <- simulatedAnnealing(
initialModel = lavaan::cfa(
model = exampleAntModel,

data = simulated_test_data

))
originalData = simulated_test_data, maxSteps = 3,
fitStatistic = "rmsea”, maximize = FALSE

)

summary(triall) # shows the resulting model

trial2 <- simulatedAnnealing(

initialModel = exampleAntModel,

originalData = simulated_test_data,

maxSteps = 2, maxItems = 30, items = paste@("Item”, 1:56)
)

summary(trial2) # shows the resulting model

End(Not run)

26 summary,ACO-method

simulated_test_data A simulated data set based on a standardized test.

Description

Simulated response patterns, abilities, and outcomes based on a uni-dimensional state-issued stan-
dardized test.

Usage

simulated_test_data

Format

An object of class data. frame with 1000 rows and 58 columns.

Details

@format A data frame of 1000 rows (observations) and 58 columns (variables):

Outcome a binary external criterion variable correlated with TrueAbility
TrueAbility the simulated true ability parameter used to generate response patterns

Item1-Item56 binary responses to items generated using the TrueAbility parameters and simulated
3PL item parameters generated from the distribution of parameters estimated from a state-
issued standardized test

summary ,ACO-method Summary method for class ‘ACO*

Description

Summary method for class ‘ACO*

Usage

S4 method for signature 'ACO'
summary (object)

Arguments

object An S4 object of class ‘ACO*

summary,SA-method

27

summary, SA-method Summary method for class ‘SA*

Description

Summary method for class ‘SA*

Usage

S4 method for signature 'SA'
summary (object)

Arguments

object An S4 object of class ‘SA°.

summary, TS-method Summary method for class ‘TS*

Description

Summary method for class “TS*

Usage

S4 method for signature 'TS'
summary (object)

Arguments

object An S4 object of class ‘“TS‘.

28 tabu.sem

tabu. sem Given a fitted lavaan model, a search table, and an objective criterion,
performs a Tabu model specification search. Currently only supports
neighbors that are 1 move away from the current model.

Description

Given a fitted lavaan model, a search table, and an objective criterion, performs a Tabu model
specification search. Currently only supports neighbors that are 1 move away from the current
model.

Usage

tabu.sem(init.model, ptab, obj, niter = 30, tabu.size = 5)

Arguments
init.model initial fitted model of class lavaan
ptab search table (e.g., created by search.prep) that lists candidate parameters that
can be modified as part of the search and how the parameters can be modified
(fixed to what values)
obj objective function to be MINIMIZED. Any function that takes a lavaan object
as the sole argument and returns a numeric value can be used.
niter number of Tabu iterations to perform
tabu.size size of Tabu list
Value

A list with three elements: best.obj, the numerical value of the best (minimal) objective function
achieved; best.mod, the final lavaan model, and best.binvec, a data.frame of the lavaan-formatted
parameter table for the final model.

Author(s)
Carl F. Falk

References

doi:10.1080/10705511.2017.1409074

Examples

load simulation data and select columns used in this example
data(simulated_test_data)
tabuData <- simulated_test_datal, c(1:10)]

specify an improper model (improper because data is unidimensional)

https://doi.org/10.1080/10705511.2017.1409074

tabuShortForm 29

tabuModel <- "

Ability =~ Iteml + Item2 + Item3 + Item4
FakeAbility =~ Item5 + Item6 + Item7 + Item8
Ability ~ Outcome

FakeAbility ~ @xOutcome”

run the initial misspecified model for Tabu

init.model <- lavaan::lavaan(
model = tabuModel, data = tabuData,
auto.var = TRUE, auto.fix.first = FALSE, std.lv = TRUE, auto.cov.lv.x = TRUE

)

Use search.prep to prepare for the Tabu search
ptab <- search.prep(fitted.model = init.model, loadings = TRUE, fcov = TRUE, errors = FALSE)

Perform Tabu Search
trial <- tabu.sem(init.model = init.model, ptab = ptab, obj = AIC, niter = 2, tabu.size = 5)

tabuShortForm Short Form Tabu Search

Description

Given an initial (full) lavaan model string, the original data, a criterion function to minimize, and
some additional specifications, performs a Tabu model specification search. Currently only supports
neighbors that are 1 move away from the current model.

Usage

tabuShortForm(
originalData,
initialModel,
numItems,
criterion = function(x) {
tryCatch(-lavaan::fitmeasures(object = x, fit.measures =
"cfi"), error = function(e) Inf)
1
niter = 20,
tabu.size = 5,
lavaan.model.specs = list(int.ov.free = TRUE, int.lv.free = FALSE, std.1lv = TRUE,
auto.fix.first = FALSE, auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x =
TRUE, auto.th = TRUE, auto.delta = TRUE, auto.cov.y = TRUE, ordered = NULL,
model.type = "cfa”, estimator = "default"),
bifactor = FALSE,
verbose = FALSE,
parallel = T
)

30

Arguments

originalData

initialModel

numItems

criterion

niter

tabu.size

tabuShortForm

The original data frame with variable names.

The initial model (typically the full form) as a character vector with lavaan
model.syntax.

A numeric vector indicating the number of items to retain for each factor.

A function calculating the objective criterion to minimize. Default is to use the
built-in ‘rmsea‘ value from ‘lavaan::fitmeasures()°.

A numeric value indicating the number of iterations (model specification selec-
tions) to perform. Default is 50.

A numeric value indicating the size of Tabu list. Default is 5.

lavaan.model. specs

bifactor

verbose

parallel

Value

A list which contains the specifications for the lavaan model. The default values
are the defaults for lavaan to perform a CFA. See lavaan for more details.

Logical. Indicates if the latent model is a bifactor model. If “TRUE‘, assumes
that the last latent variable in the provided model syntax is the bifactor (i.e., all
of the retained items will be set to load on the last latent variable).

Logical. If ‘TRUE’, prints out the initial short form and the selected short form
at the end of each iteration.

An option for using parallel processing. If TRUE, the function will utilize all
available cores. Default is TRUE.

A named list with the best value of the objective function (‘best.obj‘) and the best lavaan model
object (‘best.mod’).

Examples

shortAntModel <-
Ability =~ Iteml + Item2 + Item3 + Item4 + Item5 + Item6 + Item7 + Item8

Ability ~ Outcome

n

”

data(simulated_test_data)
tabuResult <- tabuShortForm(
initialModel = shortAntModel,

originalData

simulated_test_data, numItems = 7,

niter = 1, tabu.size = 3, parallel = FALSE

)

summary (tabuResult) # shows the resulting model

Not run:

create simulation data from the “psych™ package
four factors, 12 items each, 48 total items
factor loading matrix - not quite simple structure

fxMatrix <-
matrix(
data = c(

tabuShortForm

rep(x = c(.9, .7, .5, .3), times = 3),
rep(0.2, times = 3 x 4 x 3), # first factor loadings

rep(0.2, times
rep(x = c(.9,
rep(@0.2, times

3% 4),
, .5, .3), times = 3),
3 % 4 % 2), # second factor loadings

I~ 1

rep(0.2, times
rep(x = c(.9,
rep(0.2, times

3% 4 % 2),
, .5, .3), times = 3),
3 x 4), # third factor loadings

N~

rep(0.2, times = 3 x 4 x 3),
rep(x = c(.9, .7, .5, .3), times = 3) # fourth factor loadings
),
ncol = 4
)
factor correlation matrix - all factors uncorrelated
PhiMatrix <-
matrix(data = c(
1, o,
o, 1,
0, 0,
0, 0,
), ncol
tabuData <-
psych: :sim(
fx = fxMatrix,
Phi = PhiMatrix,
n = 1000,
raw = TRUE
)$observed # observed is the simulated observed data

’ ’

))

’ ’

- oo

’

4

N © = o

~—

NOTE: you must specify the model such that each factor is on a single line!
otherwise, the algorithm will not work correctly!

tabuModel <- "

Traitl =~ Iteml + Item2 + Item3 + Item4 + Item5 + Item6 +

Item7 + Item8 + Item9 + Iteml1@ + Iteml11 + Iteml12

Trait2 =~ Item13 + Item14 + Iteml15 + Item16 + Iteml17 +

Item18 + Item19 + Item20 + Item21 + Item22 + Item23 + Item24
Trait3 =~ Item25 + Item26 + Item27 + Item28 + Item29 + Item30Q +
Item31 + Item32 + Item33 + Item34 + Item35 + Item36

Trait4 =~ Item37 + Item38 + Item39 + Item4@ + Item41 +

Item42 + Itemd43 + Itemd44 + Itemd5 + Itemd46 + Itemd47 + Item48

n

colnames(tabuData) <- paste@("Item”, 1:48)
specify the criterion function that the Tabu Search minimizes
wrap this in a tryCatch in case a model does not converge!
specify an appropriate error value: if minimizing, error value must be large
tabuCriterion <- function(x) {
tryCatch(lavaan: :fitmeasures(object = x, fit.measures = "chisq"),
error = function(e) Inf

)

32

TS-class

}

use the tabuShortForm function
reduce form to the best 12 items

tabuShort <- tabuShortForm(
initialModel = tabuModel, originalData = tabuData,
numItems = c(3, 3, 3, 3),
criterion = tabuCriterion,
niter = 20, tabu.size = 10

)

End(Not run)

TS-class An S84 class for the Tabu Search Algorithm

Description

An S4 class for the Tabu Search Algorithm

Value

An S4 object of class ‘TS".

Slots

function_call The original function call.
all_fit A summary ‘vector‘ indicating the model fit results for each iteration.

best_fit The best model fit result using the selected ‘fitStatistic’. A numeric value or vector,
possibly named.

best_model A ‘lavaan‘ object of the final solution.
best_syntax A ‘character® vector of the final solution model syntax.
runtime A ‘difftime* object of the total run time of the function.

final_tabu_list The final list of Tabu models. Each element of the list is a ‘lavaan‘ object.

Index

* Ant Colony Algorithms
antcolony.lavaan, 5
antcolony.mplus, 10

+ Tabu Search
add.param, 4
refit.model, 18
search.prep, 19

+ datasets
exampleAntModel, 15
shortExampleAntModel, 20
simulated_test_data, 26

.onAttach, 2

ACO-class, 3
add.param, 4, 18, 20
antcolony.lavaan, 5, 14, 15, 20
antcolony.mplus, 9, 10

exampleAntModel, 15
lavaan, 5-7, 24, 30

modelCheck-class, 16
MplusAutomation, 10, 11
mplusObject, 1/

plot,ACO,ANY-method, 16
plot,SA,ANY-method, 17
plot,TS,ANY-method, 17

refit.model, 4, 18, 20

SA-class, 18
search.prep, 4, 18, 19
shortExampleAntModel, 20
ShortForm, 21

ShortForm-package (ShortForm), 21

ShortFormStartup, 21
show, ACO-method, 21
show, SA-method, 22
show, TS-method, 22

simulated_test_data, 26
simulatedAnnealing, 23
summary ,ACO-method, 26
summary, SA-method, 27
summary, TS-method, 27
system, 10

tabu.sem, /8, 28
tabuShortForm, 29
TS-class, 32

	.onAttach
	ACO-class
	add.param
	antcolony.lavaan
	antcolony.mplus
	exampleAntModel
	modelCheck-class
	plot,ACO,ANY-method
	plot,SA,ANY-method
	plot,TS,ANY-method
	refit.model
	SA-class
	search.prep
	shortExampleAntModel
	ShortForm
	ShortFormStartup
	show,ACO-method
	show,SA-method
	show,TS-method
	simulatedAnnealing
	simulated_test_data
	summary,ACO-method
	summary,SA-method
	summary,TS-method
	tabu.sem
	tabuShortForm
	TS-class
	Index

